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Abstract
When reasoning over large knowledge graphs, Datalog+/- languages offer a good trade-off between expressive power and

computational complexity. However, in case of considerably large inputs and in the presence of recursive rules, even state-of-

the-art reasoners struggle to accomplish reasoning tasks, e.g. answering Boolean Conjuctive Queries (BCQs). To address this

problem, we introduce the notion of heuristic-based reasoning, that is, evaluating Datalog+/- rules according to an order of

the facts determined via a user-defined heuristic. We show that adopting a fitting heuristic that guides the reasoning process

provides an optimized way to answer a BCQ. To achieve this behaviour in practice, we enrich Datalog+/- programs with a

context-aware operator, which we name Dynamic Hint Operator. We apply our new methodology to efficiently solve the

Close Link problem on the knowledge graph of Italian companies, a relevant financial problem that estimates the risk to

grant a specific loan to a company that is backed by collateral issued by another company.
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1. Introduction
The growing need of enriching financial and corporate

knowledge and delivering AI-enhanced applications is

pushing companies to adopt data-intensive intelligent

systems with reasoning capabilities. Under the rising

paradigm of Knowledge Graphs (KGs), modern reasoners
support the augmentation of extensional data with logical

representations of knowledge as ontologies and programs

(i.e., sets of facts and rules) [1].

Ontological Reasoning on KGs. As a main require-

ment, languages for knowledge representation and rea-

soning must exhibit high expressive power, being able

to model complex real domains with full recursion and

existential quantification. At the same time, they must

achieve low computational complexity, enabling scalabil-

ity in practice [2]. The Datalog
±

family [3, 4, 5, 6, 7, 8, 9]

is one of the commonly adopted families of logic lan-

guages (technically, fragments) for reasoning on KGs [10].

It covers these requirements, offering a good trade-off

between expressive power and complexity. It guarantees

decidability and, in some fragments [11], tractability of
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query answering. Datalog
±

rules are function-free Horn

clauses, potentially including existential quantification,

i.e., tuple-generating dependencies (TGDs). The seman-

tics of TGDs is usually specified in an operational way

via the chase procedure [12], an algorithmic tool that

takes as input a database 𝐷 and a set Σ of TGDs, and

modifies 𝐷 by adding new tuples until Σ is satisfied.

Critical Aspects in Query Answering. In relevant

real-world application scenarios, navigational capabili-

ties, empowered by recursion in combination with arbi-

trary joins, are vital for expressing complex reasoning

tasks over KGs. At its essence, graph navigation repre-

sents the most time and space demanding computation,

as it may consider the whole KG as input for an indefinite

number of chase steps. Additionally, when answering

a Boolean Conjuctive Query (BCQ) – i.e., a query where

the answer is a boolean value – under a set of (recursive)

TGDs, in most of the cases, not all the generated facts

actually contribute to the result. As an example, consider

the following set of Datalog
±

TGDs.

Example 1. An example of knowledge graph navigation.

Failure(b), b = BNP→ Shock(b) (1)

Shock(b1),Credit(b1, b2)→ Shock(b2) (2)

This example represents a credit shock propagation scenario.
The bank BNP experiences a shock due to failure (rule 1).
If 𝑏1 is a bank that undergoes a shock and 𝑏2 is a bank
in a credit exposure constraint with 𝑏1, then the shock is
propagated to 𝑏2 (rule 2).
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Consider, as ontological reasoning task, the BCQ

𝑄 = Shock(Barclays) ∧ Shock(UBS)

to check whether Barclays and UBS may experi-

ence a credit shock, and the database instance 𝐷 =

{Failure(BNP), Credit(Deutsche, Barclays), Credit(MPS,

Unicredit), Credit(BNP, MPS), Credit(Barclays, UBS),

Credit(BNP, Deutsche)}. Observe that there are many pos-

sible ways to activate rule 2, causing the generation of a

distinct number of facts that do not actually contribute

to the query result. In fact, by activating rule 2 from the

facts Shock(BNP) and Credit(BNP, Deutsche), we generate

Shock(Deutsche). Then, we can use the latter fact and

Credit(Deutsche, Barclays) to trigger again rule 2 and pro-

duce Shock(Barclays). Finally, we generate Shock(UBS)

by applying rule 2 over the facts Credit(Barclays, UBS)

and Shock(Barclays). On the other hand, if we activated

rule 2 via different facts, additional tuples would be gen-

erated that, while not providing any contribution to the

result, would affect the performance of the computation

(Shock(MPS), Shock(Unicredit)).
In this work, we investigate the generation of super-

fluous facts in recursive settings when answering BCQs.

We contribute a novel reasoning approach that tackles

this problem by adopting a tuple-binding prioritization

strategy for the evaluation of Datalog
±

rules. Specifi-

cally, we employ a user-defined heuristic as a guideline

for TGDs activation in the chase.

A Financial Use Case. Financial Knowledge Graphs

are central objects in corporate economics and are of

high importance for central banks, financial authorities

and national statistical offices, to solve relevant problems

in distinct areas: banking supervision, credit-worthiness
evaluation, anti-money laundering, insurance fraud de-
tection, economic and statistical research and many more.

In particular, in the Central Bank of Italy’s enterprise

KG of Italian companies (ICKG) [13, 14], ownership is

a core concept: nodes are companies and persons, and

ownership edges are labelled with the fraction of shares

that a company or person 𝑥 owns of a company 𝑦. The

ICKG consists of 4.059M companies and people as nodes

and 3.960M shareholdings as edges.

Producing facts that do not contribute to the BCQ re-

sult becomes particularly relevant on such large inputs,

especially in the presence of recursive TGDs, since their

evaluation might cause a blowup of the unavailing facts.

These complications heavily affect the resolution of a

high interest scenario in the financial context, that is, the

Close Link problem. It consists of determining whether

there exists a (direct or indirect) link between a company

𝑥 and a company 𝑦 based on a high overlap of shares, and

it can be modeled with a set of recursive TGDs. Solving

this problem allows us to estimate the risk to grant a

specific loan to a company that is backed by collateral

issued by another company [13]. As per European Cen-

tral Bank’s directive [15, 16], a company cannot act as

guarantor for a different one if they are close links.

It can be empirically shown that, to determine whether

𝑥 and 𝑦 are close links, adopting a heuristic that prior-

itizes the exploration of nodes with a higher in-degree

allows to reach the query result in an efficient fashion

and limits the generation of unavailing facts. Motivated

by this, we efficiently solve the Close Link problem on the

ICKG by introducing a new reasoning methodology that

enriches the semantics of TGDs with context-awareness.
Specifically, we evaluate Datalog

±
rules according to an

order of the input facts that is determined by employ-

ing the aforementioned heuristic. In detail, the main

contributions of this paper are:

• A novel scalable approach to tackle the BCQ answer-

ing problem in recursive settings. We introduce the

notion of heuristic-based reasoning, that is, evaluating

Datalog
±

rules according to an established order of the

facts, guided by a user-defined heuristic. Specifically,

we enrich Datalog
±

programs with a context-aware op-

erator, which we name Dynamic Hint Operator (DHint).

This allows the reasoning engine to prioritize specific

tuple bindings in the evaluation of a Datalog
±

rule, in

order to efficiently answer a specific BCQ.

• A relevant application of the Dynamic Hint Operator

to solve the Close Link problem on the enterprise KG of

Italian companies. In particular, we provide an ad-hoc

solution that exploits an empirically-defined heuristic

as a guideline for the TGDs activation.

• An evaluation of the performance of the DHint-

based approaches in recursive settings. In particu-

lar, we compare the ad-hoc DHint implementation

with state-of-the-art BCQ evaluation techniques for

the Close Link problem and we show that a fitting

heuristic applied via DHint provides an optimized way

to evaluate a BCQ.

Related Work. To outline the related work for this pa-

per, we distinguish the following two perspectives. From

a financial point of view, distinct reasoning-based ap-

proaches have been adopted to tackle and solve relevant

business problems. Among them, we mention the effec-

tive application of “Golden Powers” (i.e., the possibility

of the central Government to veto specific acquisition

transactions) to prevent hostile company takeovers [17].

Other use cases exploit rule-based reasoning to counter-

act money laundering processes [18] and to determine

whether a company or a person exerts control, through

the majority of voting rights, on another company, i.e.,

the Company Control problem [13]. From a technical

standpoint, we refer to approaches that exploit external

knowledge to efficiently solve query-answering tasks.



Specifically, in the context of DBMSs, there exist multi-

ple alternatives to inject specific criteria that guide the

query plan creation. Standard hint operators provide a

mechanism that instructs the optimizer on how to de-

termine the execution plan for a certain query, based

on specific directives (e.g., join order, choice of physical

operators for joins, etc.) [19, 20]. Additionally, ad-hoc

techniques to enhance the optimizer in the plan com-

putation have been proposed: for instance, “Phint”, a

hinting language that introduces specific constraints to

guide the optimizer in the evaluation of the most suitable

query plan, with the lowest estimated cost [21]. Such

approaches act statically in the query evaluation, modify-

ing how the query is structured and how the query plan

is created. Alternatively, there exist techniques that ex-

clude the non-relevant derivations in the query execution

via an eager computation: such approaches cannot be

generally adopted in any query, but they only take place

in the presence of monotonic aggregations [22]. Yet, in

the context of ontological reasoning, the DHint operator

is, to the best of our knowledge, the first technique that

enriches the semantics of the TGDs with a heuristic to

guide reasoning and optimize BCQ answering.

Overview. This paper is organized as follows. We start

by laying out the background notions in Section 2. In

Section 3, we define the notion of heuristic-based reason-

ing and we introduce the DHint operator. In Section 4,

we discuss the application of DHint for the Close Link

problem and we provide the experimental evaluation. We

draw our conclusions in Section 5.

2. Reasoning with TGDs
Let𝐶 ,𝑁 , and 𝑉 be disjoint countably infinite sets of con-
stants, (labeled) nulls and (regular) variables, respectively.

A (relational) schema S is a finite set of relation symbols

(or predicates) with associated arity. A term is a either

a constant or variable. An atom over S is an expression

of the form 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 > 0 and

𝑣 is an 𝑛-tuple of terms. A database instance (or simply

database) over S associates to each relation symbol in

S a relation of the respective arity over the domain of

constants and nulls. The members of relations are called

tuples or, alternatively, facts.
Datalog

±
languages generalize standard Datalog rules

by introducing existential quantifiers in rule heads. A

Datalog
±

program consists of a set of existential rules,
or tuple-generating dependencies (TGDs), of the form

∀�̄�∀𝑦(𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧)), where 𝜙 (the body) and 𝜓
(the head) are conjunctions of atoms with constants and

variables. For brevity, we omit quantifiers and denote the

conjunction ∧ by comma.

The Chase Procedure. The chase [12] is a fundamental

algorithmic tool that modifies a database 𝐷 to enforce

the satisfaction of a set of dependencies Σ over 𝐷. It

expands 𝐷 with facts derived via the application of rules

∈ Σ over 𝐷, with the chase steps into a new database

chase(𝐷,Σ), possibly containing labelled nulls as place-

holders for the existentially quantified objects. Starting

from𝐷, the chase incrementally applies chase steps and

builds new database instances, denoted as 𝐼 . Given a

TGD 𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧), a TGD chase step is applicable
to 𝐼 if there exists a homomorphism h that maps the

atoms of 𝜙(�̄�, 𝑦) to atoms of 𝐼 (i.e., h(𝜙(�̄�, 𝑦)) ⊆ I ) and

there does not exist any extension ℎ′ ⊇ ℎ, such that

ℎ′(𝜓(�̄�, 𝑧))) ⊆ 𝐼 . When the chase step is applicable,

the atom ℎ
′′
(𝜓(�̄�, 𝑧))) ⊆ 𝐼 is added to 𝐼 , where ℎ

′′
is

obtained by extending ℎ so that ℎ
′′
(𝑧) ∈ 𝑁 is a fresh

labelled null, for each 𝑧𝑖 ∈ 𝑧.

Boolean Conjunctive Queries (BCQs). An answer to a

BCQ is defined via homomorphisms, which are constant-

preserving mappings h from variables in �̄� and 𝑦 to el-

ements of 𝐶 ∪ 𝑁 , s.t. ∀�̄�∀𝑦 𝜙(�̄�, 𝑦) ⊆ 𝐼 and ℎ(�̄�) = 𝑡
is a tuple of the query answer. The answer to a BCQ

𝑄 ← ∃𝑦 𝜓(𝑦) over an instance 𝐼 is positive iff there

exists a homomorphism h: 𝑦→ 𝐶 ∪𝑁 s.t. h(𝜙(𝑦)) ⊆ 𝐼 .

3. Dynamic Hint Operator
In this section, we discuss the theoretical aspects of our

new reasoning methodology. As the goal of this paper is

to highlight how our approach improves the performance

of a real-world scenario, here we only provide the main

notions required to achieve such purpose.

The standard chase step definition, addressed in Sec-

tion 2, lacks a specific strategy to choose among all the

applicable homomorphisms that map the variables of a

certain atom. Indeed, such choice impacts on the num-

ber of chase steps required to generate a certain fact.

Moreover, while the order of the chase steps does not

affect correctness of query answering (as the same final

instance chase(𝐷,Σ) is always produced), in case of BCQs

selecting a suitable homomorphism favours the efficiency

of the reasoning task, as it allows to produce less facts

that do not contribute to answering the query.

Heuristic-based Reasoning. To apply a strategy that

selects such favorable homomorphisms, efficiently solv-

ing the task at hand, we enrich the program by injecting

an external knowledge of the reasoning setting, provided

by a domain expert. To better understand this concept,

we refer to Example 1. Assume, as external knowledge

in a non-realistic scenario, that every Italian bank only

grants credit to other Italian banks. Therefore, it is intu-

itive to observe that, when answering the BCQ 𝑄, not all

the applicable homomorphisms from rule 2 are required.

Indeed, we only need to consider the ones whose images

(tuples) correspond to Credit facts that do not involve



Italian banks, as to answer 𝑄 in this domain the only

contributing facts refer to shock events of non-Italian

banks. We represent this external knowledge via a heuris-

tic function, defined as follows.

Definition 1 (Ground Heuristic Function). Consider a
database 𝐷 over a relational schema 𝑆 and a set of tu-
ples 𝐹 = {𝑥|𝑥 /∈ 𝐷}. A Ground Heuristic Function (GHF)
𝛿 : 𝐷 → R>0 ∪ 𝐹 → 0 is a user-defined function that
maps each tuple of𝐷 to a weight 𝑤 ∈ R>0 and each tuple
of 𝐹 to 0. We define Extended Ground Heuristic Function
(EGHF) ∆ : 𝑃 (𝐷) → R>0 ∪ 𝑃 (𝐹 ) → 0 as a function
that maps a set of tuples 𝑇 ⊆ 𝐷 ∪ 𝐹 to a weight �̄� such
that �̄� =

∑︀
∀𝑡∈𝑇 𝛿(𝑡), i.e., �̄� is the sum of the weights

assigned by 𝛿 to each 𝑡 ∈ 𝑇 .

Note that, when the input of the GHF is not a ground

fact (i.e., a tuple not in 𝐷), the output is always 0, as

our heuristic function does not consider facts that are

generated in the chase. This statement also holds for

the EGHF, as the contributions of input non-ground facts

are irrelevant. We exploit the EGHF as a guideline in the

chase to determine which homomorphism is the most

suitable at each chase step. We define them as follows.

Definition 2 (Heuristic Chase Step Application).
Consider a TGD 𝜎 : 𝜙(�̄�, 𝑦)→∃𝑧 𝜓(�̄�, 𝑧), an interme-
diate chase instance 𝐼 and an EGHF ∆. Let 𝐻 be the
set of possible homomorphisms applicable from 𝜎 to
𝐼 . A Heuristic chase step consists of the application of
ℎ = 𝑚𝑎𝑥[∆(ℎ𝑖(𝜙(�̄�, 𝑦)))]∀ℎ𝑖∈ 𝐻 over 𝐼 , i.e., ℎ is the
homomorphism in 𝐻 whose images (tuples) maximise ∆.

Intuitively, the heuristic chase step exploits the knowl-

edge of the domain expert by prioritizing the homomor-

phism whose images (i.e., tuples) have the highest EGHF

value. Based on such revised form of the chase step appli-

cation, we devise a new reasoning methodology, which

we name heuristic-based reasoning. It enables the genera-

tion of less unavailing facts, with respect to the standard

chase, when answering BCQs in the presence of TGDs,

and consequently favours the efficiency of the task reso-

lution while preserving correctness.

Dynamic Hint Operator. To achieve this behaviour in

practice, we enrich the Datalog
±

syntax with a rule-level

operator. We name it Dynamic Hint Operator (DHint),

where (i) “dynamic” stands for it working at execution

time, and (ii) “hint” recalls the homonymous operator

adopted by standard DBMSs. Given a TGD 𝜎, we denote

@hint𝜎(∆) as the DHint assigned to 𝜎 by applying the

EGHF ∆. It represents the fact that the evaluation of 𝜎 is

performed via heuristic chase steps, using∆ to determine

the most suitable homomorphism among the applicable

ones. Let us now extend Example 1 with our DHint.

Example 2. Example 1 enriched with DHint.

Failure(b), b = BNP→ Shock(b) (1)

@hint2(∆)Shock(b1),Credit(b1, b2)→ Shock(b2) (2)

where the EGHF ∆ : {Credit(Deutsche, Barclays) → 5.0,
Credit(MPS, Unicredit)→ 1.0, Credit (BNP, MPS)→ 1.0,
Credit(Barclays, UBS) → 5.0, Credit(BNP, Deutsche) →
5.0}. For brevity, we omit the facts not included in the
database 𝐷, as the corresponding value for ∆ is 0.

As apparent from how ∆ is defined, the facts in 𝐷 that

refer to Italian banks are mapped to lower values. In

fact, we recall that, in our example, Italian banks only

grant credit to other Italian banks. As a result, only the

Shock facts that actually contribute to answering 𝑄 are

generated, i.e., the ones that are related to non-Italian

banks. Therefore, the task is closed in an efficient fashion

and the correctness is upheld.

4. Financial Use Case
In this section, we provide an experimental evaluation of

our heuristic-based reasoning approach. We apply our

novel reasoning methodology to solve the Close Link

problem over the ICKG.

The Close Link Problem. Per European Central Bank’s

directive, a company 𝑐1 cannot act as guarantor for a

company 𝑐2 if 𝑐1 and 𝑐2 are close links [15, 16]. Specif-

ically, two companies 𝑐1 and 𝑐2 are close links if: (i) 𝑐1
(resp. 𝑐2) owns directly or indirectly, through one or more
other companies, 20% or more of the share of 𝑐2 (resp. 𝑐1),
or (ii) a third-party owns directly or indirectly, through
one or more other companies, 20% or more of the share of 𝑐1
and 𝑐2. Given these settings, the problem can be modeled

via the set of recursive TGDs we provide in Example 3.

Example 3. Close Link modeled with a set of TGDs.

Own(𝑐1, 𝑐2, s) → MCl(𝑐1, 𝑐2, s) (1)

MCl(𝑐1, 𝑐2, 𝑠1),Own(𝑐2, 𝑐3, 𝑠2) → MCl(𝑐1, 𝑐3, 𝑠1 · 𝑠2) (2)

MCl(𝑐1, 𝑐2, 𝑠), ts = sum(𝑠), ts ≥ 0.2 → 𝐶𝑙1(𝑐1, 𝑐2) (3)

𝐶𝑙1(𝑐1, 𝑐2), 𝐶𝑙1(𝑐1, 𝑐3), 𝑐2 ̸= 𝑐3 → 𝐶𝑙2(𝑐2, 𝑐3) (4)

𝐶𝑙1(𝑐1, 𝑐2) → Cl(𝑐1, 𝑐2) (5)

𝐶𝑙2(𝑐1, 𝑐2) → Cl(𝑐1, 𝑐2) (6)

This example represents the Close Link scenario with ref-
erence to the ICKG. A company 𝑐1 and a company 𝑐2,
connected by an ownership edge with a share 𝑠, can be
close links (rule 1). If two companies 𝑐1 and 𝑐2 can be close
links with a share 𝑠1, and there exists an ownership edge
from 𝑐2 to a company 𝑐3 with a share 𝑠2, then also 𝑐1 and
𝑐3 can be close links with a total share of 𝑠1 · 𝑠2 (rule 2).
Every partial share 𝑠 of 𝑐2 owned (directly or indirectly)



by 𝑐1 is summed to compute the total share that 𝑐1 owns
of 𝑐2; as stated by (i) of the close link definition, if the total
share is greater or equal than 0.2, then 𝑐1 and 𝑐2 are close
links (rule 3). The third-party case is modeled according to
(ii) of the definition (rule 4).

Limits of BCQ Evaluation Techniques. Consider the

BCQ 𝑄 = Cl(𝑥,𝑦) and the TGDs of Example 3 to check

whether the companies 𝑥 and 𝑦 are close links. When we

consider a high number of input Ownership edges, as in

the case of ICKG, even state-of-the-art query evaluation

techniques struggle to efficiently answer 𝑄. Modern rea-

soners encode chase-based procedures by adopting two

main approaches: (i) a materialization technique that con-

sists of producing and storing all the facts for each predi-

cate by adopting the so-called semi-naive evaluation [23].

In this case, the rules are evaluated according to bottom-

up strategies, starting from the initial database and re-

peatedly applying the rules until a fixpoint is reached;

(ii) a streaming technique that adopts reasoning query

graphs [24], where nodes correspond to relational al-

gebra operators (select, project and join) and edges are

dependency connections between the rules. Such graph

forms an active pipeline and the data flows through its

nodes, each receiving input data from the previous nodes

and performing the required transformations. Both these

approaches may cause the creation of facts that do not

contribute to answering the BCQ, as the fact generation

process is independent from the query itself. For instance,

the materialization approach creates all the facts corre-

sponding to a predicate, which may be unavailing to

answer the BCQ. On the other hand, in the streaming

approach the sequence of the generated facts depends on

the order in which the input facts flow in the pipeline.

A Heuristic for Close Links. We empirically observed

that prioritizing the exploration of nodes with a higher

in-degree allows us to find a greater number of owner-

ship paths between the close link candidates, compared

to standard graph visiting techniques. Motivated by

how the limitations of BCQ evaluation techniques af-

fect the detection of close links between companies on

the ICKG [13], we exploit such intuition and build an ad-

hoc EGHF ∆ to assign a weight to the ownership edges

in input that is directly proportional to the in-degree of

the target nodes. With reference to Example 3, we enrich

rule 2 with our DHint operator with such ∆ as follows:

@hint2(∆) MCl(𝑐1, 𝑐2, 𝑠1),Own(𝑐2, 𝑐3, 𝑠2)
→ MCl(𝑐1, 𝑐3, 𝑠1 · 𝑠2)

Intuitively, rule 2 represents a graph navigation guided

by the EGHF ∆, where the edges whose target nodes

have a higher in-degree are prioritized.

DHint Implementation. We implemented the Close

Link Solver (CLS), an ad-hoc system that allows us to

answer 𝑄 under the TGDs of Example 3, i.e., it is able to

determine whether two companies are close links. CLS

adopts a streaming architecture such that each iteration

produces a new tuple representing a path between two

companies 𝑐1 and 𝑐2 with weight𝑤. Such𝑤 corresponds

to the partial share that 𝑐1 owns of 𝑐2 and it is calculated

as the product of all the shares of the ownership edges in

the traversed path. Whenever the new tuple represents

a path between the companies 𝑥 and 𝑦 involved in the

BCQ𝑄, the system checks whether the sum of the partial

shares of 𝑦 owned (directly or indirectly) by 𝑥 exceeds

0.2, in which case 𝑥 and 𝑦 are close links and the task

terminates successfully.

We integrated CLS with two distinct approaches:

• a Standard one (Std), which essentially consists in a

classic transitive closure evaluation, which adopts a

nested-loop join and a FIFO strategy to guide the gen-

eration of the facts;

• a DHint-based one (DHint), which employs the EGHF

∆ defined above to order the applicable homomor-

phisms. As a result, it prioritizes the generation of the

tuple whose provenance (namely, the facts it derives

from) maximises ∆.

Experiments and Results. We compared the two ap-

proaches over 100 pairs of companies in the ICKG. We

selected them randomly among a set of companies that

are known to be close links. We run our system on a cloud

instance of CLS in a running Ubuntu Standard E8s V4

Linux machine, with 8 virtual v4 cores, 64 GB of RAM and

64 GB SSD. For 84 pairs of companies, both approaches

terminated in less than two minutes. For the remaining

16 pairs, we extended the execution time up to 10 minutes

and we ran our system again with both approaches. We

collected the number of facts generated and the number

of paths found between the close link candidates. As

a metric of comparison, we adopted the ratio between

the total number of facts generated and the number of

paths between the close link candidates discovered by the

two approaches: we name this metric nFacts/nPaths ratio.

Intuitively, this ratio represents the average number of

facts to generate in order to find a new ownership path

between the close link candidates. Figure 2 illustrates

that, for all the 16 candidate pairs, the DHint approach

discovers a much higher number of paths than the Stan-

dard one in the same time. Moreover, our heuristic-based

approach allows us to prevent the generation of many

unavailing facts. Indeed, a considerably smaller number

of facts are generated in order to achieve an answer to the

query, i.e., to determine whether the candidates are close

links. Hence, our novel approach achieves an inferior

nFacts/nPaths ratio, as shown in Figure 1.



(a) Ratio comparison on log10 scale. (b) Actual ratio values.

Figure 1: Comparison between the nFacts/nPaths ratios of Std and DHint approaches on 16 close links candidates.

cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8

Std Facts 35500777 35501852 35498623 535502578 35504600 35503661 35502031 35506112
Std Paths 298 442 306 1367 14 140 225 434

DHint Facts 18029520 18052525 18007667 2066622 18007733 1544932 18071984 18061181
DHint Paths 6432 12775 6432 186 2976 7 8556 12765

cl9 cl10 cl11 cl12 cl13 cl14 cl15 cl16

Std Facts 35504837 35501582 35506138 35503290 35499577 35509277 35501917 35500872
Std Paths 204 167 53 204 13 468 13 473

DHint Facts 18978699 18043902 18091683 18088721 18041516 17972972 18052265 1023257
DHint Paths 19885 3214 6144 12405 2971 12653 2983 620

Figure 2: Num. of facts produced and number of paths discovered with Std and DHint approaches on 16 close links candidates.

5. Conclusion
Reasoning over large knowledge graphs, especially in the

presence of recursive settings, can be extremely demand-

ing even for state-of-the-art reasoners. However, when

answering Boolean Conjuctive Queries (BCQs), not all

the generated facts actually contribute to the result. For

this reason, we introduced the heuristic-based reasoning,

a novel reasoning approach that injects external domain

knowledge, in the form of a heuristic function, into the

program to prevent the generation of such unavailing

facts and solve the task at hand in an efficient fashion.

To achieve this behaviour in practice, we presented the

Dynamic Hint Operator, a context-aware operator that

guides the reasoning process to optimize BCQ answering

according to such heuristic. We employed our heuristic-

based method to efficiently solve the Close Link problem

on the ICKG and we laid the foundations for a domain-

aware approach to Datalog-based reasoning.
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