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Abstract. We discuss the impact of presenting explanations to people
for Artificial Intelligence (AI) decisions powered by Neural Networks,
according to three types of logical reasoning (inductive, deductive, and
abductive). We start from examples in the existing literature on ex-
plaining artificial neural networks. We see that abductive reasoning is
(unintentionally) the most commonly used as default in user testing for
comparing the quality of explanation techniques. We discuss whether this
may be because this reasoning type balances the technical challenges of
generating the explanations, and the effectiveness of the explanations.
Also, by illustrating how the original (abductive) explanation can be
converted into the remaining two reasoning types we are able to identify
considerations needed to support these kinds of transformations.
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1 Introduction

In the last decade, eXplainable AI (XAI) research has made great advances,
introducing new explanation techniques like Grad-CAM [18], SHAP [13], LRP
[1], LIME [17], LORE [10], RETAIN [6], DeepLIFT [19], a.o. However, much of
this previous work does not consider which kind of logical reasoning is presented
to users, or how this interacts with characteristics of task, much less individual
differences between users. Given the possible implication of the reasoning type in
the effectiveness of the XAI system, we inspect the transformation from one kind
of reasoning to another. We do this intending to draw possible considerations for
selecting between the types of reasoning, starting with neural networks models.
While the categorization of the reasoning types applies to explanations for other
probabilistic models, the available explanation techniques differ.

The paper is organised as follows: in Section 2 we provide some background
on XAI taxonomies, evaluation tasks and reasoning types, in Section 3 we inves-
tigate the reasoning types, in Section 4 we establish the guidelines for reasoning
transformation, in Section 5 we conclude the paper and we discuss possible ideas
for future work.
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2 Related Work

In this section, we explore three topics: the first concerns the existing XAI tax-
onomies, to catalogue existing state-of-the-art techniques that explain neural
networks. After that, we will talk about the task types with which explanations
techniques are proposed and their importance for evaluation by humans. Finally,
we define the reasoning types and their relationship with XAI explanations.

2.1 Explanation Taxonomies

There have been articles that have categorized explanation methods for neural
networks. Among them, [24, 3, 12, 20] were very useful to lay the foundations of
our research: they describe a comprehensive taxonomy of interpretability meth-
ods regarding Deep Neural Networks (DNN), including goals, properties and ar-
chitecture, together with guiding principles for their safety and trustworthiness.
Furthermore, other surveys go beyond the analysis of neural network models,
and help us to expand the knowledge on methods of explanation and models
used [2, 11]. However, there are two surveys that also focus on the impact of ex-
planations on users [14, 22]. The former supplies a categorization between design
goals for interpretable algorithms considering different XAI user groups. The
latter introduces a conceptual framework that explains how human reasoning
processes informs XAI techniques, which we will deepen in the next sections.

2.2 Types of Tasks

In addition to determining which XAI which techniques to use, another key step
is to identify what type of task the user will accomplish. We started studying
tasks types from articles [7] and [4], following the distinction present in the latter
and taking into account two types of tasks, proxy and real. In studies that use
proxy tasks, the user mainly evaluates how well he perceives the AI’s explana-
tions and what it has learned, focusing on the AI and on the actual goals the
users have in interacting with the system. [16, 25, 21]. Conversely, studies that
use real tasks evaluate the cooperation between users and AI: the user has a
primary role regarding the decision to make and can decide or not to use the AI
advice to complete the task [8, 4, 23]. The paper in [4] also criticises the current
evaluation methodology of XAI based on proxy tasks, demonstrating that their
conclusions may not reflect the usage of the system on real tasks. Given this
discovery, we consider real tasks in the transformations explained in Section 4.

2.3 Types of Reasoning

During the evaluation phase, where the interaction between user and AI takes
place, one fundamental factor comes into play: the reasoning type. We started
analyzing this subject from the article [22], cited above. The authors highlight



that the AI’s role is to facilitate the user connection with its decisions, starting
from the reasoning expressed through the AI’s explanations. Accordingly, a rea-
sonable choice is to deeply explore a subset of the reasoning types, for instance,
the logical ones: inductive, deductive and abductive. Here, we consider Peirce’s
syllogistic theory [9], and note that we can translate between these by exchanging
the conclusion (or result), the major premise (the rule) and the minor premise
(the cause). We will investigate these reasoning types in the next section.

3 Investigating the Reasoning Types in Explainable
Intelligent Interfaces

In this section, we investigate the reasoning types previously mentioned borrow-
ing some examples from the literature. Article [4] briefly discusses inductive and
deductive reasoning, explaining how to integrate them in a user evaluation con-
text but without an in-depth exploration. Furthermore, abductive reasoning is
often (unintentionally) used to compare novel explanation techniques with state-
of-the-art techniques where the user role is to identify what is the best-generated
explanation during the evaluation. Before starting with the definitions, we in-
troduce the three components identified in all types of reasoning (c.f., Peirce’s

syllogistic theory [9]): one (or more) Cause (or Case/ Explanation/ Reason),

Effect (or Observation/ Result) and Rule (or Generalization/ Theory).

Table 1. Illustrative articles that explain neural network models, divided according to
the type of reasoning, network and task.

Year Article Reasoning of task Type/s of network Type/s of task

2018 [15] deductive MLP proxy
2019 [5] inductive RNN real
2017 [21] abductive LSTM, CNN proxy

When applying this theory to XAI interfaces, it is important to identify
whether their representation is implicit or explicit. For example, a rule or a
cause is implicit when it comes from the user’s mental model and not from the
AI. Instead, it is explicit when we consider the AI’s mental model, i.e. what it
has learned in the training process and its explanations on the output’s predic-
tion. The reference paper for the concepts we are going to describe is that of [9]
(see Table 1). The order of the components described is unimportant, except for
the last one: we will use the latter to highlight what is the reasoning to elicit
from the user.

Deduction: given a cause and a rule, deduce an effect. This type of reasoning
starts with general rules and examines the possibilities to reach a specific, logical
conclusion. Deductive reasoning is alternatively referred to as “top-down” logic



because it usually starts with a general statement and ends with a narrower,
specific conclusion. The article [15] contains an example of this reasoning, as

depicted in Figure 1. Cause : The AI’s words in red that identify a negative or

positive sentiment. Rule : Certain words contribute to the sentiment of text

(implicit). Effect : The sentiment prediction.

Fig. 1. The AI’s words in red that identify a negative or positive sentiment are the
Cause ; the Rule is implicit (related to the mental model of the user regarding

his semantic knowledge and not given by the AI); the user choice about the sentiment

prediction (whether positive or negative), is the Effect [15].

Induction: given a cause and an effect, induce a rule. This type of reasoning
involves drawing a general conclusion from a set of specific observations. It is al-
ternatively referred to as “bottom-up” logic because it involves widening specific
premises out into broader generalizations. Article [5] is an example of inductive

reasoning, shown in Figure 2. Cause : The AI’s example-based explanations.

Effect : The AI was unable to recognize the user’s sketch. Rule : Certain
properties of sketches represent an object (implicit).

Abduction: given an effect and a rule, abduct a cause. This type of reasoning
typically begins with an incomplete set of observation/s and proceeds to the
likeliest possible explanation. An example of abductive reasoning is [21], as de-

picted in Figure 3. Effect : is given by the AI’s sentiment prediction. Rule :
The chart in the explanation boxes give the user the intuition of the weights the
AI uses for computing the valence of the sentence (implicit). Cause : The user
selects the weights he considers the best (proxy task).



Fig. 2. The example-based explanations shown by the AI identify the Cause ; the

Effect is that the AI did not recognize the sketch the user draw; so, the user needs

to understand the Rule from the AI’s examples. [5].

Fig. 3. The AI’s sentiment prediction represents the Effect ; the AI’s chart and
the sentiment highlight that identify a negative or positive sentiment represents the

Rule ; so the user has to find the best Cause , like: “I choose explanation B because
it highlights better the sentiment meaning” [21].

4 Transforming Explanations to different Reasoning
Types

The goal of transforming the reasoning task is to analyze possible preferences
or performance differences on the user during the evaluation phase. Moreover,
obtaining all three reasoning types allows us to find underrepresented reasoning
types in the literature and to study if they work better with users than the orig-
inal task’s reasoning. Abductive reasoning explanations (Fig. 3) are quite easy
to generate and have a good understandability power: this compromise could
be the reason why they are the most used reasoning for comparing the quality
of explanation techniques. As for inductive explanations (Fig. 2), we can easily
generate examples based on data, but the understandability is bounded by the
selected examples. Deductive explanations (Fig. 1) are more challenging to gen-



erate when we have to create explicit rules, but they are very understandable
to the user. As mentioned in Section 2, the resulting transformation’s task will
be a real one, for avoiding the mistake highlighted by article [4]. This can be
achieved by revisiting the task’s question from the AI to the user perspective.
Now, let us depict some ideas to formulate the transformation with the three
reasoning types described previously, considering that we often have an explicit
or implicit rule or cause, and nearly always an effect given by the AI (suggestion).

Deductive to Inductive and Abductive. To adapt to inductive reasoning, we
need to replace the cause giving similar or dissimilar examples concerning the
data present in the task and based on the output of the AI, thus generating
example-based explanations. So, the users grasp the Rule (that becomes im-

plicit) that brought the AI to that result, and draw their conclusion Effect about
the given task data. To switch to abductive reasoning, the AI should provide a

Cause based on the task data. After that, we need to make the Rule implicit
to not confuse the reasoning with the deductive one.

Inductive to Deductive and Abductive. To switch to the deductive case, the AI
needs to explicitly define a Rule , that also includes a Cause . We can ac-
complish this by leveraging the properties of the AI model or adding a comple-
mentary one to obtain a rule. Additionally, sometimes the user may take the
decision without obtaining the Effect explicitly from the AI, but letting the
user deduce it from the rules and causes. Passing instead from inductive to ab-
ductive reasoning, we use the common traits in the inductive examples to create
a Cause .

Abductive to Inductive and Deductive. Starting from this reasoning type, we
hypothesize to already have an Effect given by the AI. To translate to the

inductive case, we need to replace the Cause given by the task’s data with

that of example-based explanations and transform the Rule to implicit.

To move to deductive reasoning, we need to explicitly define the AI’s Rule ,

that may change the original Cause , and if we want, hide the Effect .

5 Conclusion and Future Work

In sum, we investigated the considerations that arise when transferring between
different types of logical reasoning, considering real tasks as the resulting trans-
formation’s tasks. We identified the importance of differentiating between im-
plicit and explicit rule representation. We also consider whether the choice of
reasoning type balances the technical challenges of generating the explanations,
and the effectiveness of the explanations for humans. As future work, we plan
to validate these ideas in user evaluations for different reasoning types. Also, we
plan to create a taxonomy considering reasoning and task types, in addition to
other useful metrics related to the XAI explanation, and further explore logical
reasoning on other black-box models beyond neural networks.



References

1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.R., Samek, W.: On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLOS ONE
10(7), 1–46 (07 2015). https://doi.org/10.1371/journal.pone.0130140,
https://doi.org/10.1371/journal.pone.0130140

2. Barredo Arrieta, A., Diaz Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Bar-
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