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Abstract. Low-level representation of programs in the form of LLVM IR al-

lows for various optimizations to improve the quality of program analysis in 

SAPFOR (System FOR Automated Parallelization). Being the same for differ-

ent high-level languages, LLVM IR allows us to explore multilingual applica-

tions. At the same time, it loses some features of the program, which are availa-

ble in its higher level representation. One of these features is the multi-

dimensional structure of the arrays. Multi-dimensional view improves the accu-

racy of data dependency analysis, since the linearized representation of arrays 

with parametric sizes may not be an affine expression and it will not be possible 

to apply integer linear programming to analyze it. In addition, the use of multi-

dimensional arrays allows us to use a multi-dimensional processor matrix and to 

parallelize a whole loop nests, rather than a single loop in the nest. This way, 

parallelism of a program is going to be increased. These opportunities are na-

tively supported in the DVM system. This paper discusses the approach used in 

the SAPFOR system to recover the form of multi-dimensional arrays by their 

linearized representation in LLVM IR. The proposed approach has been suc-

cessfully evaluated on various applications. 

Keywords: Program Analysis, Semi-automatic Parallelization, SAPFOR, 

DVM, LLVM. 

1 Introduction 

The multi-dimensional arrays are widely used in many computational programs. For 

example, they enable descriptions of the object properties at various points in a multi-

dimensional computing space. The DVM system [1, 2] relies on the multi-dimensional 

view of arrays to increase parallelization opportunity of a program. For example, it 

proposes specifications which simplify mapping of multi-dimensional arrays to a 

multi-dimensional grid of processors. Thus, to achieve sustainable performance of 

parallel programs it is necessary to analyze multi-dimensional data structures in the 

program. 

SAPFOR (System FOR Automated Parallelization) [3, 4] produces a parallel ver-

sion of a program in a semi-automatic way according to DVMH model of the parallel 

programming for heterogeneous computational clusters. The DVMH model enables 

consistent distribution of data between processors of a computational cluster which 
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are represented as a multi-dimensional grid. The presence of align directive in a 

source code introduces the alignment rules which specify the location of elements of 

arrays relative to each other. These rules use affine expressions to set a correspond-

ence between points of multi-dimensional index spaces of two objects. To avoid a 

communication overhead, the elements of different arrays which are used on the same 

iteration of the loop should be mapped to the same processor. Thus, accesses to arrays 

in loops and the form of subscript expressions in these accesses imply the alignment 

rules. 

Data dependence analysis is obviously required for program parallelization. The 

visibility of multi-dimensional view of data allows us to significantly increase the 

accuracy and reduce the computational complexity of data dependency analysis in 

many cases. To compute loop-carried data dependencies it is possible to perform the 

pairwise comparison of expressions which calculate the addresses of accessed ele-

ments. If the expressions that calculate the offset relative to the beginning of the array 

are affine with respect to the induction variables of the enclosing loops, then compu-

tation of data dependencies becomes NP-hard problem. In this case integer linear 

programming (ILP) solvers are applicable. Moreover, to reduce the complexity of the 

problem being solved, heuristics are used. If subscript expressions in a delinearized 

accesses satisfy some conditions (for example, expressions are SIV [5] (i.e. contains a 

single index variable)) the pairwise comparison of subscript expressions drastically 

reduce the complexity of the analysis. The knowledge of the multi-dimensional view 

of arrays makes it possible to recover subscript expressions from the linearized repre-

sentation of array accesses. 

It should be noted that a parametric size of an array makes the linearized accesses 

non-affine so it becomes almost impossible to verify the absence of data dependen-

cies. 

The SAPFOR system uses LLVM [6] intermediate representation (IR) to perform 

program analysis. This representation allows us to analyze programs for diverse pro-

gramming languages (Fortran, C). So, it becomes possible to overcome multi-lingual 

issue essential for large-scale computational applications [7]. LLVM also provides the 

ability to hide program transformation from the user in order to improve the quality of 

the analysis [8, 9]. Implementation of LLVM-based analysis tool also eliminates the 

need to consider syntactic features of different programming languages and to analyze 

the diverse set of available language constructs. To preserve the relation with a higher 

level representation, the debug information can be used. For these purposes LLVM 

uses DWARF debugging file format (DWARF [10]) which is common for various 

languages. However, linearized view of array accesses impedes program analysis. 

Multi-dimensional view of arrays of known constant size is only visible in LLVM IR. 

For example, the type [100 x [200 x float]] can be used to declare an array 

of 100 * 200 elements. 

There are two purposes of array delinearization in the context of SAPFOR. The 

first one is the reconstruction of the array view which was multi-dimensional in the 

source code. And the second one is the search for equivalent the multi-dimensional 

view for arrays represented in the program source code in a linearized form. In this 

paper, we are primarily interested in the approach to recover multi-dimensional view 
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of arrays which were originally multi-dimensional. This follows from the restrictions 

which DVM system imposes on the programs: the use of multi-dimensional arrays in 

the source code is required. 

2 Delinearization in LLVM 

The paper [11] proposes an approach to recovering the multi-dimensional view of 

arrays of parametric size. The presented approach is partially implemented in the 

context of LLVM and it was initially focused on the use in the Polly framework [12]. 

Polly is a high-level loop and data-locality optimizer. It can also exploit loop-level 

parallelism for systems with shared memory, including GPU. Polly performs IR-level 

optimization, therefore, the correspondence between delinearized arrays and the 

source code objects is not required. Loops can be optimized separately, so delineari-

zation is required in the context of the evaluated loop only instead of the entire pro-

gram. However, consistent delinearization for all accesses in the entire program is 

required to exploit parallelization opportunity in case of HPC systems with distributed 

memory. 

The paper [11] is focused on recovering the multi-dimensional view of arrays of 

parametric size only. Separately, Polly implements delinearization for arrays of 

known constant size. LLVM provides a simple array type to represent sequences of 

elements in memory. The array types can be nested, so definition of multi-

dimensional arrays of known constant sizes is also supported. That means that in this 

case delinearization is not actually required, since the array type can be used to restore 

each subscript expression. 

If some of array dimensions have parametric sizes while other dimensions have 

known constant sizes the whole array is treated as an array of parametric size. So, the 

recovered number of dimensions and recovered multi-dimensional view may differ 

from the definition of array in the original program. 

It also should be noted that to implement delinearization Polly uses its internal data 

structures which are only partially included in the LLVM core. 

Thus, the use of the proposed algorithms in SAPFOR directly becomes impossible. 

Let us consider the main points of the approach presented in [11]. The linearized 

view of the access A [S_0] ... [S_N – 1] to the array A [D_0] ... [D_N – 1] is 

 A + S_0 * D_1 *…* D_N–1 + … + S_N–1. (1) 

In this case, D_I is the size of the dimension I and S_I is the corresponding sub-

script expression, I takes values from 0 to N – 1. This equation implies the following 

ones: 

 C_N–1 * D_N–1=GCD(S_0 * D_1 * … * D_N–1, …, S_N–2 * D_N–1), (2) 

C_I * D_I=GCD(S_0 * D_1 * … * D_N–1, … S_I–1 * D_I * … D_N–1) / (D_I+1 

*…* D_N–1), 0<I<N–1.  (3) 
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Thus, in order to calculate the size of the dimension I, it is necessary to find the 

largest common divisor (GCD) of the terms in (1) which are located to the left of the 

term I, and to divide the GCD into the product of the previously calculated sizes of 

dimensions from I + 1 to N – 1. The factor C_I is not equal to 1, for example, if the 

same factor is present in each subscript expression. The GCD function performs a 

symbolic calculation of the largest common divisor of all its parameters. 

The main difficulties of delinearization are as follows: 

1. extract the correct number of terms (equal to the dimensionality of the array) from 

the equation (1) which calculates the address of the array element, 

2. arrange these terms in accordance with the order of dimensions, 

3. determine the value of the coefficient C_I. 

The number of terms in the equation (1) may differ from the number of array dimen-

sions, if some of the subscript expressions are equal to zero, if some of products have 

computable constant values or if in (1) some of brackets were removed. 

The authors of [11] extracts only terms that contain loop induction variables. They 

ignore constant factors and the coefficient C_I is assumed to be equal to 1. The terms 

are sorted according to the number of factors. As a result, the delinearized representa-

tion of the array may not correspond to the representation of the array in the original 

program. This is valid since the main purpose of delinearization in Polly is to get 

affine subscript expressions. 

The delinearization in SAPFOR is based on the idea of the algorithm used in Polly, 

but contains some features that enables the recovering a multi-dimensional view of 

the array in the correspondence with the original array definition in a source program. 

3 Delinearization in SAPFOR 

First of all, it is worth noting that we are considering delinearization for arrays that 

were multi-dimensional in the original program. For the rest of the arrays, a recon-

struction of multi-dimensional view may be useful in order to replace accesses to 

these arrays in a source code with equivalent accesses to multi-dimensional arrays. In 

this case delinearization does not depend on representation of arrays in a source code, 

so the approach implemented in LLVM can be used. 

As mentioned above, for arrays of known constant size delinearization is not re-

quired. Thus, we consider arrays which have at least one dimension with unknown 

size. 

The getelementptr LLVM instruction is used to get the address of an element of 

some aggregate data structure (see Fig. 1). 



213 

 

 

Fig. 1. An example of LLVM IR which calculates an address of an element A[I][J][1] of an 3-

dimentional array with M * N * 2 size. 

The arguments of this instruction are the address of the beginning of the memory 

location and one or more indices which are used to calculate the offset relative to the 

specified base address. In the case of multi-dimensional arrays, the indices are terms 

from (1) which determine an offset according to each array dimension or explicit 

subscript expressions (without multiplying by sizes of the array dimensions). 

Consider the example of calculating the address of an array element in Fig. 1. The 

first getelementptr instruction shifts the address of the beginning of the array A 

(%vla) by the value I*N (%7), the next instruction shifts the received address by the 

value J*2(%8). It should be noted that multiplication by the size of the last dimen-

sion of the array is performed implicitly by the getelementptr instruction (register %8 

contains only the value of the variable J). This is due to the fact that the size of the 

last dimension is fixed, and the array A in LLVM IR is of the type 

[2 x double]*. 

The dependence of the number of arguments of the getelementptr instruction on the 

dimensionality of the array can be considered a heuristic (it is possible to construct 

the equivalent LLVM IR by replacing all the getelementptr instructions in Fig. 1 with 

two parameters: the address of the array and the previously calculated offset), similar 

to that used in [11] to highlight terms. This allows us to draw a conclusion about the 

dimensionality of the array and to determine the number and order of terms in a line-

arized representation of a corresponding array access. 

To investigate the dimensionality we use instructions that obviously refer to indi-

vidual elements of the array, such as load and store. Other instructions (for example, 

function calls) may take as an argument an entire dimension of an array. This means 

that the number of arguments in the getelementptr instruction may be less than the 

number of array dimensions. Another obstacle is the use of zero subscript expres-

sions. Such expressions will be omitted from the getelementptr instruction. To accu-

rately determine the dimensionality of an array, all accesses to its elements are con-

sidered and among them, accesses with the maximum number of dimensions are se-

lected. 

In many cases the dimensionality is also presented in the debug information. It also 

contains description of dimensions of the known constant size. Moreover, a variable 

which specifies size of a dimension in a source code sometimes is also known. 

As the next step, we derive the sizes of unknown array dimensions. For this we use 

equations (2) and (3) mentioned in the previous section. To reduce the error probabil-

ity, we calculate the largest common divisor of terms obtained for all elementwise 

accesses to a given array within the analyzed function. We use the shape of getele-
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mentptr instruction to extract terms so it allows us to process accesses with non-affine 

and constant subscript expressions. It should be noted that the C_I coefficient is not 

equal to 1 only if all subscript expressions that correspond to dimensions in the range 

[0, I-1] are products with the same factor. In this case it is not possible to accurately 

determine value of C_I, so we assume it is equal to 1. Hence, the size of the corre-

sponding dimension considered a product with C_I factor. Then the correspondence 

of a recovered multi-dimensional view with array declaration in a source code will be 

examined later when a source-to-source transformation is performed. 

After the size of the array has been calculated, we extract subscript expressions for 

each access to the array. Starting from the 0 dimension, the terms are symbolically 

divided by the product of the sizes of the subsequent dimensions. If the number of 

terms for a given access is less than the dimensionality of the array, and the product of 

the sizes of the subsequent dimensions does not divide the current term, then we as-

sume the subscript expression is equal to 0. Thus, zero indices omitted in the getele-

mentptr instruction are restored. It is important to note that at this step we process all 

accesses to arrays, including those that could not be used to extract the dimensionality 

of the array. 

Arguments of the getelementptr instruction can have a rather complex structure 

and nested type casts. For the successful computation of the greatest common divisor, 

as well as for performing symbolic division of terms, it is necessary to simplify ex-

pressions and to remove brackets. However, a type casting may change the results of 

calculations. This means that compilers disallow brackets elimination in many cases 

to keep precision of computations. This restriction often prevents Polly from realizing 

delinearization opportunity. In the SAPFOR system, a recovered multi-dimensional 

view is not used to generate executable code. This view allows us to investigate data 

dependencies, to build data distribution, and then to insert corresponding DVMH 

directives into the source code. The DVM system gives a dynamic tool for a function-

al debugging. So, if necessary it could be used to check correctness of inserted 

DVMH-directives in the program. In addition, SAPFOR static analyzer implements a 

command line option -fsafe-type-cast, which prevents analysis and transform passes 

from unsafe type casting. 

4 Evaluation 

We used automatically generated test programs to check the capabilities of the de-

scribed approach and its implementation. In order to cover maximally all possible 

cases of using arrays, the generated tests were classified by the following parameters: 

 the number of dimensions of the array, 

 a way in which sizes of dimensions are specified (variables (C99 variable length 

arrays), enumerators, macros, and literal constants of various integer types), 

 memory allocation: dynamic and compile-time arrays, 

 scope of an array which can be local (array declared in the function body or passed 

as a parameter) or global, 
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 various kinds of subscript expressions (containing constants, loop induction varia-

bles and other integer variables) 

 the presence of type conversion (explicit and implicit) in array declarations and 

accesses to arrays. 

Each generated test contains a C99 program as well as the expected delinearization 

result presented in the JSON format. The ability to generate the delinearization result 

in JSON format was also added to SAPFOR static analyzer. 

We use Ctestgen library [13] to automatically generate and run tests, as well as to 

analyze the results of launches. The library has been developed in Python 3 by one of 

the authors of this paper. It is distributed under the MIT license and is available on 

GitHub [13]. 

Table 1 shows an example of a generator which creates functions that compute the 

sum of their arguments. An example of a generated program is shown in Table 2. 

Table 1. An example which generates functions to compute sum of their arguments. 

From ctestgen.generator import TestGenerator 

class ExampleTestGenerator(TestGenerator): 

    def _generate_programs(self): 
        generated_programs = list() 
        for i in range(2, 6): 
            # Create list of arguments (from 0 to i) 
            sum_arguments = [Int('num_' + str(arg_idx)) for 
arg_idx in range(i)] 

            # Declare a function with a specified name 
            # and number of arguments. The function will 
            # return value of type type int. 
            sum_function = Function('sum_' + str(i) + '_nums', 
Int, sum_arguments) 

            sum_result = Int('sum') 
            # Define function body.             
            sum_body = CodeBlock( 
                Assignment(VarDeclaration(sum_result), 
Add(sum_arguments)), 

                Return(sum_result)) 
            sum_function.set_body(sum_body) 
            # Create a program with a single function.                
            example_program = Program('sum_' + str(i)) 
            example_program.add_function(sum_function) 
            generated_programs.append(example_program) 
        return generated_programs 
# Generate the entire test suite. 

example_generator = ExampleTestGenera-

tor('example_generator_output') 

example_generator.run() 
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A generated test program is an object of the Program class, which consists of in-

clude directives (Include class), macro definitions (Define class), enumerations (Enum 

class), global variables (Var class) and functions (Function class). A function defini-

tion comprises a name, a list of arguments and a body which is a block of code. To 

create a generator, you need to inherit the abstract class ctest-

gen.generator.TestGenerator and to override the 

_generate_programs() method, which returns the abstract syntax trees of the 

described program in the C programming language.  

Table 2. An example of generated program. 

int sum_3_nums(int num_0, int num_1, int num_2) { 

  int sum = num_0 + num_1 + num_2; 

  return sum; 

} 

 

All generated programs are used as input for an application that should be tested 

(for example, SAPFOR static analyzer). The library determines whether each test is 

successfully completed and collects statistic of execution of the whole test suite. It is 

also possible to compare results of a new launch against results of any previous 

launches. To run tests, you should inherit the abstract class ctest-

gen.runner.TestRunner and override the _on_test() method, which is 

called for each program in the given directory. 

In the context of SAPFOR the delinearization module is used to construct a parallel 

version of the original sequential program, as well as to analyze program properties 

(for example, to determine data dependencies). As was noted in [9], in order to im-

prove the quality of the analysis of the program, its preliminary transformation is 

required in many cases. The approach proposed in [8] allows us to restore original 

program properties after transformation. So, IR-level transformation hidden from the 

user becomes possible. The general analysis execution scheme in SAPFOR is as fol-

lows: some analysis is performed before the transformation of LLVM IR, and then 

IR-level transformation is performed, after that, the analysis is repeated and the previ-

ously obtained results are refined. Thus, the results of the analysis will be associated 

with the objects of the original program which is not transformed. The delinearization 

module is launched at each step of the analysis in order to perform data dependence 

analysis. To determine data dependencies, the tests described in [5] are used. These 

tests were already implemented in the context of LLVM. So, we modify a correspond-

ing pass to enable the usage of the devoted delinearization approach. 

The implemented delinearization module in conjunctions with data dependence 

analysis was also manually checked on NAS Parallel Benchmarks 3.3 [14] and 

Polybench/C the Polyhedral Benchmark suite 4.2.1 [15]. 
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5 Conclusions 

In this paper, we propose an approach to reconstruction the multi-dimensional view of 

arrays in the C99 language, which presented in lower level LLVM representation in a 

linearized form. The presented approach relies on the debug information available in 

LLVM and the view of low-level instructions which calculate the offsets relative to 

the address of the array beginning. LLVM uses common debugging format to address 

the requirements of diverse programming languages. In the future works, this format 

allows us to apply the developed approach to recovering multi-dimensional arrays in 

Fortran and to avoid additional analysis of constructs in higher language. 

The discussed approach is based on the idea used in the delinearization module, 

which is implemented in LLVM and Polly. However, in contrast to it our implementa-

tion, it provides a more accurate correspondence between the delinearized array and 

the original definition of a multi-dimensional array in the original program. This ad-

vantage is essential in the context of source-level parallelization which is a primary 

goal of SAPFOR development. 

It may be useful to apply the presented approach along with the approach imple-

mented in LLVM to recover multi-dimensional view of arrays which are explicitly 

linearized in a source code. We believe that such research will allow us to implement 

source-to-source program transformation which replaces linearized array accesses 

with delinearized ones. 

The source code for the SAPFOR system is available on GitHub [16]. 

This work was partially supported by Presidium RAS, program I.26 "Fundamentals 

of creating algorithms and software for advanced ultra-high performance computing". 
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