
Specification and Verification of Authorization
Policies for Web Services Composition

Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{mohsen.rouached,claude.godart}@loria.fr

Abstract. The management and maintenance of a large number of Web
services is not easy and, in particular, needs appropriate authorization
policies to be defined so as to realize reliable and secure Web Services.
The required authorization policies can be quite complex, resulting in
unintended conflicts, which could result in information leaks or prevent
access to information needed. This paper proposes a logic based approach
using for specifying authorization policies in Web services composition.

1 Introduction

Service Oriented Architecture allows for considerably more complex interaction
models than the classical client/server model, including symmetric peer-to-peer
interactions where both parties want to check authorizations, or multi-party
composed services where authorizations are an issue for each component ser-
vice. Therefore, an appropriate authorization framework is needed to smooth
the flow of a transaction between multiple services whilst respecting the privacy
of the data used. This is a complex task since each individual service may have
its own authorization requirements. The traditional authorization service is not
appropriate in this kind of interactions where a coordinating service would need
to exchange policy and credential information as well as managing the oper-
ation details. Managing these authorization exchanges can lead to processing
bottlenecks within the service as well as privacy concerns given that the coor-
dinating service retains visibility and control. That is why a balanced approach
to security is needed, taking into account not only security considerations at
the level of the infrastructure, but also requirements that follow from business
policies and processes (composition of Web services). There are several unique
security-related characteristics that need to be addressed to develop secure busi-
ness processes with Web services, including authorization capabilities, authoriza-
tion models, authorization may require various levels of scope, and authorizations
may be dynamically (re-)allocated to subjects.

Our objective is to support compositions of Web services taking into account
the authorization requirements of each Web service provider and composing only
those that are compatible regarding these requirements.

The rest of the paper is structured as follows. In Section 2, we present how
we specify the authorization policies using the event calculus logic (EC). Section
3 concludes and outlines future work.

33



2 Formalizing Authorization for Composite Web Services
In the context of Web services a service is seen as a resource that is provided
within the system, to which access is controlled. A service can also request other
services and is actively involved in computation. In our formal policy model, a
Web service can therefore be seen as both object (starg) and subject (ssrc). The
type of request made to the Web service is modelled as an action.

2.1 Authorization Model

To allow the necessary level of control over the behaviour of the Web service com-
position authorization policies should be defined in a language flexible enough to
allow the specification of conditions that can include multiple triggering events
that may take place over time. The EC language seems to be the best basis to
start from. We adapt a simple classical logic form of the EC [1], whose ontology
consists of (i) a set of time-points,(ii) a set of time-varying properties called flu-
ents, (iii) a set of event types (or actions). The logic is correspondingly sorted,
and includes the predicates Happens, Initiates, Terminates and HoldsAt, as
well as some auxiliary predicates defined in terms of these. Happens(a, t) indi-
cates that event (or action) a actually occurs at time-point t. Initiates(a, f, t)
(resp. Terminates(a, f, t)) means that if event a were to occur at t it would
cause fluent f to be true (resp. false) immediately afterwards. HoldsAt(f, t)
indicates that fluent f is true at t.

To achieve a complete specification that supports formal reasoning in EC,
the following elements must be represented in the model.

– Functions that can be used as parameters in the basic predicate symbols of
EC. We define these functions as events that may occur during the composi-
tion execution. Below, the introduced events are explained. In these formulas,
Vp represents the set of parameters values for the operations supported by
services.
• Op(s,Action(Vp)) : used to denote the operations specified in a policy

function or event (see below).
• requestAction(ssrc, Op(starg, Action(Vp))) : represents the event that

occurs whenever a service source attempts to perform an operation on a
target service.

• doAction(ssrc, Op(starg, Action(Vp))) : represents the event of the action
specified in the operation term being performed by the service ssrc for
the service starg.

• rejectAction(ssrc, Op(starg, Action(Vp))) : the event that occurs after
the enforcement decision to reject the request by a particular source
service to perform an action is taken.

• permit(ssrc, Op(starg, Action(Vp))) : represents the permission granted
to a source service to perform the action defined in the operation on the
target service.

• deny(ssrc, Op(starg, Action(Vp))) : used to denote that the source service,
ssrc, is denied permission to perform that action on the target service
starg.

34



– We need to add specific predicate symbols. Indeed, in our case many of
the function definitions above contain the tuple (ssrc, Op(starg, Action(Vp)).
To check if the members of this tuple are consistent with the specifica-
tion of the Web service composition, we define the isV alidComp predi-
cate. As such it must be used in any rule where functions with the tuple
(ssrc, Op(starg, Action(Vp)) are involved.

Then, the complete authorization enforcement model is illustrated in Figure
1. As shown, once the service source makes a request to perform an action on the
service target, the target service’s access controller processes it. To do this, the
access controller evaluates the request by referring to the policy repository and
the access control model. If the action is permitted, the access control model will
proceed to do the requested action. Otherwise, if the action should be denied,
the access control system will reject the action. We precise that the scheme is
symmetric, i.e each of the two services could be target, source, or target and
source at the same time.

Access
control model

A
ccess controller

permit/deny

Policies
repository

Access
control model

A
cc

es
s 

co
nt

ro
lle

r

permit/deny

Policies
repository

Source service
execution environment

Target service
execution environment

requestAction(src,
op(targ,params))

Permit
doAction(…)

Deny
rejectAction(…)

Fig. 1. Authorization Enforcement Model

As shown in Figure 1, we distinguish two scenarios to represent the enforce-
ment model. The first scenario models the behaviour of the target service’s access
controller, generating a doAction event when an action is permitted. This event
would trigger the relevant service behaviour rules thus causing the composition
state to change according to the specification. The second one models a target
service’s access control monitor rejecting the action to prevent a denied operation
from being performed.

2.2 Authorization specification

In order to correctly interact with the enforcement model described above, each
policy specification rule should initiate the appropriate policy function symbol
(permit,deny) for each of the events. So for example, a positive authorization pol-
icy rule should specify that the fluent permit(ssrc, Op(starg, Action(Vp))) holds
when the event requestAction(ssrc, Op(starg, Action(Vp))) occurs and the con-
straints that control the applicability of the policy hold. Additionally, the fluent
permit(ssrc, Op(starg, Action(Vp))) should cease to hold once the action has been
performed thus making it possible to re-evaluate the policy rule on subsequent
requests to perform the action. The EC representation of this functionality is

35



indicated in the autho+ specification in Figure 2. It also shows how each of
the other policy types would be represented by rules in the formal notation.
For each rule, the Constraint predicate is introduced to specify the pre- and
post-conditions for each operation. It can be represented by a combination of
HoldsAt terms.

The autho− specification represents a negative authorization policy by stat-
ing that, if the Constraint holds and the event requesting the action happens,
the action is denied. It is specified by the autho− part of Figure 2.

(autho+) isV alidComp(ssrc, Op(strg, Action(Vp)))∧Constraint =⇒
Initiates(requestAction(ssrc, Op(strg, Action(Vp))), permit(ssrc, Op(strg, Action(Vp))), t)

(autho+) isV alidComp(ssrc, Op(strg, Action(Vp)))=⇒
Terminates(doAction(ssrc, Op(strg, Action(Vp))), permit(ssrc, Op(strg, Action(Vp))), t)

(autho−) isV alidComp(ssrc, Op(starg, Action(Vp)))∧Constraint =⇒
Initiates(requestAction(ssrc, Op(strg, Action(Vp))), deny(ssrc, Op(strg, Action(Vp))), t)

(autho−) isV alidComp(ssrc, Op(strg, Action(Vp)))=⇒
Terminates(rejectAction(ssrc, Op(strg, Action(Vp))), deny(ssrc, Op(strg, Action(Vp))), t)

Fig. 2. Authorization Specification.

The second part of the rule shows how the deny fluent will be terminated once
the decision to reject that action has been taken, thus allowing the specification
to be re-evaluated on subsequent requests. Note that the termination parts for
these policies do not have any constraints and can be generically specified for
the whole service composition.

3 Conclusion

In this paper, we presented a framework for managing authorization policies for
Web service compositions. More specifically, we have described the use of the
EC logic for developing a language that supports specification and analysis of
authorization policies for Web service composition.

There are several directions for future work to further improve the presented
work. One thread in our future work will focus on the policies refinement and
the generalisation of the reasoning technique to handle other security proper-
ties. Another alternative considers the integration of our model into software
development process in practical settings [2].

References

1. R. Kowalski and M. J. Sergot. A logic-based calculus of events. New generation
Computing 4(1), pages 67–95, 1986.

2. M. Siponen, R. Baskerville, and T. Kuivalainen. Integrating security into agile
development methods. hicss, 07:185a, 2005.

36


