
Traceability Analysis Of A High-Level Automotive
System Architecture Document

Dennis Hild
Individual Standard GmbH

Berlin, Germany
dennis.hild@individual-standard.com

Martin Beckmann
Technische Universität Berlin

Berlin, Germany
martin.beckmann@tu-berlin.de

Andreas Vogelsang
Technische Universität Berlin

Berlin, Germany
andreas.vogelsang@tu-berlin.de

Abstract—More and more functions in automotive systems are
enabled and controlled by software that is distributed over a large
number of systems and components. In addition, the systems are
more and more interconnected to implement the desired vehicle
functions. Creating and maintaining a high-level overview of the
relations between vehicle functions, systems, and components in a
complete and consistent way requires a lot of effort. On the other
hand, such a high-level architecture is beneficial for planning
the development, analyzing the architecture, or defining product
variants. In this paper, we analyze a real-world document that
was manually created to document all vehicle functions, systems,
and components of one car series and relations between these.
We formalized the content of this model by providing a model
of the concepts and a set of consistency rules. By evaluating
the consistency rules on the given document, we found 213
contradictory relations and 547 missing relations. Based on these
results, we conclude that manually maintaining such high-level
architectures is highly error-prone and should thus be supported
by automation and appropriate tooling.

Index Terms—Traceability, Trace Link Recovery, Automotive
System Architecture Analysis

I. INTRODUCTION

Innovation in the automotive industry is still primarily
driven by functions that are implemented in software [1],
[2]. Since automotive systems encompass a wide variety of
different domains (e.g., infotainment or control engineering
of mechanical and electronic components) which at the same
time are highly-connected, it is a challenging task to maintain
an overview of all the dependencies of the involved systems.
Studies have shown that developers are unaware of a large
fraction of these dependencies [3]. The concept of relating
entities that exhibit dependencies or other forms of connections
is called traceability [4] and has been considered an important
factor in the design of complex software systems (as in
automotive software engineering) for quite some time [5]. Such
connections are implemented by the use of trace links [4]. These
trace links may appear in different directions, for example,
horizontally (from system to system) as well as vertically
(from system to function). Moreover, these dependencies also
occur across multiple dimensions (e.g., a system may rely
on the output of another system’s function). This means, one
system may depend on the function provided by another system.
But keeping such an overview in a correct, consistent, and
complete state involves even more aspects. One must also
keep track how all the systems and their functions are mapped

to components (i.e., Electronic Control Units (ECUs) of a
vehicle). This challenge is further aggravated by the fact that
modern vehicles consist of numerous systems and components.
As a result, the size of a document that contains a high-level
architectural overview of functions, systems, and components
has reached an enormous extent. As the number of systems in
modern vehicles continues to grow [6], so does the number of
dependencies and thus also the required effort to maintain them
properly. In practice, such documents are oftentimes created
and maintained manually in general-purpose tools such as MS
Excel.

On the other hand, a high-level overview of functions,
systems, components, and their relations is essential to plan
development activities [7], to define product variants, or to
assess and optimize the systems’ architecture [8]. This is
especially important when components and sometimes even
whole systems are developed by (oftentimes multiple different)
suppliers [2], [9]. But the trace links not only facilitate the
identification of dependencies, they are also needed even
aside from organizational issues. The existence of trace links
is mandated by regulations for safety-critical systems (see
ISO26262 [10]) and process improvement standards (see
Automotive SPICE [11]) of the automotive industry.

In this paper, we analyze a high-level architecture document
of a vehicle series from practice. We aim at two things:
First, we analyze the underlying structure of the document to
define a model that represents its concepts (functions, systems,
components, and relations between them). In addition, we
define a set of consistency rules. Based on the consistency
rules, we are able to uncover missing connections and to
correct contradictory connections. Second, we apply the set of
rules to the document to find out how many false and missing
connections are existent.

The remainder of this paper is organized as follows. The
next section provides details on the background. We explain
what information the document contains, how the document
is composed, and how trace links are realized. The third
section presents the underlying structure of the document
and introduces a set of rules that aim to ensure correctness
and completeness of the connections. In the fourth section,
we present the results of applying the set of rules to the
document and emphasize a number of situations that occur most
frequently. The fifth section provides insights into related work

37ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



in the area of trace link recovery. The last section concludes
this work and gives an outlook on future work.

II. BACKGROUND

A. High-Level Architectural Description Of Automotive E/E
Systems

As stated in the introduction, the relations between vehicle
functions, systems, and components is often manually main-
tained in a high-level architecture document. The main content
of this document is displayed in a table-like manner. Fig. 1
shows an abstract excerpt of this document.

It contains information on:
• names of systems in a vehicle series
• names of functions and the system they are associated

with
• names of subfunctions and by which functions they are

used
• information on whether functions and subfunctions are

provided by or contribute to a system
• a mapping of systems, functions, and subfunctions to

components
The first column in the table in Fig. 1 defines the type of

an entity in the table1. It may be a system, a function, or a
subfunction. The second column System assigns a system to
each entity to indicate its membership. If the entity is a function,
the third column specifies its name. The fourth column does
the same for subfunctions. Function and subfunction entries
of a system may reference a function or subfunction that is
provided by that system or by another system. In the latter
case, the other system must contain a corresponding entry
for that function. To indicate this difference, the column Type
specifies whether a function or subfunction is an own function
of the system (denoted by the o in the appropriate cell) or an
external function (denoted by the e in the appropriate cell). In
case a function is an external function, the columns Provided
By and Provided To give information which system provides
the function and which system is using it. This information is
redundantly provided for both the origin (e.g., F_2 in system
S_n) and for the target (e.g. F_2 in system S_1). A function
may be provided for multiple systems, while it only has one
origin. In the example in Fig. 1, function F_2 from system S_n
is used as a subfunction in function F_1 of system S_1. The
rest of the columns represent the components of the vehicle
series. An x in a cell maps an entity to a component, which
means that the entry is deployed on the component. It has
to be noted that subfunctions might intentionally not have a
mapping to a component and functions might not have any
subfunctions.

The whole document is managed in a commonly used spread-
sheet program. Although the possibility exists, the spreadsheet
does not make use of macros or other programmable routines.
It is managed in a complete manual manner.

1The indentation does not exist in the original document and is used to
improve clarity on which entity belongs to which entity

B. Realization Of Trace Links

The rows in the document contain three types of references
to other entities:

Vertical Traceability: Systems consist of functions, which
themselves may consist of subfunctions (vertical traceability).
This belongs to-relation is expressed redundantly in the
document in two ways. First, a function belongs to a system if
it is listed in a row below the system entity but before another
system. The same applies for the relation of subfunctions to
functions. This results in a hierarchical decomposition. Second,
the column System contains the name of the system to which
the function or subfunction belongs to.

Horizontal Traceability: Systems may use functionality
provided by functions of other systems. Such a function or
subfunction is denoted as an external function in the column
Type. The relation between systems (horizontal traceability) is
expressed using the columns Provided By and Provided To. For
the affected function (or subfunction), these columns contain the
name of the origin and the target respectively. This information
is stored both for the system using the function and for the
system providing the function. The providing system lists all
of the systems using the function in the column Provided To.
Similar to what is explained in (1), external functions also
appear in a row below the system using it. As a result, this
relation is also expressed redundantly.

Deployment Traceability: Systems, functions, and subfunc-
tions are mapped to components to express that they are
deployed on these. This is expressed by an x in the column of
the respective component column. If a subfunction is deployed
on a component, the function it belongs to and its system must
also have a relation to this component (i.e., the deployment
relations are aggregated).

C. Key Figures

To give an overview over the size of such a high-level
architecture document, we provide some figures for the
analyzed document. The document consists of 3,214 rows and
208 columns. It contains the basic architectural information
for 169 systems and encompasses a mapping to 180 individual
components. For the systems, 2,111 functions and 935 sub-
functions are listed. Functions may be used multiple times by
other systems as functions or as subfunctions. Both numbers
include such multiple appearances.

D. Research Design

The objective of our research effort was to gain insights
in the practical realization of traceability in an automotive
architecture document. The provided document was analyzed
manually by the first author of this paper and peculiarities were
discussed with the contributing authors of this paper. This has
lead to the identification of a number of problems concerning
the existing traceability information in the document. Based
on these findings a set of rules was created to automatically
improve the completeness and consistency of the traceability
in the document. This set of rules is presented in a conceptual
manner in the next section. The rules were then formalized and

38ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



Entity Type System Function Subfunction Type Provided By Provided To C_1 C_2 …

System S_1 - x x

Function S_1 F_1 o x x

Subfunction S_1 SF_1 o x

Subfunction S_1 F_2 e S_n S_1 x

…

System S_n - x

Function S_n F_2 o S_n S_1, … x

Subfunction S_n SF_3 o

Fig. 1: Example of the structure of the architecture document (o: own function, e: external function)

implemented. This way we were able to gather information on
what kind of problems appear how frequently. The results of
this analysis are explained and discussed in Section IV.

III. TRACE LINK RECOVERY

A. Underlying Structure Of The Document

The underlying structure of the document as explained in the
previous section is visualized in Fig. 2. The boxes represent the
three entities System, Function, and Component. The arrows
display the connections between them. For our approach, we
distinguish between two different kinds of connections:

1) Connections that are existing explicitly in the document
(represented by dotted lines)

2) Connections that we can derive from the existing relations
(represented by dashed lines)

For the connections represented by enumeration item 1)
we aim to improve the completeness by finding missing
connections and adding these to the document. The connections
represented by enumeration item 2) only exist implicitly in the
document. For these dependencies, it is necessary to follow
other existing (explicit) connections to make them visible. For
instance, to find dependencies between systems, it is necessary
to follow an external function of a system back to its originating
system. Although such connections are not yet documented
explicitly in the document, developers of the OEM mentioned
that these connections would provide valuable information to
them. Hence, we also intent to find these connections.

Besides, we also attempt to find and correct inconsistent and
incorrect connections. Incorrect and inconsistent connections
are characterized by missing information about the origin or
target of the trace link. E.g., a function is provided to a certain
system, but that system does not contain the function.

Overall, we want to improve the quality of the traceability
links in the document based on the extracted structure. We
try to achieve this goal by proposing a set of rules that find
missing links and correct false links.

B. Set Of Rules

The rules we propose can be categorized into two sets.
The first set (consisting of 8 rules) aims to identify and
repair incorrect links (correcting rules) while the second set

Fig. 2: Underlying structure of the architecture document

TABLE I: Overview of the set of rules

Description #Rules

Correcting Rules 8
Identification of function type 3
Correction of faults 5

Recovering Rules 18
Recovering connections from functions ... 8

... to functions 1

... to systems 2

... to components 5
Recovering connections from systems ... 10

... to functions 2

... to systems 2

... to components 6

(consisting of 18 rules) aims to recover missing trace links
(recovering rules). The second set of rules addresses both
kinds of connections in the document as mentioned in the
enumeration in the previous subsection. A number of such cases
where links are either missing or incorrectly implemented as
well as a solution are depicted in the Fig. 3 to Fig. 8. Besides,
a short description and the number of rules for both sets is
displayed in TABLE I.

39ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e S_2 S_1

System S_2 -

Function S_2 F_2 o

System S_3 -

Function S_3 F_3 o

(a) existing

Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e S_2 S_1

System S_2 -

Function S_2 F_2 o

Function S_2 F_1 o S_2 S_1

System S_3 -

Function S_3 F_3 o(b) expected

Fig. 3: Case 1 - Function missing in originating system

Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e S_2 S_1

System S_2 -

Function S_2 F_1 o

System S_3 -

Function S_3 F_3 o

(a) existing

Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e S_2 S_1

System S_2 -

Function S_2 F_1 o S_2 S_1

System S_3 -

Function S_3 F_3 o

(b) expected

Fig. 4: Case 2 - Missing start of trace link

Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e

System S_2 -

Function S_2 F_1 o S_2 S_1

System S_3 -

Function S_3 F_3 o

(a) existing

Entity Type System Function Type Provided By Provided To

System S_1 -

Function S_1 F_1 e S_2 S_1

System S_2 -

Function S_2 F_1 o S_2 S_1

System S_3 -

Function S_3 F_3 o

(b) expected

Fig. 5: Case 3 - Missing end of trace link

Entity Type System Function C_1

System S_1

Function S_1 F_1 x

…

(a) existing

Entity Type System Function C_1

System S_1 x

Function S_1 F_1 x

…

(b) expected

Fig. 6: Case 4 - Missing mapping of system to component

Entity Type System Function C_1 C_2

System S_1 x x

Function S_1 F_1 x

Function S_1 F_2 x

System S_2 x

…

(a) existing

Entity Type System Function C_1 C_2

System S_1 x x

Function S_1 F_1 x

Function S_1 F_2 x

System S_2 x

…

(b) expected

Fig. 7: Case 5 - Superfluous mapping of system to component

40ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



Entity Type System Function Subfunction C_1 C_2

System S_1 x

Function S_1 F_1 x

Subfunction S_1 SF_1 x

Subfunction S_1 SF_2 x

…

(a) existing

Entity Type System Function Subfunction C_1 C_2

System S_1 x x

Function S_1 F_1 x x

Subfunction S_1 SF_1 x

Subfunction S_1 SF_2 x

…

(b) expected

Fig. 8: Case 6 - Missing mapping of function to component

Fig. 9: Structure for completion of Provided By

C. Correcting Rules
There are three basic ideas behind the correcting rules:
1) Information at the origin must also exist at the target

and vice versa (e.g., an external function is listed in the
originating system as in Fig. 3).

2) The information must be complete (the columns Provided
By and Provided To of functions used by other systems
must not omit system names as in Fig. 4 and Fig. 5).

3) The type of a function must be correct (e.g., an external
function is indicated by an e in the column Type).

Rule 1) assures that a function provided to another system
actually exists in the originating system. Rule 2) assures that
every time a function is used externally, the function contains
information on the originating system and the using systems.
Rule 3) assures that the type is correct. Hence, the correcting
rules try to identify functions appearing in other systems and
check whether all information on that function across the entire
document is correct. An instance, where one of the rules applies,
is depicted in the model-notation in Fig. 9. Assuming function
F_2 of system S_n in Fig. 1 does not have the value S_n in the
column Provided By, this value is complemented. This realizes
the (deliberately redundant) backward connection Provided by
in Fig. 9.

D. Recovering Rules
The rules for recovering missing connections are created by

transitively deducting connections from existing connections.
These rules create trace links between functions, systems,
and components. The main intention of these rules is to
make connections explicit. Examples for such connections are
displayed in Fig. 10, Fig. 11, Fig. 12, and Fig. 13. The thicker
arrows between the entities symbolize existing connections.
The narrow arrows are the connections that are created by our
approach.

Fig. 10: Structure for a trace link between functions

(a) Link via used
subfunction

(b) Link via used function

Fig. 11: Structure examples for trace links from functions to
components

Hence, Fig. 10 depicts the dependency of a function F_1 to
a function F_3, resulting from a dependency of F_1 to F_2
which in turn depends on F_3.

Fig. 11 depicts a dependency of a function F_1 to a compo-
nent C_1. This dependency results from a subfunction (Fig. 11a)
or another function (Fig. 11b) which has a dependency to
component C_1 and is used by the function F_1.

Fig. 12 depicts the dependencies of a system S_1 to another
system S_2 that results from a function F_1 using the output
of a function F_2 of system S_2.

Fig. 13 is similar to the situation displayed in Fig. 11a but
propagates the dependencies further up to the system.

These rules only showcase a part of all possible rules. The
total number of 18 rules were systematically gathered by going
through all possible combinations of connections that might
exist and assessing them towards their necessity in practice.
That also includes recursive structures that appear when, for
instance, multiple functions are involved (as in Fig. 10). The

41ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



Fig. 12: System to system structure example

Fig. 13: Example structure for trace links between systems and
components

next section presents the results from applying the rules to the
described data set.

IV. ANALYSIS / EVALUATION

In this section we present the results of applying the rules
to the described data set. The process of the evaluation started
with the implementation of the approach and its rules. This
implementation was then used on the already described data
set. In this we regard the number of trace links before the
application of the rules, after the application of the correction
rules (first rule set) and after the application of the recovering
rules (second rule set). These numbers are also visualized
in Fig. 14. The objective of the evaluation was to find out
how often certain faulty situations occur. We chose certain
deficiencies because, in our view, these reflected the ones with
the biggest impact on the document quality. This left us with
a total of four question we aimed to answered. Moreover, we
wanted to know how many trace links existed before and after
the application of our approach and how many corrections
were made. Hence, the question we wanted to answer are the
following:

Q1) How many external functions are found that were
not defined? We describe an external function as not defined
if the function does not exist in the system that is supposed
to be the originating system. Hence, we look for an external
function which is not listed in the specified originating system.
This situation is also displayed Fig. 3.

Q2) How many components are connected to a function
but not to the system of the function? The circumstances

Fig. 14: Results

reflected by this question are the same as displayed in Fig. 13
and Fig. 6.

Q3) How many components are connected to a system
but not to any function of the system? In the context of this
question, we look for the number of components which are
connected to systems but not to any of the functions of the
system (also displayed in Fig. 7). Such a situation indicates
that there is no existing rationale for the dependency between
the system and the specified component.

Q4) How many components are connected to subfunc-
tions but not to the function using the subfunction? This
question is similar to Q3. But instead of functions and systems,
it aims at subfunctions and functions (also displayed in Fig. 8).

Q5) How many trace links exist before the application
of the approach and how many exist after the application
of the approach? With this question we aim to find out how
many trace links existed before and after the application of
our approach.

Q6) How many changes were made by the correcting
rules? By answering this question, we try to find out how
many mistakes could be automatically fixed by our approach.

A. Results

After the application of the approach, we analyzed the results
to answer the previously stated questions. Fig. 14 visualizes
the answers of the questions. Considering question Q1), the
approach recovered 95 external functions which did not exist
in the specified originating system. It is possible that such
a situation arises then a function, which is used by another
function or system does not exists anymore, or an external
function is needed by the considered system and another system
is responsible for this functionality. So the function also has to
be created in the corresponding system. Between components
and systems 160 trace links were recovered (Q2)). Considering
question Q3), we identified 129 cases in which components
are connected to systems for no reason. Similarly for Q4),
we identified 52 missing trace links between components and
functions. To answer question Q5): the analysis shows 5,564
initially existing connections. After the application of the
first set of rules 7,308 connections exists. This number of

42ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



(a) functions as source (b) systems as source

Fig. 15: Number of recovered trace links

connections results from filling in the Provided By column
for each function. After the application of the approach 7,855
connections exist. Hence, the method recovered 2,291 implicit
existing trace links. These trace links consists of trace links,
which exists through filling Provided By and Provided To
columns, and trace links recovered by the application of the
second set of rules. For the last question Q6) we found that
the correcting rules were applied 213 times.

B. Discussion

In this subsection we discuss whether the links added by our
rules provide additional benefit. For this purpose, we compare
how many trace links existed before the application of our
approach and how many after. We do this for both trace links
from functions and from systems.

The results for functions are displayed in Fig. 15a and for
systems in Fig. 15b. For functions initially 432 trace links
existed. Our approach was able of recovering 61 more trace
links. Hence, we were able to improve the trace link coverage
for functions by about 12%.

For systems initially 810 trace links existed. Here, we
found 486 additional trace links that did not exist before. This
represents 37% of all trace links that should have existed.

In more detail, we observed that 11 out of 18 recovering
rules are relevant for the examined document. We derive this
conclusion from the fact that these rules recover trace links that
already existed in many places between entities. The remaining
7 of the 18 rules could not create any trace links because
the corresponding structures did not appear in the document.
Hence, these 7 rules are more of a theoretical nature.

All in all, our results confirm related findings that maintain-
ing traceability requires a significant effort for even moderately
sized systems [12], let alone large systems as in our analysis.

V. RELATED WORK

Automatically complementing trace links between or within
software engineering artifacts falls into the area of trace link
recovery [13]. There are already a number of approaches in
this field. They differ in the underlying idea of how to find
connections.

Text-based information retrieval approaches (e.g. [14]) use
textual artifacts such as textual requirements. Event-based
approaches (e.g. [14, p. 173-194]) are (oftentimes) interactive
approaches that trigger the creation of connections when
artifacts are created. Rule-based approaches create connections
based on predefined rules (e.g. syntactic rules [15]). Model-
based approaches rely on an underlying model of the involved
artifacts and create trace links based on detected changes [14,
p. 215-240] or require the user to apply the approach from the
very start [16].

The method presented in this paper makes use of the structure
of the artifacts and is usable at any time. Unlike the mentioned
and other related approaches, it is independent of textual
information (which as a source of ambiguity, cannot achieve
full reliability [17], [18]) and does not require to be used in a
continuous manner. To the best of our knowledge there is no
approach in literature that fits these criteria.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an analysis of trace links in a
high-level architecture document of an automotive OEM. We
extracted the underlying structure of the document and derived
a set of rules that ensures the correctness and completeness
of trace links. The rules, we proposed, were implemented in
order to improve the quality of the document. An evaluation
of this method shows that 547 missing trace links were created
and 213 incorrect or inconsistent trace links were corrected.

In future, it may prove to be fruitful to implement such rules
in the program the document is maintained. This may encourage
a better quality from the start and prevent occurrences of defects
and inconsistencies whenever it is manually edited. But we
think, it would even be more promising to use modeling tools
instead of a spreadsheet program to represent such information.
Although it remains doubtful whether this can be accomplished
in industrial practice on a wide scale. Future work should
also address the impact on other developments artifacts that
are derived of the document analyzed in this paper. More
generally, it needs to be assessed how the rules can be adapted
to documents other than the one investigated in this work.

REFERENCES

[1] K. Grimm, “Software technology in an automotive company: Major
challenges,” International Conference on Software Engineering, 2003.

[2] A. Haghighatkhah, A. Banijamali, O.-P. Pakanen, M. Oivo, and P. Kuvaja,
“Automotive software engineering: A systematic mapping study,” Journal
of Systems and Software, vol. 128, 2017.

[3] A. Vogelsang and S. Fuhrmann, “Why feature dependencies challenge
the requirements engineering of automotive systems: An empirical study,”
in 21st IEEE International Requirements Engineering Conference (RE),
2013. [Online]. Available: https://arxiv.org/pdf/1708.08660

[4] O. Gotel and C. Finkelstein, “An analysis of the requirements traceability
problem,” International Conference on Requirements Engineering, 1994.

[5] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE transactions on software engineering, vol. 27, no. 1,
2001.

[6] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software
engineering for automotive systems: A roadmap,” Future of Software
Engineering, 2007.

[7] F. Pettersson, M. Ivarsson, and P. Öhman, “Automotive use case standard
for embedded systems,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 4, 2005.

43ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany



[8] A. Vogelsang, H. Femmer, and M. Junker, “Characterizing implicit
communal components as technical debt in automotive software systems,”
in 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA). IEEE Computer Society, 2016, pp. 31–40. [Online]. Available:
http://www.aset.tu-berlin.de/fileadmin/fg331/Publications/WICSA16.pdf

[9] G. L. Ragatz, R. B. Handfield, and T. V. Scannell, “Success factors for
integrating suppliers into new product development,” Journal of Product
Innovation Management, vol. 14, no. 3, 1997.

[10] International Organization for Standardization, “ISO/DIS 26262 - road
vehicles — functional safety,” 2009.

[11] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE
Process Assessment / Reference Model,” 2015.

[12] B. Ramesh, C. Stubbs, and M. Edwards, “Lessons learned from
implementing requirements traceability,” Journal of Defense Software
Engineering, vol. 8, no. 4, 1995.

[13] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and Systems
Traceability. Springer, 2012, vol. 2, no. 3.

[14] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best practices for automated traceability,” Computer, vol. 40, no. 6,
2007.

[15] G. Spanoudakis, A. Zisman, E. Pérez-Minana, and P. Krause, “Rule-based
generation of requirements traceability relations,” Journal of Systems
and Software, vol. 72, no. 2, pp. 105–127, 2004.

[16] J. Cleland-Huang, J. H. Hayes, and J. Domel, “Model-based traceabil-
ity,” ICSE Workshop on Traceability in Emerging Forms of Software
Engineering, 2009.

[17] D. M. Berry, E. Kamsties, and M. M. Krieger, “From contract
drafting to software specification: linguistic sources of ambiguity,”
http://se.uwaterloo.ca/ dberry/handbook/ambiguityHandbook.pdf, Uni-
versity of Waterloo, Tech. Rep., 2003.

[18] M. Robeer, G. Lucassen, J. M. E. van der Werf, F. Dalpiaz, and
S. Brinkkemper, “Automated extraction of conceptual models from user
stories via NLP,” International Requirements Engineering Conference,
2016.

44ASE 2019: 16th Workshop on Automotive Software Engineering @ SE19, Stuttgart, Germany


