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Abstract. Base stations deployed for localization systems are required
to be location aware. Calibrating base stations manually is time-consuming
and inconvenient especially in large complex indoor environment. To ad-
dress this problem, cooperative localization approaches have been de-
veloped and mostly focus on the 2-dimensional scenarios. We have pro-
posed a cooperative Localization method to determine the positions of
base stations and the corresponding Cramer-Rao lower bounds (CRL-
B) are derived to ensure localization quality. Simulation results verify
that our method can achieve superior performance in terms of accura-
cy and robustness but sharp decline appears as maximum measurement
range(sensing range) decreases. For large error caused by too few connec-
tions, prior location information from Barometric Sensors and visually
location-specific object is applied in constraint. Meanwhile, we propose
an iterative approach in the process of anchor selection and localization,
it proves the robustness of cooperative localization to anchor location-
s. Simulation results show the improvement of localization accuracy by
different prior knowledge.

Keywords: Self-Calibration , Sensing Range, Prior Information · Sec-
ond keyword · Another keyword.

1 Introduction

Base stations in localization systems need to know their own locations in ad-
vance. The process of calibration is usually done manually, time-consuming and
easily leads to error especially in large complex environment where the number
of base stations is enormous. Moreover, if localization systems are deployed in
ancient buildings like the Palace Museum, manual calibration of base stations
located in the air cannot be implemented. Given accurate positions of few base
stations (known as anchors) and pair-wise distance information between anchors
and one location-unknown base station (denoted by UB), in large indoor environ-
ments, the distances between UB and anchors may exceed the maximum range
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of communication , i.e., sensing range, which results in insufficient connections
with anchors [1] thus noncooperative localization is no longer available, as shown
in Fig.1-a. In this event, to compensate for the deficiency of distance constraints,
UBs may estimate their locations by taking advantage of other connected UBs,
which is called cooperative localization, as illustrated in Fig.1-b.

Cooperative localization is aimed at the situation where some UBs cannot
be located using common noncooperative localization method individually. It
make use of connected UBs to obtain sufficient distance information constraints.
There are two kinds of cooperative localization: Semidefinite Programming [2]
and Multidimensional Scaling (MDS) [3] [4]. SDP-based approaches are also de-
veloped to determine locations of UBs such that given distance constraints are
satisfied, which is a non-convex problem. Relaxation technique [5] is introduced
to yield a semidefinite program. Biswas et al. [6] describe a maximum likelihood
estimation, and mitigate distance measurement error by formulating it as cost
function of a minimization problem. Regarding the SDP solution as an initial
point, a gradient-based search method is adopted to further reduce the esti-
mation error [7] [8]. In order to reduce computational complexity and improve
real-time performance, [6] also presents a distributed SDP method for large scale
problems.

Existing SDP-based methods mainly focus on 2-D scenarios, where base s-
tations can only be deployed on a flat plane. As a result, large errors usually
occur while 3-D positioning is implemented. We have proposed a 3-D cooperative
algorithm which exhibits superior performance in accuracy and robustness to an-
chors compared to noncooperative algorithm, however,the fundamental problem
of lack of reference data in height has not been solved [9].

In this paper, aimed at the large error caused by too few distance constraints,
we propose an iterative approach and take prior estimated distance between UBs
and visually location-specific object into consideration. The main contributions
of this paper are summarized as follows:

– Prior location information for UBs from barometric sensors and visually
location-specific object is added to the constraints of optimization problems,
and simulation result proves that appropriate prior information can improve
localization accuracy effectively.

– Iterative algorithm is also proposed in the process of anchor selection and
localization, and it proves the robustness of 3-D cooperative algorithm to
location of anchors.

2 3-D Constraint Model

2.1 3-D constraint model

Suppose we have m anchors αk∈R3, k = 1, 2, ...,m, all the anchors are dis-
tributed in lower space for easy installation, and n UBs xj , j = 1, 2, ..., n,
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Fig. 1. comparison between cooperative and non-coopetative method

some of them are deployed in higher space for localization accuracy. The eu-
clidean distance between anchor αk and UB xj is represented by djk, the eu-
clidean distance between UBs xi and xj is represented by dij . M represents
distance space of anchors and UBs, M = {dj,k : 1 ≤ j ≤ n, 1 ≤ k ≤ m}, N rep-
resents distance space of UBs, N = {di,j : 1 ≤ i, j ≤ n}. We use the 3×n matrix

X = (x1,x2,x3, ...,xn) =

⎛
⎝x1 x2 x3 · · · xn

y1 y2 y3 · · · yn
z1 z2 z3 · · · zn

⎞
⎠ to represent the locations of UBs,

3 ×m matrix α = (α1,α2,α3, ...,αm) =

⎛
⎝αx1 αx2 αx3 · · · αxm

αy1 αy2 αy3 · · · αym

αz1 αz2 αz3 · · · αzm

⎞
⎠ to represen-

t the locations of anchors.We define Y = XTX to derive distance.Relaxation
technique is introduced: change Y = XTX to Y ≥ XTX, and thus a feasible
region is planned, which is equivalent to

Z :=

(
I X

XT Y

)
≥ 0. (1)

Considering noises in practical scenes, assume that ejk, representing the mea-
surement error between anchor αk and UB xj and eij , the measurement error
between UBs xi and xj , are all independently and identically distributed (i.i.d)
Gaussian random variables with zero mean and standard deviation σ. In large
complex indoor environment, the distance between UB and anchors may ex-
ceed the sensing range. Combining the above conditions, the problem can be
formulated as following:

min

⎛
⎝ ∑

j,k;(j,k)∈M

1

σ2
jk

εjk +
∑

i,j;(i,j)∈N

1

σ2
ij

εij

⎞
⎠ (2)
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s.t.M =
{
(j, k) :

∥∥xj −αk

∥∥ ≤ R, 1 ≤ j ≤ n, 1 ≤ k ≤ m
}

N =
{
(i, j) :

∥∥xi − xj

∥∥ ≤ R, 1 ≤ i, j ≤ n
} (3)

(−djk; 1)
T

(
1

∥∥xj −αk

∥∥∥∥xj −αk

∥∥ ∥∥xj −αk

∥∥2
)
(−djk; 1) =

εjk, ∀ (j, k) ∈ M
(4)

(−dij ; 1)
T

(
1

∥∥xi − xj

∥∥∥∥xi − xj

∥∥ ∥∥xi − xj

∥∥2
)
(−dij ; 1) =

εij , ∀ (i, j) ∈ N
(5)

(0; 0; 0; ei − ej)
T
Z (0; 0; 0; ei − ej) = d2ij (6)

[
αxk;αyk;αzk;−ej

]T
Z

[
αxk;αyk;αzk;−ej

]
= d2jk (7)

Z :=

(
I X

XT Y

)
≥ 0, (8)

The model can be solved by virtue of the CVX and Yalmip toolbox [10].

3 Sensing Range Optimization And Anchor Placement

3.1 Sensing Range Optimization

In large indoor environments, the amount of distance constraints may decrease
when the distances between two base stations go beyond the sensing range (de-
noted by R), which may result in compromises in localization accuracy. In
our simulation settings, the maximum distance that can be reached is r =√
1502 + 1502 + 202m = 213m, and the sensing range is set from 213m(r) to

53m(0.25r). As we can observe from Fig.2, with the decrease of the sensing
range, RMSD of the thirty UBs increases slowly. But when the sensing range
drops to 0.3r, the RMSD reaches 2m quickly. It is proved that 3D-SDP algorithm
is robust to R to some extent: it can still achieve high precision when half of the
distances constraints between base stations are discarded. However, there exists
a critical point of sharp degradation in performance: when R reaches 0.25r, the
precision declines rapidly to about 9.33 meters.

4 Prior Location Constraints

4.1 Constraints By Visual Observations

As we all know, humans can locate themselves according to a location-specific
objects object based on their visual observations [11]. The objects can be doors or
other objects that have clear and definite location information and are available
from the design map of the building, thus prior location information of UBs can
be obtained during the process of installation. To verify the feasibility of visual
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Fig. 2. Relationship between RMSD and R

observation as priori location knowledge, we tested human visual ranging errors
on 10 people.

This test is carried out in Room 526, Ninth Teaching Building of Zhejiang
University. The area of the field is approximately 6m by 15m. The 15 test points
are set on two lines, whose angle with the central axis of the door are 90◦ and
30◦ respectively, as shown in Fig.3. At each test point, 10 testers were asked to
estimate the distance with the central axis of the door by themselves. The actual
distance increases from 0.759m to 6.195m. The average error, RMSD as well as
maximum error of the 10 testers at 15 points are shown in table 1.

Fig. 3. test scene

Table 1 shows that although the estimated accuracy of tester 5 is weak, the
average error is 0.591m, other people have a good perception of distance. The
best of them is tester 6: the average of his estimation error is 0.174m. In addi-
tion, for almost all testers, estimating the position closer to the object is more
accurate than that farther away from the object. The test result verifies that
visual observation is a reliable prior location knowledge resource, and according
to it we can set more appropriate visual error parameter.
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Table 1. result of each tester

Tester average/m RMSD/m maximum/m

Tester1 0.255 0.309 0.726
Tester2 0.32 0.444 0.995
Tester3 0.281 0.359 0.826
Tester4 0.343 0.449 0.952
Tester5 0.591 0.654 1.244
Tester6 0.174 0.219 0.544
Tester7 0.190 0.260 0.744
Tester8 0.325 0.471 1.224
Tester9 0.547 0.658 1.395
Tester10 0.247 0.285 0.548

4.2 Prior Location Constraints

In addition, with the popularity of smart phones, micro electromechanical sys-
tems (MEMS) sensors are considered as a highly efficient technology that have
been applied in business, industrial, medical, and other fields. MEMS barometric
sensors is considered a reliable method for height measurement [12]. Differential
barometric altimetry is less vulnerable to the variations of atmospheric pressure
and can be used in altitude Measurement of high UBs during installation. Thus
we restrict the height of UBs firstly, assuming that the measurement errors are
Gaussian random variables with zero mean and standard deviation σ = 0.1. We
can see that single constraint on height has little effect on the promotion of
accuracy. RMSD = 2.45m and the error of 6th UB is still exceptionally large.

The previous part verifies the reliability of visual observation, experienced
installer can pre-estimate positions in x and y directions of each UB by location-
specific objects object while deploying. Restrictions are set on x and y directions,
assuming that the errors of visual observation are Gaussian random variables
with zero mean and standard deviation σ = 0.5. RMSD = 1.44m, half the
original RMSD. And the errors of all UBs are more balanced.

The cause of sharp decline in accuracy is too large calibration error of the
6th UB. We try to set constraits of all the three axes only on the single 6th UB.
It can still be assumed that the errors on x and y are Gaussian random variables
with zero mean and standard deviation σ = 0.5 and σ = 0.1 on z. The overall
localization accuracy has been significantly improved and the RMSD = 0.63.

4.3 Spherical Constraint

In most cases, it’s inconvenient even unrealistic to pre-estimate one UB’s 3-D
location by a reference object, and estimating the approximate distance between
a UB and a reference object is considered more easier. In the previous section,
when sensing range decreases to 64m, the RMSD reaches about 2m and cause
of the sharp decline in accuracy is too large calibration error of the 6th UB.
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Thus, we set distance limitation on the 6th base station. By calibrating without
prior location information, the initial position of the 6th UB can be obtained.
In the meantime, installer can pre-estimate the distance with a close reference
object, which can formulate a sphere that the actual position can be, the object
is center and the distance is radius of sphere. And the distance is set to be
1m in conservative estimation. The intersection of this sphere and line segment
between initial position and reference object is considered position of the 6th UB,
as shown in Fig.4, ’I’ represents the intersection and the location-specific object
is a lamp. Thus the calibration error of 6th UB is exactly the visual observation
error. RMSD = 0.66, the distribution of each UB error is balanced.

Fig. 4. intersection position

Then we propose an iterative algorithms. The intersection is regarded as the
actual position of the 6th UB and act as one of anchors to calibrate the other 29
UBs. And the calibration results will be applied as prior location information to
restrict the 29 UBs in the next localization round, where the original 8 anchors
are utilized to calculate the original 30 UBs.

The first round RMSD of 30 UBs is 0.48m, and the latter round RMSD =
1.05m. The resilt proves the robustness of 3-D cooperative algorithm to location
of anchors. The 6th UB still plays a dominant role in RMSD, which is similar
to the error distribution with no prior location knowledge. We can see that
constraining other UBs with high positioning accuracy can improve the error
of base station 6 to some extent, but the number and structure of connections
still plays an important role, it’s unrealistic to improve position accuracy of one
UB by only setting constraints on connected UBs with high accuracy position
information.

5 Conclusion

Simulation results show that our 3-D cooperative algorithm is an effective in-
door self-calibration method with high-precision and performs closely to the
corresponding CRLB under incomplete connections. However, accuracy decreas-
es sharply when more than half of the connections have failed. To solve the
fundamental problem of lacking in reference data at altitude in 3-D cooperative
localization method, we add prior location information to restrict the initial posi-
tion when sharp decline in accuracy appears. Simulations show that although the
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errors mainly come from height, setting only altitude constraint from barometric
sensors on UBs has limited effect on accuracy promotion. Visual observation by
installer is considered a reliable prior information sources and shows great effect
on precision improvement of 3-D cooperative algorithm. We can also see that
prior location information constraints only for base stations with large calibra-
tion errors can effectively improve the overall positioning accuracy. In addition,
we propose an iterative algorithm in the process of anchor selection and localiza-
tion, it proves the robustness of 3-D cooperative algorithm to location of anchors.
And the number and topology structure of connections plays an important role
in localization accuracy, it’s unrealistic to improve accuracy of one UB by only
setting constraints on connected UBs with high accuracy position information.
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