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Abstract

Zolotarev’s First Problem (ZFP) in Approximation Theory [1, 2, 15],
which is one of Kaltofen’s favorite open problems in symbolic computation
[5], asks to select the one among all monic polynomials of fixed degree 𝑛 ≥ 2
and fixed 2nd leading coefficient 𝑎𝑛−1 = −𝑛𝑠 (𝑠 > tan2( 𝜋

2𝑛
)) which devi-

ates the least from zero on the interval 𝐼 = [−1, 1]. It turns out that this
extremal polynomial also deviates least from zero among the monic polyno-
mials of fixed degree 𝑛 on the set 𝑆 which consists of two disjoint intervals,
𝑆 = 𝐼 ∪ [𝛼(𝑠), 𝛽(𝑠)], 1 < 𝛼 = 𝛼(𝑠) < 𝛽 = 𝛽(𝑠), and can be characterized
uniquely by roots of bivariate integer polynomials 𝐹 = 𝐹 (𝑠, 𝛼), 𝐺 = 𝐺(𝑠, 𝛽).
These polynomials were coined Malyshev polynomials in [11], since Malyshev
was the first who systematically enumerated these polynomials in 2002 [8]
up to degree 5. In this paper we investigate the degree sequence of 𝐹 and
𝐺 via symbolic computation up to degree 16 and seek for general patterns
in the sequence. We analyse the obtained results by exploiting a connection
of the Malyshev polynomials to Schiefermayr’s (asymmetric) homogeneous 4-
variate polynomials, whose zeros are so-called T𝑛-tuples [13] and to the gener-
alized Zolotarev polynomials of Lebedev [7]. Moreover, we sketch a recursive
method for computing the degree sequence without the explicit knowledge of
the coefficients of the Malyshev polynomials. For the computations we used
the computer algebra systems Maple and Mathematica.
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1. Introduction

Definition 1.1. Let 𝐼 = [−1, 1] and let ||.||∞ denote the sup-norm on 𝐼. Zolo-
tarev’s first problem (ZFP) amounts, for a given 𝑛 ≥ 2, to the determination of

min
(𝑎0,··· ,𝑎𝑛−2)∈R𝑛−1

||𝑍𝑛,𝑠||∞ = 𝐿𝑛(𝑠), where (1.1)

𝑍𝑛,𝑠(𝑥) =

𝑛−2∑︁

𝑘=0

𝑎𝑘 𝑥
𝑘 + (−𝑛𝑠)𝑥𝑛−1 + 𝑥𝑛,

and of the extremal polynomial, 𝑍*
𝑛,𝑠, where 𝑠 ∈ R is assumed. Thus 𝑎𝑛 = 1

and the second leading coefficient, 𝑎𝑛−1 = (−𝑛𝑠), although thought of as being
fixed, may attain arbitrary values, so that we save the notation 𝑠0 for a concrete
prescribed number 𝑠. It suffices to consider the “complicated” cases 𝑠 > tan2( 𝜋

2𝑛 ),
see [1, 2, 7, 15]. From these sources we adapt the following theorem:

Theorem 1.2. For all 𝑛 ≥ 2 and 𝑠 > tan2( 𝜋
2𝑛 ) the solution 𝑍*

𝑛,𝑠 of (1.1) is unique
and is called a monic proper Zolotarev polynomial.

The above best-approximation problem was posed by Chebyshev to Zolotarev,
see [15, p.2]. It is the first of four famous problems in Approximation Theory which
were considered by Zolotarev [15], hence the name ZFP. Recently, with the advance
of symbolic computation, Kaltofen ranked ZFP and the related computational
(quantifier elimination) problem for 𝑛 > 5 to one of his favorite open problems
in symbolic computation [5]. From the quoted literature there follows:

Lemma 1.3. For fixed 𝑛 ≥ 2 and varying 𝑠 ∈ (tan2( 𝜋
2𝑛 ),∞), 𝑍*

𝑛,𝑠 forms a one-
parameter family of polynomials which may be parametrized, for instance, with 𝑠.
A particular 𝑍*

𝑛,𝑠0 equioscillates on 𝐼 𝑛 times and twice on the uniquely determined
interval [𝛼, 𝛽], where 1 < 𝛼 = 𝛼(𝑠0) < 𝛽 = 𝛽(𝑠0). 𝑍*

𝑛,𝑠0 also deviates the least from
zero among the monic polynomials of fixed degree 𝑛 on the set 𝑆 which consists of
two disjoint intervals, 𝑆 = 𝐼∪̇[𝛼, 𝛽], see Figure 1.

Example 1.4. For 𝑛 = 4 and 𝑠 = 𝑠0 = 5/18 (> tan2(𝜋
8 ) = 3 − 2

√
2) the explicit

power form solution to (1.1) with least deviation 𝐿4(5/18) = 6400
19683 is

𝑍*
4,5/18(𝑥) =

53

243
+

15470

19683
𝑥− 296

243
𝑥2 − 10

9
𝑥3 + 𝑥4 with [𝛼0, 𝛽0] =

[︂
37

27
,

43

27

]︂
.

Remark 1.5. The coefficients of the extremal polynomial 𝑍*
4,5/18 in Example 1.4

are all rationals. However, for 𝑛 > 4 no rational solution is known and in fact one
can prove that for 4 < 𝑛 < 14, all parametrizations of the monic proper Zolotarev
polynomials must be non-rational ones, for 𝑛 = 5 see [4], and for 𝑛 = 6 see [12]
and see also the genuses in Table 3.
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Figure 1: The equioscillation property of 𝑍*
4,5/18.

Note that |𝑍*
4,5/18(−1)| = |𝑍*

4,5/18(−17/27)| = |𝑍*
4,5/18(7/27)| =

|𝑍*
4,5/18(1)| = |𝑍*

4,5/18(𝛼0)| = |𝑍*
4,5/18(𝛽0)| = 𝐿4(5/18).

Surprisingly, Zolotarev in 1877 solved ZFP with the aid of elliptic functions.
However, this solution is “too complicated to be useful in practice”, see [12], and
indeed even for the simplest interesting case 𝑛 = 2, the transformation of this
solution formula to a pure algebraic power form is highly nontrivial, see [2]. We
also note that numerical (approximate) solutions of ZFP for a particular 𝑠 = 𝑠0
can be obtained via the Remez-exchange algorithm [10].

However, in this article, we use neither the elliptic solution-formulae nor the
approximate solutions for a possible reconstruction of the exact algebraic symbolic
solution. For our purposes, that is, to derive a generic symbolic algebraic solution
for a particular 𝑛, but for an arbitrary 𝑠, we found that the most useful charac-
terization of the solution 𝑍*

𝑛,𝑠 is given by the Abel-Pell differential equation, see
[1, p.17]. For the description of the solution of ZFP, we make use of the bivariate
Malyshev polynomials. We will introduce them via a suitable form of the Abel-Pell
differential equation in the next sections.

We note that recent research papers solved ZFP symbolically and algebraically
completely for 𝑛 ≤ 12 ([6, 11]), however, our explicit investigation of the degree
sequence of the Malyshev polynomials for 1 < 𝑛 ≤ 16 and of their intrinsic charac-
teristic properties seems to be novel.

ZFP can be formulated as a real quantifier elimination problem, see [3, 14]. If
we exploit the equioscillation property of the sought-for best-approximating poly-
nomial, then the formula matrix of the quantifier elimination problem consist of
mainly (nonlinear) polynomial equations and only a few polynomial inequalities
which can be considered as side conditions of the solutions of the equation system.
Since for a particular 𝑠 and 𝑛, the equation system has only finitely many solutions,
our computational strategy, which first solves the polynomial equation system via
Groebner Basis and then selects the proper solution of ZFP, proves to be the most
promising one.

Still, somewhat surprisingly, not all the known descriptions of the algebraic
solutions in the literature use the Abel-Pell differential equation representation
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and the Malyshev polynomials as we propose, see e.g. [3, 6].

2. The degree sequence of the Malyshev polynomials

Definition 2.1. The uniquely determined endpoints of the interval [𝛼, 𝛽] =
[𝛼(𝑠), 𝛽(𝑠)], which is given in Lemma 1.3, can be characterized by roots of integer
bivariate polynomials 𝐹𝑛

𝑚(𝑛)(𝑠, 𝛼) and 𝐺𝑛
𝑚(𝑛)(𝑠, 𝛽) of degree 𝑚(𝑛). We coin these

polynomials 𝐹𝑛
𝑚(𝑛), 𝐺

𝑛
𝑚(𝑛) Malyshev polynomials in view of [8], see also [11].

The main subject of this article is to determine the degree sequence 𝑚(𝑛) of the
Malyshev polynomials for small 𝑛’s and to explore some patterns in this sequence.
The here computed values 𝑚(𝑛) for 𝑛 > 12 are new.

Example 2.2. 𝑚(4) = 4 and the polynomials 𝐹 4
𝑚(4) and 𝐺4

𝑚(4) (see also [8]) are
given as

𝐹 4
𝑚(4)(𝑠, 𝛼) = 𝐹 4

4 (𝑠, 𝛼) = (−13− 136𝑠− 448𝑠2 − 896𝑠3 + 256𝑠4)+

(44 + 184𝑠+ 128𝑠2 − 640𝑠3)𝛼+ (−22+168𝑠+ 576𝑠2)𝛼2 + (−36−216𝑠)𝛼3 + 27𝛼4,

𝐺4
𝑚(4)(𝑠, 𝛽)=𝐺4

4(𝑠, 𝛽)=𝐹 4
4 (−𝑠,−𝛽)=(−13 + 136𝑠−448𝑠2 + 896𝑠3 + 256𝑠4)+

(−44 + 184𝑠− 128𝑠2 − 640𝑠3)𝛽 + (−22−168𝑠+ 576𝑠2)𝛽2 + (36−216𝑠)𝛽3 + 27𝛽4.

Lemma 2.3. The solution 𝑝 = 𝑝(𝑥) of (1.1) satisfies the Abel-Pell differential
equation

(1− 𝑥2)(𝑥− 𝛼)(𝑥− 𝛽)(𝑝′)2(𝑥) = 𝑛2(𝐿2
𝑛(𝑠)− 𝑝2(𝑥))(𝑥− (𝛼+ 𝛽)/2 + 𝑠)2, (2.1)

where the intended meaning of 𝐿𝑛(𝑠) is given in Definition 1.1 and 𝛼 and 𝛽 are
given in Definition 2.1.

For a proof, see [1, 13].

Lemma 2.4. Relying on Lemma 2.3, a coefficient comparison will transform the
problem of solving ZFP to a solution of a nonlinear polynomial system 𝑁𝑃𝑆 for
each particular 𝑛. This 𝑁𝑃𝑆 is then analysed by Groebner basis techniques. From
the finitely many solutions of this 𝑁𝑃𝑆 the desired one, which yields the proper
monic Zolotarev polynomial, can be strategically selected with the aid of equality
and inequality constraints. Considering 𝑠 as an indeterminate in the above 𝑁𝑃𝑆,
the computation of 𝐹𝑛

𝑚(𝑛) and 𝐺𝑛
𝑚(𝑛) (𝑛 ≤ 16) is accomplished with the aid of the

computer algebra systems Maple [9] and Mathematica [17]. For the concrete co-
efficients of the Malyshev polynomials we refer, because of the bulkiness of the
formulae, to the web-based repository [16].
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𝑛 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑚(𝑛) 1 2 4 6 8 12 16 18 24 30 32 42 48 48 64

Table 1: Elements of the degree sequence 𝑚(𝑛) of the Malyshev
polynomials 𝐹𝑛

𝑚(𝑛) and 𝐺𝑛
𝑚(𝑛) for 2 ≤ 𝑛 ≤ 16

3. Computational results

Theorem 3.1. Table 1 shows the first 15 elements of the degree sequence 𝑚(𝑛) of
the Malyshev polynomials 𝐹 and 𝐺. These elements were computed according to
Lemma 2.3 and 2.4.

Remark 3.2. We note that for a fixed (rational) 𝑠 = 𝑠0, a suitable real root
of the then univariate 𝐹𝑛

𝑚(𝑛) and 𝐺𝑛
𝑚(𝑛) describes the endpoints of the interval

[𝛼, 𝛽]. An alternative characterization would be to provide the bivariate polynomial
𝐻𝑛

𝑚(𝑛)(𝛼, 𝛽) where the points of a suitable part of the planar curve 𝐻𝑛
𝑚(𝑛)(𝛼, 𝛽) = 0

correspond to the ordered pair (𝛼, 𝛽), see [4, 11]. The bivariate polynomial 𝐻 has
the same degree as the Malyshev polynomials (𝐻 equals to the factor of degree
𝑚(𝑛) of the resultant 𝑟𝑒𝑠𝑠(𝐹𝑛

𝑚(𝑛), 𝐺
𝑛
𝑚(𝑛))). For reference purposes, they also have

been put to the repository [16], and we point out that they are novel for 𝑛 ≥ 8.
𝐻6

𝑚(6) = 𝐻6
8 and 𝐻7

𝑚(8) = 𝐻7
12 are given in [11]. The planar curves for 𝑛 = 2, 3, 4, 5

are displayed in Figure 2.

Out[  ]=
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Figure 2: (left) Real parts of the planar curves 𝐻2
𝑚(2) = 𝐻2

1 = 0

(black), 𝐻3
𝑚(3) = 𝐻3

2 = 0 (blue), 𝐻4
𝑚(4) = 𝐻4

4 = 0 (green) and
𝐻5

𝑚(5) = 𝐻5
6 = 0 (red) with the (𝛼0, 𝛽0) =

(︀
37
27
, 43
27

)︀
point from

Example 1.4 in the (𝛼, 𝛽)-plane. (right) The (𝛼, 𝛽) points corre-
sponding to all possible solutions of (2.1) without the natural side

conditions, (𝑛 = 2, 3, 4, 5).

To analyse the obtained computational results for 𝑚(𝑛), it is useful to consider
the prime decomposition of 𝑛 = 𝑝𝜖11 . . . 𝑝𝜖𝜈𝜈 , 𝜖𝑖 > 0, where the 𝑝𝑖’s are the prime
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factors of the 𝑛 in ascending order and in particular, to consider the odd and even
cases of 𝑛 separately.

Lemma 3.3. If, in Table 1, 𝑛 is an odd prime, then we have

𝑚(𝑛) = 𝑚(2𝑙 + 1) =
𝑛2 − 1

4
= 𝑙2 + 𝑙, (3.1)

and for 2-powers in Table 1 we have

𝑚(𝑛) = 𝑚(2𝑙 + 2) =
𝑛2

4
= (𝑙 + 1)2. (3.2)

However, for composite numbers, neither of the simple formulae (3.1), (3.2) works.
Rather, the following Theorem 3.4 holds, which explains the gap between the for-
mulae and the computed values.

Theorem 3.4 (Lebedev [7]). For a composite number 𝑛, the Abel-Pell differential
equation (2.1) without side conditions has polynomial solution(s) different from
the proper Zolotarev polynomial 𝑍*

𝑛,𝑠. With the natural side conditions 𝑝(−1) =
(−1)𝑛𝐿𝑛, 𝑝(1) = −𝐿𝑛, 𝑝(𝛼) = −𝐿𝑛, 𝑝(𝛽) = 𝐿𝑛, (𝛼 ̸= 𝛽 ̸= ±1) one can rule out
some of these solutions, but not all of them. The additional polynomial solutions
satisfying the natural side conditions are generalized Zolotarev polynomials. They
have the form 𝑇𝑙(𝑍

*
𝑘,𝑠), where 𝑇𝑙 is the 𝑙-th Chebyshev polynomial of the first kind

on 𝐼 and 𝑛 = 𝑙 ·𝑘, 𝑘 > 1. It turns out that if 2 ̸ | 𝑙, then 𝑇𝑙(𝑍*
𝑘,𝑠) solves (2.1) with the

natural side conditions above (and no other polynomial solution exists). Therefore,
for some composite 𝑛, the bivariate polynomial 𝑄1 = 𝑄1(𝑠, 𝛽) in the variable 𝑠 and
𝛽 or 𝑄2 = 𝑄2(𝛼, 𝛽) in the variable 𝛼 and 𝛽, in the elimination ideal defined by
the nonlinear polynomial system 𝑁𝑃𝑆 and the natural side conditions, decomposes
into several factors. However, the sum of their total degrees is actually

𝑑𝑠(𝑛) =

⌊︂
𝑛2

4

⌋︂
=

{︃
𝑛2−1

4 , if n is odd,
𝑛2

4 , if n is even.
(3.3)

Table 2 shows the degree sequences 𝑚(𝑛) and 𝑑𝑠(𝑛). By underscoring we high-
light the cases where there is a positive gap between the two sequences.

𝑛 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
𝑚(𝑛) 1 2 4 6 8 12 16 18 24 30 32 42 48 48 64
𝑑𝑠(𝑛) 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64

Table 2: The degree sequences 𝑚(𝑛) and 𝑑𝑠(𝑛) for 2 ≤ 𝑛 ≤ 16

Remark 3.5. We note that in [13], Schiefermayr defines 4-variate homogeneous
polynomials 𝑃 ∈ C[𝑎, 𝑏, 𝑐, 𝑑] in a constructive way via determinants which charac-
terize whether a slightly generalized version of the Abel-Pell equation (2.1), namely

(𝑥− 𝑎)(𝑥− 𝑏)(𝑥− 𝑐)(𝑥− 𝑑)(𝑝′)2(𝑥) = 𝑛2(𝑝(𝑥)2−Λ2
𝑛(𝑠))(𝑥− (𝑎+ 𝑏+ 𝑐+ 𝑑)/2 + 𝑠)2,
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(depending on the complex numbers 𝑎, 𝑏, 𝑐, 𝑑), has a (polynomial) solution 𝑝 =
Λ𝑛T𝑛. It is proved there that the solution exists, which is not a solution for 𝑛/2,
if and only if the polynomial inverse image T−1

𝑛 [−1, 1] consists of two Jordan arcs
with endpoints 𝑎, 𝑏, 𝑐, 𝑑. The (𝑎, 𝑏, 𝑐, 𝑑)-quadruples formed by the endpoints are
called T𝑛-tuples. Then these endpoints are described purely algebraically.

The elements in the quadruple (𝑎0, 𝑏0, 𝑐0, 𝑑0) can occur as endpoints of the
curves if and only if 𝑃 (𝑎0, 𝑏0, 𝑐0, 𝑑0) = 0. The polynomial 𝑃 is of degree 𝑑𝑠(𝑛) as
given in (3.3), and with the special choice 𝑎 = 𝛼, 𝑏 = 1, 𝑐 = −1, 𝑑 = 𝛽 (see [13,
Section 4.2]) (which corresponds to normalizing one of the curves), 𝑃 specializes
to 𝑄2(𝛼, 𝛽) and for odd primes and 2-powers to 𝐻𝑛

𝑚(𝑛)(𝛼, 𝛽).

Summarizing our results, we sketch a simple (recursive) algorithm for the com-
putation of 𝑚(𝑛) without the explicit knowledge of the Malyshev polynomials
𝐹𝑛
𝑚(𝑛), 𝐺

𝑛
𝑚(𝑛).

Lemma 3.6. If 𝑛 > 1 is an odd prime or a 2-power, then 𝑚(𝑛) = 𝑑𝑠(𝑛) as given
in (3.3). Otherwise, assume that 𝑚(𝑘) is computed, if 𝑘 < 𝑛.

If 𝑛 is even, let 𝑛′ = 𝑛/2𝜖1 , that is, the product of the odd prime powers in 𝑛.
Assume that 𝑛′ decomposes into two factors, 𝑛′ = 𝑛1 · 𝑛2, where the first factor
is nontrivial. Then 𝑇𝑛1

(𝑍*
2𝜖1 ·𝑛2

, 𝑠) is also a solution of (2.1) with the natural side
conditions and we have to subtract 𝑚(2𝜖1 · 𝑛2) from 𝑑𝑠(𝑛).

In a similar way, if 𝑛 is an odd composite number and thus 𝑛′ = 𝑛, then both
factors 𝑛1 and 𝑛2 should be nontrivial.

Example 3.7.

𝑚(17) = 𝑑𝑠(17) =
172 − 1

4
= 72,

𝑚(18) = 𝑑𝑠(18)−𝑚(2)−𝑚(6) =
182

4
− 1− 8 = 72,

because in the latter case 𝑛′ = 18/2 = 9 and 𝑛′ factors into 9 = 9 · 1 = 3 · 3. Since
𝑇9(𝑍*

2,𝑠) and 𝑇3(𝑍*
6,𝑠) also solves (2.1) with the natural side conditions, we have to

subtract 𝑚(2) = 1 and 𝑚(6) = 8 from 𝑑𝑠(18) = 81.

Remark 3.8. The computed elements of the sequence 𝑚(𝑛) may also play a role in
the analysis of the coefficients of the polynomials 𝐻𝑛

𝑚(𝑛). For instance, while the
coefficient of 𝛼𝑚(𝑛) is 1 in 𝐻𝑛

𝑚(𝑛), the constant term of 𝐻𝑛
𝑚(𝑛) seems to be 2𝑚(𝑛).

Remark 3.9. For the 𝐻-polynomials, we also computed the genus of the curve
𝐻𝑛

𝑚(𝑛) = 0, up to degree 13. This information may be used for the parametrization
of the Zolotarev polynomials. Table 3 shows the result, which confirms and extends
the data given in [4, p. 179] and [12]. The 𝑛 = 2, 3, 4 cases are classical results.
The 𝑛 = 5, 7, 8, 11 cases were first given in [4] and 𝑛 = 6 case in [12]. The 𝑛 =
9, 10, 12, 13 cases seem to be new.
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𝑛 2 3 4 5 6 7 8 9 10 11 12 13
𝑔(𝑛) 0 0 0 1 1 4 5 7 9 16 13 25

Table 3: The genus sequence 𝑔(𝑛) for 𝐻𝑛
𝑚(𝑛) for 2 ≤ 𝑛 ≤ 13

Connections to known integer sequences in the OEIS database We ob-
serve that the sequence 𝑑𝑠(𝑛) does coincide with the infinite sequence A002620 in
the OEIS database (see oeis.org). It was also observed in [11] that the finite
sequence {𝑚(𝑛)}12𝑛=2 coincides with the first 11 elements in the infinite sequence
A055932. As the particular case 𝑛 = 13 now shows, this coincidence breaks down
for 𝑛 ≥ 13.

4. Conclusion

Based on the Abel-Pell differential equation and deploying Groebner basis tech-
niques, we computed symbolically the bivariate Malyshev polynomials 𝐹,𝐺 and
the polynomials 𝐻 (defining a reduced relation curve) up to degree 𝑛 = 16. All of
them play a crucial role in the purely algebraic description of the solutions to ZFP.

The bulky expressions for 𝐹,𝐺,𝐻 have been stored in the ZFP web-based repos-
itory [16]. By analysing the patterns in the degree sequence of the Malyshev poly-
nomials and consulting the current literature, we gave a recursive algorithm for
computing an arbitrary element of the degree sequence without the explicit knowl-
edge of the Malyshev polynomials. We also computed the genuses of the curves
𝐻 = 0 for 𝑛 ≤ 13. The computational results contribute to the analysis of the
classical and generalized Zolotarev polynomials.

Acknowledgements. The author thanks Dr. Heinz-Joachim Rack, Hagen (Ger-
many) for helpful comments on an earlier version of the paper.
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