
Spider Diagrams of Order

Aidan Delaney∗ and Gem Stapleton†

Visual Modelling Group,
University of Brighton,

Brighton, United Kingdom BN2 4GJ

Abstract

Spider diagrams are a visual logic capable of makeing statements about rela-
tionships between sets and their cardinalities. Various meta-level results for spider
diagrams have been established, including their soundness, completeness and ex-
pressiveness. Recent work has established various relationships between spider
diagrams and regular languages, which highlighted various classes of languages
that spider diagrams could not define. In particular, this work illustrated the inabil-
ity of spider diagrams to place an order on certain letters in words. To overcome
this limitation, in this paper we introduce spider diagrams of order, incorporating
an order relation and present a formalisation of the syntax and semantics. Subse-
quently, we define the language of such a diagram and establish that the class of
such languages includes that of the piecewise testable languages.

1 Introduction
Diagrams are often used to convey information and aid communication in a variety
of areas, including software engineering, mathematics and every day life. Recently,
the perception of the role of diagrams in logic has been overturned, with advances
showing that diagrams can be given precise syntax and semantics with, subsequently,
formal reasoning systems being built on them; for example [5, 6, 8, 14, 17]. As a result,
the utility of diagrams is seen as broader, and some considerable effort is now being
placed on exploring visual languages in the context of logic.

One such logic is the language of spider diagrams (see, for example [8, 16]). With
regard to applications of spider diagrams, they have been used to assist with the task
of identifying component failures in safety critical hardware designs [1] and (implic-
itly) in a variety of other areas, such as [2, 9, 18]. It has been established that spider
diagrams have the expressiveness of monadic first order logic with equality by pro-
viding translations between these two languages that preserves semantics [16]. In this
paper, we consider the expressiveness of spider diagrams in comparison with regular
languages, building on results presented in [3] where a limitation is highlighted. In par-
ticular, regular languages often constrain the orders that letters may appear in a word of
that language, but spider diagrams are unable to do this. To overcome this expressive-
ness limitation, we extend the spider diagram language to include facilities for ordering
elements. Extending spider diagrams to include an order relation will allow them to be

∗a.j.delaney@brighton.ac.uk
†g.e.stapleton@brighton.ac.uk

27

used in more application areas. For example, one may choose to use spider diagrams
over finite state machines when defining languages; see [3] for further discussions on
this relationship.

One of our goals in increasing the expressiveness of spider diagrams is to provide a
specification tool for trace semantics and synchronisation expressions. Trace semantics
and synchronisation expressions have existing formal language characterisation in [4]
and [13] respectively. Our first step is to extend spider diagrams and examine the
ramifications with respect to formal language theory. A longer term goal of this body of
work is to examine whether diagrammatic logics make a more succinct ‘programming
language’ for problems with solutions in regular language space. The results in [3] on
the descriptional complexity of spider diagrams and finite state automata support this
succinctness conjecture.

In more general terms, the study of the relationships between logics and formal lan-
guages has led to a range of important results related to decidability, the circuit synthe-
sis problem and has provided new perspectives to the construction of non-terminating
programs, discussed in [19]. In this vein, it may well prove fruitful to further our un-
derstanding of the relationship between spider diagrams and regular languages. For
example, fragments of the spider diagrams language might correspond to classes of
regular languages that are not naturally characterised in any other way. Consequently,
this may provide a deeper understanding of the relationships between classes of regular
languages themselves.

In section 2, we briefly overview the existing spider diagram notation. Section 3 in-
troduces various concepts from formal language theory that are necessary for this paper
and discusses the relationship between spider diagrams and regular languages. Spider
diagrams of order are introduced and formalised in section 4. Finally, in section 5, we
prove that a fragment of the language of spider diagrams of order gives rise to the well
known class of piecewise testable languages also called level 1 of the Straubing-Thérin
hierarchy.

2 Spider Diagrams
This section will provide a brief overview of the spider diagram syntax presented in [8].
In figure 1, the spider diagram d1 contains two labelled contours, A and B. Contours
are simple closed curves. The diagram also contains three minimal regions, called
zones. There is one zone inside A, another inside B and the other zone is outside both
A and B. Each zone can be described by a two-way partition of the contour label
set. The zone inside the contour A can be described as inside A but outside B. A
region is a set of zones. The two zones outside B contain a spider; spiders are trees
whose vertices, called feet, are placed in zones (in this case, the spider has two feet).
Spider diagrams can also contain shading placed in zones, as in d2 (which contains
two spiders and four zones of which one is shaded). The horizontal line connecting
d1 and d2 in figure 1 denotes disjunction between diagrams; thus, the figure contains
d1 ∨ d2. Similarly, juxtaposition of two diagrams d1 and d2 with no connecting line
denotes their conjunction, d1 ∧ d2.

Our attention now turns to the semantics. Spider diagrams make statements about
sets (represented by contours) and their cardinalities (by using spiders and shading). In
figure 1, d1 expresses that A and B are disjoint, because there are no points interior to
both of the contours. Spiders assert the existence of elements, so d1 specifies that there
is (at least) one elements in either A or the universe outside both A and B. The spiders

28

Figure 1: Two spider diagrams.

in d2 assert that there are at least two elements, one of which is in A−B and the other
is in A ∩B or B −A. Shading is used to place upper bounds on set cardinality: in the
set represented by a shaded region, all of the elements are represented by spiders. For
example, d2 expresses that the set A ∩B contains at most one element.

3 The Straubing-Thérin Hierarchy
In our previous work [3] we have studied the relationship between spider diagrams and
star-free regular languages. We established that sets of words from a subset of star-free
regular languages can be thought of as corresponding to models for spider diagrams
(a model will be formally defined later). The Straubing-Thérin hierarchy serves as a
fine-grained tool for describing various subsets of star-free regular languages. This
hierarchy is infinite but it is an open question as to whether the hierarchy is proper
above so-called ‘level 2’.

Level 0 of the Straubing-Thérin hierarchy is the set of languages {Σ∗, ∅} where Σ
is an alphabet. Level 1/2 is the well known shuffle ideal set, which is the polynomial
closure of Level 0. Level 1 is defined as the boolean closure of 1/2. This hierarchy
has been extended by Pin to consider varieties of languages [10]: in general for any
positive integer n > 0

level n + 1
2 is the polynomial closure of level n, and

level n + 1 is the boolean closure of level n + 1
2 .

The boolean closure of a set of languages L ⊆ Σ∗ is B(L) which is formed by
taking the union, intersection and complement of languages. The polynomial closure
of a set of languages L ⊆ Σ∗, Pol(L), is the finite union of languages of the form
L0a1L1 . . . anLn where L0, L1, . . . , Ln ∈ L and a1, . . . , an ∈ Σ.

For our purposes, it is sufficient to state that a formal language is a set of words
defined over an alphabet, Σ. The boolean operations ∪,∩ and ⊂ and the unary com-
plement ¬ operator maintain their well understood semantics over sets of words. The
additional boolean operation called the shuffle product, denoted t, will allow us to
utilise characterisations of the Straubing-Thérin hierarchy more suitable for our defini-
tions and theorems.

Definition 3.1. The shuffle product of two languages L1, L2 denoted L1 t L2 infor-
mally takes all words from L1 and intersperses letters from each word in L2. More
formally, the words in L1tL2 are precisely those of the form w0w1 . . . wn where there
exists a partition I ∪ J of {1, 2, . . . , n} with

1. I = {p1, p2, . . . , pi}, p1 < p2 < . . . < pi,

29

Figure 2: A spider diagram.

2. J = {q1, q2, . . . , qj}, q1 < q2 < . . . < qj (thus i + j = n), and

3. wp1 . . . wpi
∈ L1 and wq1 . . . wqj

∈ L2.

As an example, the shuffle product of the sets of words A = {xy} and B =
{yz, y} is the set of words {xyyz, xyzy, yxzy, yzxy, yxyz, xyy, yxy}. Languages of
catenation level 1/2, that is the shuffle ideals, are of the form ktΣ∗ where k is a finite
set of words.

In this paper, we are concerned with the relationship between spider diagrams and
regular languages. We have already established various relationships between spider
diagrams and catenation hierarchy levels 1/2 and 3/2. In particular, we proved that
spider diagrams give rise to languages that are closed under permutation of words and,
thus, cannot constrain a language to contain words, w, in which certain letters must
occur before others.

As an example, the diagram d in figure 2 represents a star-free language of words
over the four-letter alphabet Σ = {AB,AB,AB,AB}; here the alphabet has been
obtained by considering the contours in the diagram, i.e. A and B, and the four possible
combinations of being inside or outside the contours, with A denoting ‘being outside
A’. The diagram asserts, by way of the spiders, that there is an element in A − B
or A ∩ B (because of the spider placed inside A) and an element not in A (by the
placement of the other spider). In terms of regular languages, we can take this diagram
as asserting that all words contain letters corresponding to these possibilities given rise
to by the spiders. The spider inside A, therefore, tells us that the words must contain
either the letter AB or AB. The other spider tells us that words must contain either
AB or the letter AB. We further refine the notation to include square brackets, [AB]
to aid readability of words. Words in the language of the diagram, denoted L (d), are
precisely those that contain at least one letter from the first spider and one letter from
the other spider, in either order. Using the characterisation of shuffle-ideal languages
given above we may construct a set of words, k, such that L (d) = k tΣ∗. Such a k is
given by

k = {[AB][AB], [AB][AB], [AB][AB],
[AB][AB], [AB][AB], [AB][AB], [AB][AB], [AB][AB]}

and we observe that k is closed under permutation. The language L (d) = k t Σ∗

maintains the closure under permutation property of the set k.
Spider diagrams are a monadic first order logic with equality (MOFLe) [16]. We

are interested in the relationship between logics and subsets of regular languages. The
main body of literature discussing this relationship [7, 10, 11, 12, 19] assumes the
existence of an order relation < adjunct to the standard monadic first order operators
of ¬,∨,∧, ⇐⇒ , the quantifiers ∃ and ∀ and predicates of the form Pa(x) which

30

Figure 3: Generalising spider diagrams.

states that the letter a is at positive position x in a word w. Intuitively, if we do not
have an order relation, <, as in MOFLe then any language corresponding to a formula
will be closed under permutation. In other words, languages of the form, for example,
Σ∗AΣ∗B (A comes before B in every word) do not correspond to languages arising
from formulae in MOFLe. Consequently spider diagrams do not contain facilities for
ordering elements and it is this main body of literature, referenced above, that provides
a motivation for generalising spider diagrams to include facilities for ordering elements.

4 Generalising Spider Diagrams to Include an Order
Relation

As just stated, spider diagrams are limited in their expressive power and cannot en-
force any kind of order on elements represented by the spiders. Here, we generalise
the spider diagram syntax and extend their semantics appropriately to overcome this
expressiveness limitation. For example, the spider diagram of order labelled d1 in fig-
ure 3 contains spiders whose feet are labelled with dots. The number of dots is used
to place an order on the elements represented by the spiders (alternative syntax would
simply label the feet with natural numbers as opposed to dots; such a change of syn-
tax would have no impact on the work that follows and is merely a different means of
visualisation). Thus, this diagram d1 is interpreted as saying that there is an element,
x, in A − B and another element, y, in B − A such that x < y. The semantics of the
spider diagram of order labelled d2 are a little more subtle. This diagram expresses that
there is an element, x, in A and an element, y, in B − A such that, if x ∈ A− B then
x < y, otherwise y < x. Here we see that the labels can be used to place an order on
the elements represented by the spiders in the context of which sets those elements are
located.

A further modification is to allow spiders to have more than one foot placed in
each zone, an idea first raised in [15] but not in the context of ordering elements. For
example, in figure 3, d3 expresses that there is an element, x, in A−B, another element,
y, in B −A and a third element, z, in A ∩B. The element x satisfies either x < y and
x < z or y < x and z < x. The elements y and z are both represented by spiders that
have the same label (i.e. 2) and we interpret this as expressing y and z can be in either
order: y < z or z < y.

Sometimes we might want to express an order on certain elements (as in the exam-
ples we have just seen) but not on other elements; in the previous example, we did not
specify an order on y and z. Suppose we want express the following:

1. there exist three distinct elements, x1, x2 and x3,

31

(a) A unitary diagram. (b) A compound diagram.

Figure 4: Spider Diagrams of Order.

2. x1 is in the set A−B,

3. x2 is in the set B −A,

4. x3 is in the set A ∩B, and

5. x1 < x2.

To allow this statement to be expresses succinctly by spider diagrams, we allow the
use of non-labelled feet as in the original notation. A diagram of order making this
statement can be seen in figure 4(a), where the spider placed in A ∩ B has no label,
thus indicating we do not mind whether x1 < x3 or x3 < x1, for example.

With regard to shading, it is interpreted in the same way as the original notation:
in a shaded region, all of the elements are represented by spiders. As with the spider
diagram language in [8], we allow diagrams to be taken in disjunction and conjunction,
forming compound diagrams. In addition, the compound diagram ¬d is also allowed.
We have just provided various examples of unitary spider diagrams of order. The com-
pound diagram in figure 4(b) represents the disjunction of two unitary diagrams d1∨d2.
The horizontal line joining d1 to d2 denotes disjunction; the juxtaposition of the unitary
diagrams would represent conjunction. For the remainder of this section, we provide a
formalisation of the syntax and semantics of spider diagrams of order.

4.1 Syntax
Each spider diagram of order consists of contours (closed, plane, labelled curves), spi-
ders which are trees whose nodes (called feet) are a character such as •, , , , . . .
and shading. For example, the diagram d1 in figure 4(a) contains two contours labelled
A and B and three spiders, one with a foot labelled , another with a foot labelled •,
and the other with a foot labelled . In general, any given spider may contain both
ordered feet (those of the form) and unordered feet (those of the form •).

Formally, the syntax is defined at an abstract level, extending that given in [16]. The
contour labels in spider diagrams are selected from a finite set L. A zone is defined to
be a pair, (in, out), of finite disjoint subsets of L. The set in contains the labels of the
contours that the zone is inside whereas out contains the labels of the contours that the
zone is outside. The set of all zones is denoted Z . To describe the spiders in a diagram,
it is sufficient to say how many spiders there are with any given foot arrangement. For
example, in figure 5(a), there are two spiders inside A with a single foot labelled 1
and another spider also inside A but with single foot labelled 2. Thus, our abstract
definition of a spider diagram will specify the labels used, the zones, identify which

32

(a) Simple example. (b) More complex example.

Figure 5: Illustrating the syntax.

zones are shaded and use a set of spider identifiers to describe the spiders. We have
adopted this approach because it directly extends the abstract syntax presented in [16].

To begin our formalisation, we start by defining spider feet, which may be ordered,
denoted with an integer index, or unordered, denoted with a • character and subse-
quently we define spiders. When we formalise the semantics, it is useful to have access
to the region in which a spider is placed, called its habitat.

Definition 4.1. A spider foot is an element of the set (Z+ ∪ {•}) × Z and the set
of all feet is denoted F . A spider, s, is a set of feet together with a number: s ∈
Z+ × (PF − {∅}) and the set of all spiders is denoted S. The habitat of a spider
s = (n, p) is the region habitat(s) = {z : ∃k (k, z) ∈ p}.

Spiders are numbered because unitary diagrams can contain many spiders with the
same foot set; essentially, we view a unitary diagram as containing a bag of spiders.

Definition 4.2. A unitary spider diagram of order is a quadruple d = 〈L,Z, ShZ, SI〉
where

L = L(d) ⊆ L is a set of contour labels,

Z = Z(d) ⊆ {(a, L− a) : a ⊆ L} is a set of zones,

ShZ = ShZ(d) ⊆ Z(d) is a set of shaded zones,

SI = SI(d) (S is a finite set of spider identifiers such that for all (n1, p1), (n2, p2) ∈
SI(d),

(p1 = p2 =⇒ n1 = n2) ∧ habitat(n1, p1) ⊆ Z(d).

The symbol ⊥ is also a unitary spider diagram. We define

L(⊥) = Z(⊥) = ShZ(⊥) = SI(⊥) = ∅.

If d1 and d2 are spider diagrams then (d1 ∧ d2), (d1 ∨ d2) and ¬d1 are compound
spider diagrams of order.

We observe that the set of spider identifiers is just a set of spiders, but with at
most one spider with any given foot arrangement present. If, for example, the spider
identifier set contains the pair (2, {(•, z)}) then this would tell us that d contains two
spiders in zone z whose feet are of the form •. As a more concrete example, the spider
diagram of order in figure 5(b) has abstract syntax:

1. labels L(d) = {A}

33

Figure 6: Illustrating the semantics.

2. zones Z(d) = {z1 = ({A}, ∅), z2 = (∅, {A})}

3. shaded zones ShZ(d) = {z1}

4. spider identifiers SI(d) = {(2, {(•, z1), (1, z2)}), (1, {(•, z1), (2, z1), (2, z2)})}.

It is useful to identity the set of spiders present in a diagram, which is implicit in
the spider identifier set and to be able to arbitrarily select feet of spiders. For example,
when defining the semantics, each spider, s, represents and element and the feet place
a disjunction of constraints on that element; thus to identify whether and interpretation
(see below) is a model for a unitary diagram there needs to be a choice of foot for which
s satisfies the constraint imposed.

Definition 4.3. The set of spiders in unitary diagram d is defined to be

S(d) = {(i, p) : ∃(n, p) ∈ SI(d) 1 ≤ i ≤ n}.

Let FootSelect : S(d) → F be a function. If, for all (n, p) ∈ S(d),
FootSelect(s) ∈ p then FootSelect is called a foot selection function for d.

It is further useful to identify which zones could be present in a unitary diagram,
given the label set, but are not present; semantically, missing zones provide informa-
tion.

Definition 4.4. Given a unitary diagram, d, a zone (a, b) is said to be missing if it is
in the set {(a, L − a) : a ⊆ L} − Z(d) with the set of such zones denoted MZ(d). If
d has no missing zones then d is in Venn form [8].

4.2 Semantics
Regions in spider diagram represent sets and the spatial arrangement of the contours
places constraints on the relationships between those sets. For example, in figure 6,
the diagram d1 contains two contours, A and B, that do not overlap, indicating that the
sets they represent are disjoint. Spiders make existential statements about elements. In
particular, each spider denotes the existence of a particular element in the set repre-
sented by the spider’s habitat, with distinct spiders denoting distinct elements. From
d1 we can deduce that there is an element, x, in A and two elements, y and z, in B.
The numbers on the spiders feet provide information on the ordering of elements in the
universe. With regard to d1, we deduce that x < y and x < z. The shading tells us
that all of the elements are represented by spiders, so d1 asserts that A contains a single
element, namely x. The diagram d2 expresses B ⊆ A (because B is placed inside A)
and there is an element, x, in A and another element, y, in B such that if y ∈ A − B

34

then x < y. The foot labels have particular significance as they are used to place a
restriction on the order of elements.

To formalise the semantics, we need to first interpret the contour labels as sets and
interpret the order relation <. Thus, we extend the definition of an interpretation given
in [8] to spider diagrams of order.

Definition 4.5. An interpretation is a triple (U,Ψ, <) where U is a universal set and
Ψ: L → PU is a function that assigns a subset of U to each contour label and < is an
irreflexive, antisymmetric and transitive relation on U . The function Ψ can be extended
to interpret zones and sets of regions as follows:

1. each zone, (a, b) ∈ Z , represents the set
⋂
l∈a

Ψ(l) ∩
⋂
l∈b

Ψ(l) and

2. each region, r ∈ PZ , represents the set which is the union of the sets represented
by r’s constituent zones.

For brevity, we will continue to write Ψ: L → PU but assume that the domain
of Ψ includes the zones and regions also. Given an interpretation we wish to know
whether it is a model for a diagram; in other words, when the information provided
by the interpretation agrees with the intended meaning of the diagram. Informally, an
interpretation is a model for unitary diagram d (6=⊥) whenever

1. all of the zones which are missing represent the empty set,

2. all of the regions represent sets whose cardinality is at least the number of spiders
placed entirely within that region and

3. all of the entirely shaded regions represent sets whose cardinality is at most the
number of spiders with a foot in that region.

4. the elements represented by the spiders obey the ordering imposed on them by
the spiders’ feet.

We now make this notion precise.

Definition 4.6. Let I = (U,Ψ, <) be an interpretation and let d (6=⊥) be a unitary
spider diagram of order. Then I is a model for d if and only if the following conditions
hold.

1. The missing zones condition
⋃

z∈MZ(d)

Ψ(z) = ∅.

2. The function extension condition There exists an extension of Ψ to spiders,
Ψ : L ∪ S(d) → PU which ensures the following further conditions hold.

(a) The habitats condition All spiders represent elements (strictly, singleton
sets) in the sets represented by their habitats:

∀s ∈ S(d) Ψ(s) ⊆ Ψ(habitat(s)) ∧ |Ψ(s)| = 1.

(b) The distinct spiders condition Distinct spiders denote distinct elements:

∀s1, s2 ∈ S(d) : Ψ(s1) = Ψ(s2) =⇒ s1 = s2.

35

(c) The shading condition Shaded regions represent sets containing elements
denoted by spiders:

Ψ(ShZ(d)) ⊆
⋃

s∈S(d)

Ψ(s).

(d) The order condition The ordering information provided by the spiders
agrees with that provided by <: there exists a foot selection function,
FootSelect : S(d) → F , for d such that

• for all s ∈ S(d), FootSelect(s) = (n, z) implies Ψ(s) ⊆ Ψ(z)
• for all s1, s2 ∈ S(d) with FootSelect(s1) = (n1, z1) and

FootSelect(s2) = (n2, z2), if n1 6= n2 then either
i. n1 < n2 and x < y where Ψ(s1) = {x} and Ψ(s2) = {y} or

ii. n2 < n1 and y < x or
iii. n1 = • or
iv. n2 = •.

If Ψ: L ∪ S(d) → PU ensures that the above conditions are satisfied then Ψ is a
valid extension to spiders for d. A foot selection function, FootSelect : S(d) → F ,
that ensures the above conditions are satisfied is also called valid. If d =⊥ then the
interpretation is not a model for d.

For compound diagrams, the definition of a model extends in the obvious inductive
way.

Theorem 4.1. Let d be a unitary spider diagram. Then d has a model.

Proof. (Sketch) Take U = S(d) and any foot selection function
FootSelect : S(d) → F for d. Using FootSelect, define Ψ: L → PU ensuring that
Ψ(l) contains precisely the set of spiders whose selected foot lies in a zone contained
by l, whenever l is in L(d). Further, use FootSelect to define < in the obvious way:
for spiders s1 and s2, s1 < s2 if and only if both of the feet selected for s1 and s2 have
integer labels, n1 and n2 respectively, and n1 < n2.

5 Regular Languages and Spider Diagrams of Order
The finite models of spider diagrams of order give rise to words. We take our alphabet
Σ to be a finite set of zones, (a, b) ∈ Z , such that a∪ b = L and further assume that all
unitary diagrams have a label set L (all unitary diagrams are semantically equivalent
to another unitary diagram with label set L, therefore expressiveness is not affected).
Each spider s in a unitary diagram d is said to give rise to a letter in word w by selecting
a foot of s using some fixed FootSelect function for d. An unordered foot (•, zi) =
FootSelect(s) specifies that the letter zi appears in w. An ordered foot of the form
(, zi) = FootSelect(s1) specifies that zi appears at a position in w before the letter
zj of an ordered foot of the form (, zj) = FootSelect(s2), and so-forth.

For example, the diagram d1 in figure 4(a) has a model U = {x, y, z} where A
represents the set {x, y} and B represents the set {y, z} and < = {(x, z)}. Taking
Z(d) = Σ, but using the notational convention established in section 3 rather than the
formal syntax, then the following words

[AB][AB][AB], [AB][AB][AB]

36

arise from this model. By contrast, ABABBA does not arise from this model for d1

as there must be an occurrence of the letter AB at some index in w after the letter AB
as (x, z) ∈ <. In other words if AB were at index 1 (the first letter) then AB must
occur at index 2 or 3. Conversely, given a word, we want to establish whether it arises
from a model for some given diagram. We say such words conform to the diagram.

Definition 5.1. Let w = w1w2...wn be a word in Σ = Z(d) and d (6=⊥) be a unitary
diagram. The bag (or multiset) of letters of which w consists is denoted bag(w). The
word w conforms, to d if and only if there exists a function, f : S(d) → (Z+ ∪ {•})×
bag(w) satisfying

1. f(s) is a foot of s,

2. f is injective with regard to bag(w): for all (n1, wi), (n2, wi) ∈ im(f), n1 =
n2,

3. f is bijective with regard to bag(w) when the image is restricted to the maximal
sub-bag of w whose elements are shaded zones in d, denoted shadebag(w): for
all wi ∈ shadebag(w) there exists s ∈ S(d) such that f(s) = (n, wi) for some
n.

4. for all s1, s2 ∈ S(d), if f(s1) = (n1, wi) and f(s2) = (n2, wj) are distinct feet
and n1 < n2 then the i < j

For d =⊥, no words in Σ∗ conform to d.

So, w conforms to unitary diagram d(6=⊥) provided, for each spider, s, in d,

1. each spider in d gives rise to a letter in w by way of selecting a foot,

2. a low ranked foot gives rise to a letter appearing at a lower index of w than a
letter corresponding to a higher ranked foot,

3. for each shaded zone, z, the number of occurrences of z in w is precisely the
number of spiders whose selected foot is z.

Definition 5.2. The language of a unitary spider diagram of order, denoted L (d), is
the set of words which conform to the diagram d.

Definition 5.3. When considering the language of a compound spider diagram of or-
der:

• L (d1 ∧ d2) = L (d1) ∩L (d2),

• L (d1 ∨ d2) = L (d1) ∪L (d2),

• L (¬d1) = Σ∗ −L (d1).

We can describe the language of d1 in figure 4(a) in the form k tΣ∗ where k is the
finite set of words generated only by spiders i.e.

k = {[AB][AB][AB], [AB][AB][AB], [AB][AB][AB]}

As d1 contains no shading or missing zones there are no letters prevented from being
in words of L (d1), thus L (d1) = k t Σ∗.

37

Theorem 5.1. The set of languages for spider diagrams of order whose unitary parts
contain no shaded zones is the boolean closure of shuffle-ideal languages, that is level
1 of the Straubing-Thérin hierarchy.

Proof. (Sketch) Let l be a level 1 language. Then l is a boolean combination of shuffle
ideals. We show that each shuffle ideal is the language of a spider diagram. The
result that l can be represented then follows by the inductive construction of l and the
spider diagram language. An arbitrary shuffle-ideal language can be seen as the finite
disjunction:

k t Σ∗ = (k1 t Σ∗) ∪ (k2 t Σ∗) ∪ . . . ∪ (kn t Σ∗)

where k1, k2, . . . , kn is a partition of k where each |ki| = 1 and Σ ⊆ Z . We may then
draw a spider diagram of order for each ki with zone set Σ and one single-foot spider
for each letter in ki placed in the appropriate zone and having the appropriate rank.
The language of the disjunction of these diagrams is L (k tΣ∗). Conversely, we must
show each such spider diagram has a level 1 language, which is left to the reader.

6 Conclusion
The main contributions of this paper are two-fold. First, we introduced spider diagrams
of order, increasing the expressiveness of the spider diagram language. We then defined
the language of a spider diagram of order and established the set of such languages
includes all of level 1 of the Straubing-Thérin hierarchy. This builds upon the relation-
ships previously established in [3]. The exact relationship between spider diagrams of
order and the Straubing-Thérin hierarchy remains to be determined. We conjecture that
there are languages in the class 3/2 that are not the language of any spider diagram of
order. In the future we wish to endow spider diagrams with the full power of monadic
first order logic with equivalence of order. We further plan to establish whether spider
diagrams are a natural specification technique for use in trace analysis.

Acknowledgement: Gem Stapleton is supported by a Leverhulme Trust Early Career
Fellowship and by UK EPSRC grant EP/E011160/1 for the Visualization with Euler
Diagrams project.

References
[1] R. Clark. Failure mode modular de-composition using spider diagrams. In Proc.

of Euler Diagrams 2004, volume 134 of Electronic Notes in Theoretical Com-
puter Science, pages 19–31, 2005.

[2] R. DeChiara, U. Erra, and V. Scarano. A system for virtual directories using
Euler diagrams. In Proc. of Euler Diagrams 04, volume 134 of Electronic Notes
in Theoretical Computer Science, pages 33–53, 2005.

[3] Aidan Delaney and Gem Stapleton. On the descriptional complexity of a dia-
grammatic notation (to appear). In Visual Languages and Computing, 2007.

[4] Volker Diekert and Yves Métivier. Partial Communication and Traces, pages
457–531. Springer-Verlag New York, Inc., 1997.

38

[5] A. Fish, J. Flower, and J. Howse. The semantics of augmented constraint dia-
grams. J. of Visual Languages and Computing, 16:541–573, 2005.

[6] E. Hammer. Logic and Visual Information. CSLI Publications, 1995.

[7] Pierre-Cyrille Héam. On shuffle ideals. Theoretical Informatics and Applications,
36:359–384, 2002.

[8] J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS J. of Computation
and Mathematics, 8:145–194, 2005.

[9] J. Lovdahl. Towards a Visual Editing Environment for the Languages of the Se-
mantic Web. PhD thesis, Linkoping University, 2002.

[10] Jean-Eric Pin. Syntactic semigroups, pages 679–746. Springer-Verlag New York,
Inc., 1997.

[11] Jean-Eric Pin and Pascal Weil. Polynomial closure and unambiguous product.
Theoretical Computer Science, 30:1–39, 1997.

[12] Alexander Rabinovich. Star free expressions over the reals. Theor. Comput. Sci.,
233(1–2):233–245, 2000.

[13] Kai Salomaa and Sheng Yu. Synchronization expressions and lanugages. J. of
Universal Computer Science, 5(9), 1999.

[14] S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.

[15] G. Stapleton and J. Howse. Enhancing the expressiveness of spider diagram sys-
tems. In Proc. of Distributed Multimedia Systems, Intl. Workshop on Visual Lan-
guages and Computings, pages 129–138. Knowledge Systems Institute, 2006.

[16] G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The expressiveness of spider
diagrams. J. of Logic and Computation, 14(6):857–880, 2004.

[17] N. Swoboda and G. Allwein. Heterogeneous reasoning with Euler/Venn diagrams
containing named constants and FOL. In Proc. of Euler Diagrams 2004, volume
134 of ENTCS. Elsevier Science, 2005.

[18] J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using euler diagrams in tradi-
tional library environments. In Euler Diagrams 2004, volume 134 of ENTCS,
pages 189–202. ENTCS, 2005.

[19] Wolfgang Thomas. Languages, automata, and logic, pages 389–455. Springer-
Verlag New York, Inc., 1997.

39

