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Abstract
Much of the health information in the medical do-
main comes in the form of clinical narratives. The
rich semantic information contained in these notes
can be modeled to make inferences that assist the
decision making process for medical practitioners,
which is particularly important under time and re-
source constraints. However, the creation of such
assistive tools is made difficult given the ubiquity
of misspellings, unsegmented words and morpho-
logically complex or rare medical terms. This re-
duces the coverage of vocabulary terms present in
commonly used pretrained distributed word repre-
sentations that are passed as input to parametric
models that makes such predictions. This paper
presents an ensemble architecture that combines in-
domain and general word embeddings to overcome
these challenges, showing best performance on a
binary classification task when compared to vari-
ous other baselines. We demonstrate our approach
in the context of the veterinary domain for the task
of identifying tick parasitism from small animals.
The best model shows 84.29% test accuracy, show-
ing some improvement over models, which only
use pretrained embeddings that are not specifically
trained for the medical sub-domain of interest.

1 Introduction
Clinical narratives contain important and useful information
about the health of a subject. Medical practitioners often have
to spend a considerable amount of time reading these notes
to make informed decisions, which can be quite laborious.
Parametric models can be used to extract information that
can assist medical experts in decision-making while reducing
this burden. However, spelling mistakes, complex medical
terms and rare terms are ubiquitous in such clinical narra-
tives [Roberts et al., 2018].

Tick parasitism (TP) is commonly seen in veterinary pa-
tients. Given that ticks can transmit a variety of diseases
including important zoonotic disease (e.g. Lyme’s disease),
tools to screen clinical records for reporting of tick parasitism
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would be valuable for surveillance of tick activity and subse-
quent disease and in developing clinical decision support for
clinicians.

The aim of this work is to automate annotation of clinical
notes from small animal practice for the presence of TP. We
are motivated by the fact that using veterinary notes allows us
to keep the privacy of the small animals intact while improv-
ing the quality of assistive diagnosis, and in turn, medication.
This is something that is not easily achieved outside of vet-
erinary practices.

We are able to take advantage of small animal clini-
cal records collected through the Small Animal Veterinary
Surveillance Network (SAVSNET). Narratives in the SAVS-
NET corpus are currently screened using simple regular-
expressions to identify mentions of the word ’tick’. These
mentions may refer to a tick present on a pet or simply to dis-
cussion of tick prevention and need to be manually annotated
accordingly.

We propose a dynamic ensemble neural network that learns
to classify TP from imprecise clinical narratives. Our ap-
proach incorporates fine-tuned in-domain word embeddings
and domain-agnostic pretrained embeddings to improve clas-
sification performance. A parameter is used to learn a
weighted combination of each embedding in the overall clas-
sification.

Contributions Our contributions are as follows:

1. A novel application of text classification for noisy clini-
cal narratives, specifically in the veterinary domain.

2. To the best of our knowledge, the first known attempt to
predict TP on animals from textual descriptions.

3. An ensemble approach that combines domain agnostic
and domain specific representations (n-gram character,
subword and word vectors) to recurrent neural network
architecture and strong baselines of both non-neural net-
work and neural network classifiers.

2 Background
2.1 Tick-borne disease
Tick-borne diseases (TBD) are caused by a variety of
pathogens (bacteria, viruses, rickettsia and protozoa) which
are transmitted through tick-bites. Identifying and prevent-
ing TBD from spreading is difficult given that ticks have a
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wide geographic range and are highly adaptive to changing
environments allowing this range to increase. Globally, sig-
nificant TBD include tularaemia and rocky mountain spotted
fever. In a recent study using electronic health records from
cats and dogs, TP was seen most commonly in the south-
central region of England with a peak activity in summer and
a smaller peak in cats in Autumn [Tulloch et al., 2017].

2.2 Economic Impact of Tick Parasitism
A recent study from Germany highlighted a potential cost of
> 30M Euros resulting from Lyme borreliosis alone [Lohr
et al., 2015]. In addition, recent work reviewed the impact of
TP for production animals that are required to meet standard
health conditions [Giraldo-Rı́os and Betancur, 2018], reduc-
ing the survival rate of the animal and the production of meat,
milk, eggs etc. (not to mention costs incurred for treatment).

2.3 Small Animal Ticks in the UK
In this work, we focus on small animals within the United
Kingdom (UK). In the past decade, there has been an on-
going effort to collect ticks by the public, veterinary health
agencies and practitioners within the UK as part of the Tick
Surveillance Scheme and The Big Tick Project [Jameson and
Medlock, 2011; Abdullah et al., 2016] in an effort to iden-
tify various tick species (predominantly from companion ani-
mals) and their locality across various regions in the UK. Al-
though these projects demonstrate the viability of nationwide
surveillance programs to monitor tick species, we argue that
the requirement for active manual participation by contribu-
tors and lack of automation along with inconsistent/aperiodic
data-collection present barriers to participation and to colla-
tion of representative data in the long term. Using an au-
tomated system to screen clinical notes for tick parasitism
will enhance tick-surveillance. Furthermore this work will
provide a model for systems that might be used for clinical
note summarisation and, subsequently, for clinical decision-
making support.

3 Related Research
Most previous work on medical text classification has focused
on cleaner text, which are extracted from more formal regis-
ters. Although, there has been recent work that has explored
classification on health records and notes which we include
below.

A key challenge is making use of information rich notes
while reducing redundancy contained in the corpus due to
the copying of notes which can lead to a degradation in per-
formance. In the context of topic modelling, prior work has
applied a variant of Latent Dirichlet Allocation (LDA) to pa-
tient record notes [Cohen et al., 2014], which they refer to as
Red-LDA. Red-LDA removes this redundancy and improves
on topic coherence and qualitative assessments in comparison
to standard LDA.

Yi and Beheshti used a hidden Markov model for classify-
ing medical documents that incorporates prior knowledge in
the form of medical subject headings.

Iyer et al. have performed text mining on clinical text
for drug-event recognition from 50 million clinical notes to

create a timeline of adverse drug event mentions per patient.
This was used to identify drug-drug-event associations for
1,165 drugs and 14 events.

Other methods that do not use text have relied on geospa-
tial data for modelling tick presence [Swart et al., 2014].
The model predicted the presence of ticks within a 1 km2

grid from field data using satellite-based methodology with
Bayesian priors chosen over landscape types. Ticks were es-
timated for 54% land cover, finding a 37% presence from all
677 coordinates sampled.

Lastly, recent work has performed medical text classi-
fication with convolutional neural networks (CNN) with
Word2Vec as input [Hughes et al., 2017]. This was shown to
outperform Logistic Regression that uses Doc2Vec represen-
tations or Bag of Words (BOW) based Word2Vec approaches.
They use k-means clustering (k=1000) to generate a feature
vocabulary that is used to generate a soft assignment BOW
histogram for each sentence. These features were then used
as input to the Logistic regression model. The BOW with Lo-
gistic Regression yielded the best baseline results with 51%
test accuracy, which was still 17% percentage points lower
than the proposed CNN model, which uses Word2Vec. How-
ever, there is no use of recurrent models for preserving the
sequential nature of text.

4 Methodology
4.1 Models
Model Configurations
For all the below models we use the Binary Cross Entropy
(BCE) loss, with a learning rate η = 0.001 and Adaptive
Momentum (adam) for optimization. Dropout is used for
regularization on all layers (not including the input) with a
dropout rate pd = 0.2. The pretrained embeddings used
are fixed throughout training (i.e no gradient udpates). The
batch size |xs| = 200 for each model. Given the class imbal-
ance, we choose to weight the losses inversely proportional
to the frequency of each class during each mini-batch up-
date. This avoids other alternative approach such as sampling
methods [Chawla et al., 2002] with little cost.

Convolutional Neural Network
We test CNNs for text classification, which too have been
used in the medical domain (as aforementioned [Hughes et
al., 2017]), first proposed by Kim et al. (2014). The CNN
model uses 100 2d filters each for kernels of size (2, 300) and
(3, 300) for character n-gram embeddings (GloVe), subword
embeddings (FastText)1 and word embeddings (Word2Vec 2),
all of which are dw = 300.
Our motivation for using FastText is that subword embed-
dings are first learned to create word embeddings and there-
fore mitigates the problem of misspellings, while they are
also used to deal with out-of-vocabulary terms (a new word is
likely to share some subwords with the words already in the
vocabulary). ReLU activations are used with 1d max pooling
after each layer followed by a concatenation of the last layer
features.

1pretrained-fasttext:https://fasttext.cc/docs/en/crawl-vectors.html
2pretrained-skipgram: https://code.google.com/archive/p/word2vec/
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Gated Recurrent Network
As a second baseline approach, we test recurrent architectures
with memory networks to preserve any non-local dependen-
cies between terms, which we would expect to further im-
prove performance. The Gated Recurrent (GRU) model uses
2-hidden layers where the last output layer (1, 300) is passed
to a dense layer. The weights are initialized using Xavier
normalisation [Glorot and Bengio, 2010] (µ=0,σ=0.01) and
tanh activation units are used.

Ensembled Feature Approach
In the above two aforementioned models, the challenge of
poorly typed notes is addressed using n-gram character vec-
tors, sub-word vectors and word vectors. In the ensemble ap-
proach shown in Figure 1, we combine the latter two by con-
catenating both final hidden layer encodings (red) and pass
it to a dense layer (green) before making the final prediction
ŷ. This allows for interaction terms among both sentence en-
codings created by sub-word and word vectors. For regular-
ization, we also use dropout in this dense layer with a rate
pd = 0.5, while other layers are kept at pd = 0.2 as previ-
ously mentioned.

We also evaluate this approach when combining in-domain
word embeddings trained on the clinical narratives and pre-
trained embeddings. This allows us to systematically com-
bine the benefits of both vector representation by simply
adding a dense layer that acts a weighted combination of both
sentence embeddings to produce the final encoding. In a sim-
ilar fashion we carry this ensemble method out for the pre-
viously mentioned 2-hidden layer Convolutional Neural Net-
work.

Below we summarize the steps in Equation 1 where E is
an embedding matrix, Ẽ is a fine-tunable E and ẼS , ẼW

are both subword and word pretrained embeddings repsec-
tively, which are not updated during training. The input to-
kens w ∈ Rn are passed to the embedding matrix E ∈ Rn×d

which are then transformed with parameters W ∈ Rd×m and
b, h,Θ ∈ Rm×1.
Equation 1 shows how p ∈ [0, 1] controls the tradeoff be-
tween the tunable task-specific embeddings and static pre-
trained subword and word embeddings, acting as a weighted
average between both input representations. Here ⊕ signifies
a concatenation. This is followed by a linear layer with a tanh
activation unit, which results in z that we use as input to our
model. Note, that in this configuration, we perform ensem-
bling at the input with very few additional parameters.

E = pẼ(w)⊕
(
1− p

)(
ĒS(w)⊕ ĒW(w)

)
z = tanh

(
〈E,W 〉+ b

) (1)

During training at a timestep t ∈ T we then pass word wt

to obtain Ew
t and subsequently zwt which is then passed to

the GRU shown in Equation 2. Here ht−1 is the output of the
GRU hidden state from the previous timestep and hLT denotes
the output of the last hidden layer L for the hidden state at
time T .

ht = GRU
(
zwt , ht−1), ŷ = φ(〈hLT ,Θ〉

)
(2)

Figure 1: GRU-based Ensemble Architecture (red corresponds to the
last hidden state vector that outputs embedding for both in-domain
and large pretrained embedding inputs)

In contrast, we also consider passing each embedding sepa-
rately and instead perform ensembling at the output as shown
in Equation 3 (and shown in Figure 1), in which case Θ ∈
R3m. In our experiments, we found the latter of these two
approaches to outperform the former.

ŷ = φ(〈h̃t ⊕ h̄S
t ⊕ h̄W

t ,Θ〉
)

(3)

Binary Cross Entropy (BCE) loss is then used as the ob-
jective, as shown in Equation 4 where N is the number of
samples in a given mini-batch update.

`(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (4)

5 Experimental Data
Collected Dataset We demonstrate our method on the task
of identifying TP in clinical records from animals, which
to our knowledge is a novel application of text-based ma-
chine learning for this problem. The Small Animal Veterinary
Surveillance Network (SAVSNET) dataset contains approxi-
mately 3.5 million records. The health records are submitted
to SAVSNET at the end of consultations by a veterinary sur-
geon or nurse that list why the animal was brought into the
veterinary practice3.

A dataset of narratives containing the word tick (identified
using the case-insensitive regex ‘\\W tick \\W’) was iden-
tified. This comprised 27075 narratives which had been read
and annotated for whether the veterinary surgeon had noted
TP (the presence of a tick on the patient in the consulting
room). 6,529 records were annotated positive for TP. A fur-
ther set of 1.2 million randomly selected records with no men-
tion of tick (which were, therefore, considered to be negative
for TP but were not manually annotated) were also added to
the dataset. We use an 80-20 split for training and testing and
perform 5-fold cross validation on the training data.

6 Results
Exploratory Analysis Figure 2 shows the log-frequency
for a range of sentence lengths for all clinical narratives. Each
narrative can contain anywhere from one relatively long sen-
tence to an entire paragraph. Therefore, we split the sentences

3see here for more information: https://www.liverpool.ac.uk/
savsnet/
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Figure 2: Sentence & Narrative Length Distribution

into separate instances for training during classification. This
is because encoding long paragraphs becomes too difficult for
the RNN to preserve all the information in a single encoding.
Hence, when using an RNN classifier, we average over the
encodings of each sentence within a single narrative before
passing it to the last fully connected layer.

Non-ANN Classification Results Table 1 shows the results
of non-neural network based models that include ensemble-
based (Random Forest and Gradient Boosting), large margin
methods (Support Vector Machines) and kernel-based meth-
ods (Gaussian Processes). All models use a combination of tf-
idf scores and unigram frequencies. We find that, in general,
most of these models perform similarly, with Support Vec-
tor Machines with a Radial Basis Function slightly outper-
forming the alternative models. These methods are fast and
require little memory as these features are essentially counts
(unigram) and normalizations thereof (tf-idf).

Neural Network Classification Results Table 2 shows
the classification results when using pretrained embeddings.
Since classes are imbalanced, 72% accuracy is achieved if
the model only predicts the absence of TP. For this reason it
should be pointed out that although the performance seems
relatively accurate, it is a particularly challenging to mitigate
false negatives.

The first section are the model results of CNN models with
pretrained GloVe n-gram character vectors, FastText subword
vectors and skipgram word embeddings trained on Google-
News. The second section are the same input but instead us-
ing GRU networks. In the third section “T” denotes vectors
trained on clinical narratives. Lastly, the ensemble models
use a combination of both pretrained fasttext vectors and

Train (10-Fold CV) Test

Models Acc. AUC F1 Acc. AUC F1

SVM (RBF) 87.14 0.89 0.87 84.03 0.82 0.84
SVM (Linear) 85.91 0.84 0.79 81.69 0.82 0.86
Random Forest 81.62 0.83 0.80 80.49 0.83 0.80

Gradient Boosting 85.40 0.83 0.85 84.34 0.85 0.85
Gaussian Process 86.92 0.81 0.83 82.28 0.81 0.82

Table 1: TP (Non-Neural Network) Classification Results

Train Test

Models Acc. AUC F1 Acc. AUC F1

Char-CNN 78.13 0.78 77.29 70.27 0.69 68.90
SubWord-CNN 85.84 0.89 84.38 82.61 0.81 81.15

Word-CNN 84.49 0.86 83.78 80.44 0.79 80.13

Char-GRU 79.13 0.79 77.37 74.02 0.73 74.92
SubWord-GRU 87.24 0.90 87.29 83.47 0.84 82.97

Word-RNN 84.20 0.83 84.88 79.68 0.77 79.02

T-Char-GRU 81.60 0.80 80.18 74.47 0.74 73.89
T-SubWord-GRU 84.78 0.83 82.69 76.11 0.75 75.45

T-Word-RNN 86.98 0.89 86.01 76.46 0.75 76.28

Ensemble-CNN 86.11 0.89 85.34 83.07 0.83 82.73
Ensemble-GRU 88.63 0.91 88.51 84.29 0.82 85.20

Table 2: TP Neural Network Classification Results

fasttext vectors trained on the clinical narratives, as dis-
cussed in the previous section. We find best results are ob-
tained using the GRU ensemble based on the overall test per-
formance (shaded).

7 Conclusion & Future Work
We proposed an ensemble-based neural network to overcome
the difficulties in inference when dealing with noisy medical
data in the form of veterinary clinical notes. Similar base-
lines also show good performance, particularly when used
with subword vectors. Recurrent models in general show im-
provements over convolutional neural networks. These mod-
els can be used to reduce manual labor for medical practi-
tioners by assisting in the decision making process even when
misspellings are common.

The challenge of class balancing without a degradation in
overall performance is a problem we defer to future work.
Specifically, we plan to investigate other strategies to address
imbalanced classes in the presence of noisy medical texts
using data-augmentation strategies. One such approach in-
volves the use of generative modeling of sentence embed-
dings to upsample the minority class with the goal of reducing
false positives, but more importantly to reduce true negatives.
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