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Numerical simulation of charged particle dynamics is required for the development of electron beam 

ion sources (EBIS). Special attention should be paid to the formation and evolution of different 

instabilities that can manifest in such sources. Understanding these processes will allow the efficiency 

of ion sources to be improved. The simulation of two-stream instability emerging between slow ions 

and fast electrons is particularly important. To perform the required simulation, “ef” and “ef_python” 

applications are under development. In these applications simulation is performed using the particle-

in-cell (PIC) method, which contains four main parts: a particle mover, a particle-to-grid scatter, a 

field solver, field-to-particle interpolation. Each part’s performance depends on the number of 

particles, as well as on the granularity of the simulation spatial mesh. The field solver usually 

represents a major portion of computational difficulty. This report describes the efforts to improve the 

performance of the ef_python application using CuPy, AMGX and PyAMG libraries. With minimal 

changes in the source code, CuPy allowed us to port all simulation computations to CUDA. In 

addition, to accelerate the field solver, algebraic multigrid methods, implemented by the PyAMG 

library on CPU and the AMGX library on GPU, were utilized. Major speed-up was achieved, 

especially when running simulations with very high-resolution spatial grids on high-performance 

GPUs. 
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1. Introduction  

Numerical simulation of charged particle dynamics is required for the development of electron 

beam ion sources (EBIS) [1]. Special attention should be paid to the formation and evolution of 

different instabilities that can manifest in such sources. Understanding these processes can allow the 

efficiency of ion sources to be improved. The simulation of two-stream instability emerging between 

slow ions and fast electrons is particularly important. 

To perform the required simulation, “ef” and “ef_python” applications are under development 

[2] using the particle-in-cell (PIC) method [3]. Ef is written in C++ for performance reasons, and there 

are several initiatives to use MPI, OpenMP and CUDA to use parallel and GPU computing in ef. 

Ef_python is written in python for fast and flexible development. It uses NumPy for simulation, and 

this report describes the efforts to improve its performance and adapt it to use graphics accelerators. 

A previous study using a 2-dimensional dynamic particle model as a sample showed that both 

OpenCL and CUDA could dramatically improve particle simulation performance compared to 

NumPy [4]. For this project we chose to use CUDA as the acceleration backend because of the 

availability of high-level libraries, namely CuPy and AMGX. 

2. Particle-in-cell 

The idea of the particle-in-cell method is to simulate individual positions and velocities of 

particles over small time steps, while using a grid to approximate collective parameters, such as charge 

density and current density created by particles. The simulation domain is defined by a cuboid regular 

mesh and a time step. As part of the problem definition, Ef and Ef_pyhton allow defining conducting 

volumes with a fixed potential within the simulation domain. Only simple volume shapes, such as a 

cylinder or a sphere, are supported right now. The same shapes define particle sources that generate 

new particles with a normal velocity distribution within their volumes at each time step. It is possible 

to add externally defined electric and magnetic fields. 

 Each simulation step within Ef_python consists of the following operations: advance particle 

positions and momenta, generate new particles, calculate charge density, compute electric potential, 

calculate electric field. 

2.1 Grid-to-particle: field interpolation 

To compute the electric field acting on each particle, linear interpolation of the electric field 

from the 8 surrounding grid nodes is used. This is not the only possible interpolation kernel. Grid-to-

particle and particle-to-grid kernels are an important area of possible algorithmic optimization to 

improve simulation accuracy and performance in this project. 

2.2 Particle mover 

A “particle mover” denotes the simulation component responsible for updating particle 

positions and velocities at each time step. The choice of the particle mover is important for assuring 

conservation of important invariants, such as energy. As the particle mover in ef_python, the well-

established leapfrog second-order explicit method, known as the Boris scheme, is used [5]. 

2.3 Particle creation and destruction 

Particles that leave the simulation volume or collide with inner conducting volumes are 

absorbed and removed from simulation. New particles generated by particle sources are added to the 

system and their momentum is simulated half a time step back as it is required by the “leapfrog” 

particle mover. 
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2.4 Particle-to-grid: particle weighting 

The charge of each particle is linearly divided into the 8 surrounding grid nodes. This first-

order scheme is sometimes called cloud-in-cell. The collective current is not used in ef or ef_python 

right now, as the magnetic field created by particles is considered negligible. 

2.5 Field solver 

To simulate the electromagnetic field created by particles, Maxwell’s equations on the grid 

can be approximately solved by many algorithms based on 3 main approaches: finite difference 

methods (FDM), finite element methods (FEM) and spectral methods. In ef and ef_python, the FDM 

method is used to solve the Poisson’s equation and compute the electric potential created by the 

simulated particles, while considering the effect of conducting volumes within the simulation domain. 

The electric field is then simply a numerically computed gradient of the potential on the grid. 

3. Simulation performance improvements 

The contribution of each step of simulation to the total execution time depends on different 

simulation parameters and implementation details. Profiling tools allowed us to find bottlenecks and 

improve performance using different simulation setups. The field solver is usually the major 

component of simulation in terms of resource usage. 

3.1 Algorithm improvements 

As a result of profiling, several unreasonably slow function implementations were fixed, 

including rewriting the FDM equation sparse matrix generator using diagonal SciPy matrix classes, 

caching which mesh nodes are inside conducting volumes, delegating field-to-particle interpolation to 

SciPy, and rewriting particle-to-field weighting for better NumPy parallelization. 

In order to safely conduct the major code restructuring and reimplementation required for this 

project, over 200 unit tests were created, providing total code coverage of 91%. 

3.2 Algebraic multi-grid solver 

The point of major computation complexity of 

ef_python is the field solver. As such, it was the first 

component picked for acceleration. The SciPy conjugate 

gradient solver for sparse matrices was used in 

ef_python before these improvements. 

Multigrid methods are methods of numerically 

solving differential equations on a hierarchy of grids 

with increasing coarseness, allowing one to faster reduce 

the large-wavelength error [6]. Algebraic multigrid 

methods construct the multigrid scale hierarchy directly 

from the matrix of linear equations, not explicitly 

relying on the geometry of the system or the partial 

differential equations being solved. Thus, algebraic 

multigrid methods are easy to apply without complex 

problem-dependent setup. The PyAMG library provides 

many AMG methods for Python, and the AMGX library 

implements AMG on CUDA. PyAMGX is a Python 

wrapper over AMGX, allowing one to run AMGX from 

Python, on one GPU only. 

  

Figure 1 Comparison of the axially 

symmetric beam shape: an infinite beam 

predicted analytically and a beam starting 

from a cylinder computed numerically 
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3.3 Using CuPy for GPU acceleration 

CuPy is a library aiming to help easy 

acceleration of the NumPy-based code on 

GPU by providing in-place replacements for 

most NumPy functions and operators. By 

using CuPy we accelerated most of the 

simulation operations in ef_python with minor 

code changes. 

Grid interpolation was not available in 

CuPy and had to be rewritten as a custom 

CUDA kernel. The gradient function from 

Numpy that was used to compute the electric 

field from the potential was not implemented 

in CuPy. It had to be reimplemented for the 

case of regular grid steps using CuPy 

operators. 

Simulation classes were rewritten to 

use class injection for the convenient runtime NumPy/CuPy and PyAMG/AMGX selection. This 

allowed using the selected simulation backend with minimal code duplication. Only the field solver 

and spatial mesh classes required explicit implementation-dependent subclasses. 

4. Sample simulation  

In addition to unit tests, sample 

simulation was regularly performed to detect 

errors during development. It was the 

simulation of a radially symmetric charged 

particle beam starting from a cylindrical 

emitter. The shape of the beam caused by 

electrostatic particle repulsion can be predicted 

analytically. The comparison between the 

theoretical shape and the numerical solution is 

shown in Figure 1.  

The simulation of two-stream instability 

was performed with ef using OpenMP with 1 

and 12 threads to provide a baseline of 

comparison. The performance was compared to 

ef_python using CuPy and PyAMGX running 

on Nvidia Tesla K40 and Nvidia Tesla K80 

graphics cards. The results of this comparison 

are shown in Figure 2 and Figure 3. 

5. Results and acknowledgements 

With minimal changes to the program, CuPy allowed accelerating most of the simulation 

operations on GPU through CUDA. In addition, to improve the field solver, algebraic multigrid 

methods, implemented by the PyAMG library on CPU and the AMGX library on GPU, were utilized. 

Major speed-up was achieved, especially when running simulations with very high-resolution spatial 

grids on high-performance GPUs. 

Using multiple GPUs is an important future prospect for the ef_python application. This will 

require using MPI for process coordination and data exchange. AMGX already has MPI-based multi-

Figure 2 Comparison of the simulation time for the 

two-stream instability problem with higher precision 

of the field solver and a smaller number of particles 

Figure 3 Comparison of the simulation time for the 

two-stream instability problem with higher 

precision of the field solver and a smaller number 

of particles 
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GPU support, but the PyAMGX interface library will have to be extended to add it in. Another 

promising avenue of future research is using OpenCL as an acceleration backend, as it can utilize non-

Nvidia GPUs. 

Profiling and testing were partly performed on the HybriLIT heterogeneous computing 

platform [7] in the Laboratory of Information Technologies at JINR. 

The reported study was funded by RFBR according to the research project № 18-32-00239. 
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