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Abstract
Anderson’s emendation [1] of Gödel’s ontological proof is known as a variant that does not entail modal

collapse, that is, derivability of 𝐴 ↔ l𝐴 ↔ ♦𝐴 for all formulas 𝐴. This variant of the axiomatization

is here investigated as a case study of intuitionistic derivability using natural deduction. The formal

system 𝐻𝑂𝑀𝐿𝑖 presented for higher-order modal logic simulates a varying domain semantics in the

domain of objects in a manner that seems to have been intended by Anderson. The objects (numbers)

are separate from the individuals of higher type and may occur in the existence predicate 𝐸 (figure 2).

Intuitionistic derivability is shown to be limited because ∃𝑥.𝐺p𝑥q (i.e. x is a godlike individual of

the base type) is not derivable. The classical proof of ♦∃𝑥.𝐺p𝑥q, can be compared to the compatibility

argument of Leibniz or Scott’s version that uses a form of indirect proof.
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1. Introduction

Anselm of Canterbury’s ontological proof is a proof of the existence of a maximal being,
identified as God, that possesses all perfections or positive properties in the terminology
of Gödel. Gödel’s ontological proof is a formal axiomatization of St. Anselm’s proof of
the necessary existence of God. In its original 1970-version [12] it provides definitions,
axioms, and provable theorem within a theory for higher-order modal logic. Because
the axioms quantify over positive properties the theory within which the proof can be
formalised requires a higher order logic in addition to the modal operators. The proof
defines a predicate as the conjunction of all positive properties and concludes that this
property is necessarily inhabited if it is inhabited at all, but also the possible inhabitation
of the predicate is derivable. Thus, it derives the necessary inhabitation of the predicate
unconditionally by standard modal principles (such as 𝑆5 or potentially some weaker
theory), in other words, the existence of God.

The ontological proof nowadays refers to a collection of versions for formal axiomatiza-
tions in higher order modal logic where a predicate 𝐺p𝑥q (interpreted as 𝑥 is godlike) is
necessarily inhabited. Gödel’s proof is inspired by Anselm of Canterbury, with modifi-
cations by Leibniz, and distinctly more complex than the modern ontological proof of
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Hartshorne (see [16], [18], and [27]). The original proof by Gödel dated Feb 10, 1970
has been published in [13] and [25] where the axioms, definitions and theorems of the
original ontological proof are stated. A version of the proof based on conversations with
Gödel by Dana Scott is published side by side with Gödel’s original notes in [23]. The
former 1970-proof can be considered to be Gödel’s last version though his work on the
ontological proof developed earlier in many forms [17].

A much debated issue concerning the proof is that the axioms may lead to a so-called
modal collapse [20, 26]. Modal collapse occurs if a formula, its necessitation, as well as
its possibility are equiderivable.

𝐻𝑂𝑀𝐿 ` Gödel’s axioms ⊢ 𝐴 ↔ l𝐴 ↔ ♦𝐴

The subtle differences between a formal system where the modals retain their meaning
and a theory that implies modal collapse give a hint of the exceptional status of the
formula ∃𝑥.𝐺p𝑥q that states the existence of a godlike individual of the base type.

The modal collapse was first noticed by Jordan Howard Sobel [24], [25] and since then
emendations of Gödel’s proof have been made in order to prevent the modal collapse.
Therefore, several emendations of the axioms exist at least partially motivated by the
modal collapse [1, 2, 7, 8], but also restrictions of the comprehension principle have
been investigated [14, 15], and in [10] intentional versus extensional versions of the
quantification provides another solution to the modal collapse.

The emendation of Anderson [1] spurred a controversy between Hájek and Anderson
[6] where the emendation was claimed to have superfluous axioms, a claim that was
later retracted, because the superfluous axioms were thought to be relevant within a
varying domain semantics [9] as opposed to the simpler constant domain semantics.
The claims were later settled by a computer assisted investigation [6] concluding that
axioms (A4) and (A5) of Andersons variant are indeed redundant, because they are
derivable, also within a varying domain setting. The computer assisted analysis of the
available ontological arguments is by now a well-established method for developing tools
for higher-order modal logic [4, 22]. These investigations have so far focused on questions,
such as, consistency of the axiomatizations [5] and strength of the modal principles
necessary for each variant [19].

In this article I wish to take the investigation of the ontological proof one step further by
considering the argument in a formal intuitionistic system with the purpose of following
up the successful computer assisted analysis of this particular axiomatization in [6]. The
emendation of Anderson will serve as a case study of the ontological argument in an
intuitionistic system of natural deduction. We will simulate varying domains (see [10, pp.
89–90] for a motivation) with an external existence predicate 𝜔 ∶ 𝐸p𝑥q which holds if the
object 𝑥 exists in the world 𝜔. The predicate is utilized in the first-order quantification
such that ∀𝑥.𝐴p𝑥q can only be introduced if 𝐸p𝑥q → 𝐴p𝑥q is derivable for an eigenvariable
𝑥. Similarly, the existential quantification ∃𝑥.𝐴p𝑥q is derivable only if the conjunction
𝐸p𝑡q ∧ 𝐴p𝑡q is derivable for some 𝑡. The system for higher-order modal logic simulates a
varying domain semantics on the domain of individuals of the base type in a manner that
seems to have been intended by Anderson. This case study takes the analysis of [6] to an
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intuitionistic theory and can be the base for a computer assisted analysis in intuitionistic
higher order modal logic.

As will be shown the intuitionistic derivability is in general limited to conditional
statements where 𝐺p𝑥q is assumed, whereas the derivability of 𝐺p𝑥q itself is proved to
be impossible if the formal system presented for higher-order modal logic is consistent.
This shows that the classical proof for ♦∃𝑥.𝐺p𝑥q of Scott’s variant is not circumventable.
This may not be a surprise because already a straightforward formal analysis of Leibniz
argument could be considered to have a classical component (see for example [10, pp.
137–138]).

2. The formal system for intuitionistic higher-order modal logic

We will present a formal system for intuitionistic higher-order modal logic 𝐻𝑂𝑀𝐿𝑖 where
the classical rule for indirect proof (reductio ad absurdum) has been suppressed. The
propositional rules of (figure 1) is for a system without disjunction. The modal axioms
of (figure 3) are based on [19]. The quantifier rules of (figure 2) are adapted to varying
domains for the individuals of the base type (the natural numbers) which depend on the
existence predicate. For the higher types the quantifier rules do not have any dependence
on existence of objects of the base type in any particular world. Because the natural
deduction in [19] is constructed with constant domains for each possible world, it is
as such insufficient for treating Anderson’s emendation if the intended varying domain
approach is accepted as a prerequisite for axiomatization. Due to the naturalness of
reasoning and its close relation to standard theorem provers we will use an adopted
natural deduction that simulates varying domains with an additional existence predicate
𝜔 ∶ 𝐸p𝑥q, that corresponds to existence of the object 𝑥 in the world 𝜔. For another kind
of formal treatment of varying domains in a proof system for Gödel’s ontological proof I
refer to the tableaux-style proofs in [10].

In the formal system defined below, 𝐻𝑂𝑀𝐿𝑖, for intuitionistic higher-order modal logic
we take disjunction, negation and equivalence to be defined concepts. We have negation
¬𝐴 ≡ 𝐴 → ⊥ and equivalence 𝐴 ↔ 𝐵 ≡ p𝐴 → 𝐵q ∧ p𝐵 → 𝐴q. The formal system 𝐻𝑂𝑀𝐿𝑖
consists of a propositional part, quantification that we treat differently for individuals
and higher-order respectively, and modal rules as well as modal axioms.

𝐴 𝐵
𝐴 ∧ 𝐵

∧𝐼
𝐴 ∧ 𝐵
𝐴

∧𝐸1
𝐴 ∧ 𝐵
𝐵

∧𝐸2

⊥
𝐴

⊥𝐸

r𝐴s𝑛
....
𝐵

𝐴 → 𝐵
→𝐼 ,𝑛

𝐴 𝐴 → 𝐵
𝐵

→𝐸

Figure 1: Propositional rules

Characteristic for the intuitionistic system is that we do not have the classically
valid interdefinability of connectives, quantifiers, and modal operators. However, the
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disjunction rules have been suppressed due to formal reasons in theorem (8) where
permutation conversions would otherwise be needed.

To derive a statement in the intuitionistic setting we require a direct proof. However,
we will not prove structural properties, such as normalization or the disjunction property,
which are usually the basis for proving that the system is indeed constructive. As it turns
out normalization is however tacitly required for the unprovability results of section (6).

𝐸p𝛼0q → 𝐴p𝛼0q

∀𝑥.𝐴p𝑥q
∀𝐼

∀𝑥.𝐴p𝑥q

𝐸p𝑡q → 𝐴p𝑡q
∀𝐸

𝐸p𝑡q ∧ 𝐴p𝑡q

∃𝑥.𝐴p𝑥q
∃𝐼

∃𝑥.𝐴p𝑥q

𝐸p𝛽0q ∧ 𝐴p𝛽0q
∃𝐸

𝐴p𝛼q

∀𝜓 .𝐴p𝜓q
∀𝐼

∀𝜓 .𝐴p𝜓q

𝐴p𝜑q
∀𝐸

𝐴p𝜑q

∃𝜓 .𝐴p𝜓q
∃𝐼

∃𝜓 .𝐴p𝜓q

𝐴p𝛽q
∃𝐸

Eigenvariable condition:
In an ∀-introduction inference the eliminated variable 𝛼 must not have been
introduced by any ∃-elimination inference; In an ∃-elimination inference the

introduced variable 𝛽 must be eliminated in an ∃-introduction.
Variable condition: The eigenvariables may not occur in the conclusion of

the derivation.
Type condition:

The variables of ∀𝐼 and ∀𝐼 are distinct and similarly for ∃𝐸 and ∃𝐸.

Figure 2: Quantifier rules

Note, that the eigenvariable conditions are formulated in a standard top-down manner.
Note also that the proof of this article depends on that the standard detour conversions
for quantifiers hold.

As modal axioms we allow the standard 𝑇 , 𝐾, 𝐵, 4, 5 and do not intend to limit the
modal part to any weak system less than 𝑆5 where all axioms are assumed. However,
we will indicate the use of 𝑇 , 𝐵, 4, 5 in all the derivations to show the explicit modal
dependence. The axiom 𝐾 is derivable in the system 𝐻𝑂𝑀𝐿𝑖.

The following modal rules are required for an intuitionistic calculus where we take both
l and ♦ as primitive. The l𝐼 rule corresponds to the rule of conditional necessitation
where we are allowed to assume necessitated formulas l𝐴1, … ,l𝐴𝑛 . If 𝑛 “ 0 we have the
standard necessitation rule. Note that the eigen-box condition in the modal rules (fig.
3), have world labels 𝑤 or 𝜔 for an arbitrary world. We allow the degenerate inference 𝑇

of l𝐸 with 𝑣 ≡ 𝑤. The ♦-rules are dual, with ♦𝐼 which due to the eigen-box condition is
required to be accessed by one strong rule, which must be one occurrence of ♦𝐸. The
box-labels are either a specific label 𝑤 or an arbitrary box-label 𝜔. An assumption may
be labelled by 𝑤 or 𝜔, but the latter label is only allowed in hypothetical reasoning where
the assumption is discharged by implication introduction. If the label is absent, then we
are reasoning in the actual world.
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𝜔 ∶

....
𝐴

𝑣 ∶ l𝐴
l𝐼

𝑣 ∶ l𝐴

𝑤 ∶

𝐴....

l𝐸

𝑤 ∶

....
𝐴

𝑣 ∶ ♦𝐴
♦𝐼

𝑣 ∶ ♦𝐴

𝜔 ∶

𝐴....

♦𝐸

Eigen-box condition:
l𝐼 and ♦𝐸 are strong modal rules: 𝜔 must be a fresh label for the

box they access and cannot be the label of the conclusion. Every box
must be accessed by exactly one strong modal inference or 𝑣 ≡ 𝑤.
Boxed assumption condition: Assumptions should be discharged

within the box where they are created.

Figure 3:Modal rules

We can extend the modal system, which is so far a system for TK, with the following
modal axioms that may also be converted into rules. Rules are produced by taking
the antecedent of the axiom as a premise and the succedent of the implication as a
conclusion. For the derivability of axiom K see [19, Theorem 1] and derivablity of 𝑇 is
trivial. Concerning the two versions of Brouwer’s axiom, 𝐵 and 𝐵˚, note the discussion
on an axiom for symmetry in [11].

T l𝐴 → 𝐴

K lp𝐴 → 𝐵q → pl𝐴 → l𝐵q
B 𝐴 → l♦𝐴

B˚
♦l𝐴 → 𝐴

4 l𝐴 → ll𝐴

5 ♦𝐴 → l♦𝐴

Figure 4:Modal axioms

3. Anderson’s emendation of the ontological proof

The axioms for Anderson’s emendation [1] found in figure (5) are identical to one of
the computer analyzed variants [6]. To the formal system 𝐻𝑂𝑀𝐿 we add the axioms
A1-A5 and also include in the language the predicates 𝑃 and 𝐺 for positive properties
and God respectively. Thus, giving us the language for 𝐻𝑂𝑀𝐿 ` 𝐴𝑥. Anderson’s essence
relation 𝜑𝐸𝑠𝑠𝐴𝑥 which states that the property variable 𝜑 is an essence of individual 𝑥,
and necessary existence 𝑁𝐸 are given a definition below.
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A1
∀𝜑.r𝑃p𝜑q → ¬𝑃p¬𝜑qs

A2
∀𝜑.∀𝜓 .rp𝑃p𝜑q ∧ l∀𝑥.p𝜑p𝑥q → 𝜓p𝑥qqq → 𝑃p𝜓qs

D1
𝐺p𝑥q ≡ ∀𝜑.r𝑃p𝜑q ↔ l𝜑p𝑥qs

A3
𝑃p𝐺q

A4
∀𝜑.r𝑃p𝜑q → l𝑃p𝜑qs

D2
𝜑𝐸𝑠𝑠𝐴𝑥 ≡ ∀𝜓 .rl𝜓p𝑥q ↔ l∀𝑦.p𝜑p𝑦q → 𝜓p𝑦qqs

D3
𝑁𝐸p𝑥q ≡ ∀𝜑.r𝜑𝐸𝑠𝑠𝐴𝑥 → l∃𝑦.𝜑p𝑦qs

A5
𝑃p𝑁𝐸q

Figure 5: Anderson’s emendation of the ontological proof.

4. Derivability of axioms A5 and A4

It can be shown that axiom A5 is derivable within the system if we assume A2 and A3.
This is a known result of [6]. Axiom A2 makes it possible to generate new positivity
statements that are necessarily derivable from the basic statement of positivity of 𝑃p𝐺q.
Noteworthy is that as a subderivation we obtain necessary existence 𝑁𝐸p𝑥q derivable
without any of the axioms 𝐴1 ´ 𝐴5. However, to utilize the implication hidden behind
the definition of 𝑁𝐸p𝑥q we essentially need to derive that some property is an essence of
the individual 𝑥.

Lemma 1. The formula 𝑁𝐸p𝑥q is derivable in 𝐻𝑂𝑀𝐿𝑖 without using any of the axioms of
section (3) if we are allowed to quantify over 𝐸 as a property.

Proof. We can derive 𝑁𝐸p𝑥q without assumptions if we are allowed to quantify over 𝐸 as
a property.

51



r𝜑𝐸𝑠𝑠𝐴𝑥s3

∀𝜓 .rl𝜓p𝑥q ↔ l∀𝑦.p𝜑p𝑦q → 𝜓p𝑦qqs
𝐷𝑒𝑓

lp𝜑p𝑥q ∧ 𝐸p𝑥qq ↔ l∀𝑦.p𝜑p𝑦q → p𝜑p𝑦q ∧ 𝐸p𝑦qqq
∀𝐸

l∀𝑦.p𝜑p𝑦q → 𝜑p𝑦q ∧ 𝐸p𝑦qq → lp𝜑p𝑥q ∧ 𝐸p𝑥qq
∧𝐸

r𝜑p𝑦qs1 r𝐸p𝑦qs2

𝜑p𝑦q ∧ 𝐸p𝑦q
∧𝐼

𝜑p𝑦q → p𝜑p𝑦q ∧ 𝐸p𝑦qq
→𝐼 ,1

𝐸p𝑦q → 𝜑p𝑦q → p𝜑p𝑦q ∧ 𝐸p𝑦qq
→𝐼 ,2

∀𝑦.p𝜑p𝑦q → p𝜑p𝑦q ∧ 𝐸p𝑦qq
∀𝐼

l∀𝑦.p𝜑p𝑦q → p𝜑p𝑦q ∧ 𝐸p𝑦qq
l𝐼

lp𝜑p𝑥q ∧ 𝐸p𝑥qq
→𝐸

𝜔 ∶ 𝜑p𝑥q ∧ 𝐸p𝑥q
l𝐸

𝜔 ∶ ∃𝑥.𝜑p𝑥q
∃𝐼

l∃𝑥.𝜑p𝑥q
l𝐼

𝜑𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝜑p𝑥q
→𝐼 ,3

∀𝜑.r𝜑𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝜑p𝑥qs
∀𝐼

𝑁𝐸p𝑥q
𝐷𝑒𝑓

Lemma 2. The axiom 𝑃p𝑁𝐸q is derivable in 𝐻𝑂𝑀𝐿𝑖 with only the axioms A2 and A3
assumed if we are allowed to quantify over 𝐸 as a property.

Proof. We can use lemma (1) with axioms A2 and A3 to derive the sought conclusion.

𝑃p𝐺q
axiom 𝐴3

....
𝑁𝐸p𝑥q

l𝑁𝐸p𝑥q
l𝐼

𝜔 ∶ 𝑁𝐸p𝑥q
l𝐸

𝜔 ∶ 𝐺p𝑥q → 𝑁𝐸p𝑥q
→𝐼

𝜔 ∶ 𝐸p𝑥q → p𝐺p𝑥q → 𝑁𝐸p𝑥qq
→𝐼

𝜔 ∶ ∀𝑥.p𝐺p𝑥q → 𝑁𝐸p𝑥qq
∀𝐼

l∀𝑥.p𝐺p𝑥q → 𝑁𝐸p𝑥qq
l𝐼

𝑃p𝑁𝐸q
axiom 𝐴2

Note that in a constant domain setting the derivations of lemmas (1 & 2) could be
even simpler.

The other main derivability result of [6] related to Anderson’s emendation, that A4 is
derivable, is also possible in an intuitionistic setting.

Lemma 3. The axiom 𝑃p𝜑q → l𝑃p𝜑q is derivable in 𝐻𝑂𝑀𝐿𝑖 if axioms A2 and A3 are
assumed and if we are allowed to vacuously introduce an implication on 𝐸.

52



Proof.

𝜔1 ∶ 𝑃p𝐺q

𝜔2 ∶ 𝑃p𝐺q

𝜔2 ∶ r𝐺p𝑥qs1

𝜔2 ∶ ∀𝜑.r𝑃p𝜑q ↔ l𝜑p𝑥qs
𝐷𝑒𝑓

𝜔2 ∶ 𝑃p𝐺q ↔ l𝐺p𝑥q
∀𝐸

𝜔2 ∶ 𝑃p𝐺q → l𝐺p𝑥q
∧𝐸

𝜔2 ∶ l𝐺p𝑥q
→𝐸

𝜔3 ∶ 𝐺p𝑥q
....

𝜔3 ∶ 𝑃p𝜑q → l𝜑p𝑥q

r𝑃p𝜑qs2

l♦𝑃p𝜑q
𝐵

ll♦𝑃p𝜑q
p4q

𝜔1 ∶ l♦𝑃p𝜑q
l𝐸

𝜔2 ∶ ♦𝑃p𝜑q
l𝐸

𝜔3 ∶ 𝑃p𝜑q
♦𝐸

𝜔3 ∶ l𝜑p𝑥q

𝜔2 ∶ ♦l𝜑p𝑥q
♦𝐼

𝜔2 ∶ 𝜑p𝑥q
𝐵˚

𝜔2 ∶ 𝐺p𝑥q → 𝜑p𝑥q
→𝐼 ,1

𝜔2 ∶ 𝐸p𝑥q → r𝐺p𝑥q → 𝜑p𝑥qs
→𝐼

𝜔2 ∶ ∀𝑥.r𝐺p𝑥q → 𝜑p𝑥qs
∀𝐼

𝜔1 ∶ l∀𝑥.r𝐺p𝑥q → 𝜑p𝑥qs
l𝐼

𝜔1 ∶ 𝑃p𝜑q
axiom 𝐴2

l𝑃p𝜑q
l𝐼

𝑃p𝜑q → l𝑃p𝜑q
→𝐼 ,2

5. Conditional derivability results for the ontological argument

We can derive further conditional statements relevant for the ontological proof. First, we
obtain that 𝐺p𝑥q implies that 𝐺 is the essence of 𝑥.

Theorem 4. The conditional statement ∃𝑥.𝐺p𝑥q → ∃𝑥.p𝐺𝐸𝑠𝑠𝐴𝑥q is derivable in 𝐻𝑂𝑀𝐿𝑖.

Proof. Note that l𝐺p𝑥q is derivable from 𝐺p𝑥q as in the proof of lemma (3).
Firstly, we let Π0 be the following subderivation:

r∃𝑥.𝐺p𝑥qs3

𝐺p𝑥q
....

l𝐺p𝑥q

𝜔 ∶ 𝐺p𝑥q
l𝐸

𝜔 ∶ ∀𝜓 .r𝑃p𝜓q ↔ l𝜓p𝑥qs
𝐷𝑒𝑓 .

𝜔 ∶ 𝑃p𝜓q ↔ l𝜓p𝑥q
→𝐸

𝜔 ∶ l𝜓p𝑥q → 𝑃p𝜓q
∧𝐸

rl𝜓p𝑥qs2

ll𝜓p𝑥q
p4q

𝜔 ∶ l𝜓p𝑥q
l𝐸

𝜔 ∶ 𝑃p𝜓q
→𝐸
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Then, let Π1 be the following subderivation of one direction of the essence equivalence:

𝜔 ∶ r𝐺p𝑦qs1
....

𝜔 ∶ 𝑃p𝜓q → l𝜓p𝑦q

rl𝜓p𝑥qs2, r∃𝑥.𝐺p𝑥qs3
.... Π0

𝜔 ∶ 𝑃p𝜓q

𝜔 ∶ l𝜓p𝑦q
→𝐸

𝜔 ∶ 𝜓p𝑦q
𝑇

𝜔 ∶ 𝐺p𝑦q → 𝜓p𝑦q
→𝐼 ,1

𝜔 ∶ 𝐸p𝑦q → r𝐺p𝑦q → 𝜓p𝑦qs
→𝐼

𝜔 ∶ ∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq
∀𝐼

l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq
l𝐼

l𝜓p𝑥q → l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq
→𝐼 ,2

∃𝑥.𝐺p𝑥q → rl𝜓p𝑥q → l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qqs
→𝐼 ,3

The other direction Π2 is similarly obtained:

r∃𝑥.𝐺p𝑥qs2
....

𝑃p𝜓q → l𝜓p𝑥q

𝑃p𝐺q rl∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qqs1

𝑃p𝜓q
axiom 𝐴2

l𝜓p𝑥q
→𝐸

l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq → l𝜓p𝑥q
→𝐼 ,1

∃𝑥.𝐺p𝑥q → rl∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq → l𝜓p𝑥qs
→𝐼 ,2

We can easily combine the two directions into a derivation of our sought conclusion
∃𝑥.𝐺p𝑥q → 𝐺𝐸𝑠𝑠𝐴𝑥 based on the definition of essence.

r∃𝑥.𝐺p𝑥qs1
....

l𝜓p𝑥q → l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq

r∃𝑥.𝐺p𝑥qs1
....

l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq → l𝜓p𝑥q

l𝜓p𝑥q ↔ l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qq
∧𝐼

∀𝜓 .rl𝜓p𝑥q ↔ l∀𝑦.p𝐺p𝑦q → 𝜓p𝑦qs
∀𝐼

𝐺𝐸𝑠𝑠𝐴𝑥
𝐷𝑒𝑓 .

r∃𝑥.𝐺p𝑥qs1
....

𝐸p𝑥q

𝐸p𝑥q ∧ 𝐺𝐸𝑠𝑠𝐴𝑥
∧𝐼

∃𝑥.𝐺𝐸𝑠𝑠𝐴𝑥
∃𝐼

∃𝑥.𝐺p𝑥q → 𝐺𝐸𝑠𝑠𝐴𝑥
→𝐼 ,1

Theorem 5. The conditional statement ∃𝑥.𝐺p𝑥q → l∃𝑥.𝐺p𝑥q is derivable in 𝐻𝑂𝑀𝐿𝑖.
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Proof.

r∃𝑥.𝐺p𝑥qs1

theorem.4....
∃𝑥.𝐺p𝑥q → 𝐺𝐸𝑠𝑠𝐴𝑥

𝐺𝐸𝑠𝑠𝐴𝑥
→𝐸

Lem.1....
𝑁𝐸p𝑥q

∀𝜑.r𝜑𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝜑p𝑥qs
𝐷𝑒𝑓 .

𝐺𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝐺p𝑥q
∀𝐸

l∃𝑥.𝐺p𝑥q
→𝐸

∃𝑥.𝐺p𝑥q → l∃𝑥.𝐺p𝑥q
→𝐼 ,1

6. Intuitionistic unprovablity results

We now turn our attention to the limitations of the intuitionistic calculus and statements
that are not derivable. To be able to combinatorially analyse the proof structures of
𝐻𝑂𝑀𝐿𝑖 ` Ax which denotes the system of 𝐻𝑂𝑀𝐿𝑖 plus the axioms A1-A5 of figure (5), we
extend the system of section (2) to an auxiliary system 𝐻𝑂𝑀𝐿′𝑖 ` Ax with the following
composition rule. The composition rule is introduced to be able to eliminate implication
detours (i.e. pairs of introduction and elimination rules) without increasing the length of
the derivation. This auxiliary concept of composition allows us to define the induction
measure proving nonprovability in theorem (8). The use of composition as and auxiliary
concept is based on the work of Dag Prawitz.

r𝐴p𝛼qs1
....

𝐵p𝛼q

....
𝐴p𝜑q

𝐵p𝜑q
𝐶𝑜𝑚𝑝.,1

Note that 𝛼 is an eigenvariable and 𝜑 is an arbitrary property. The
rank of the composition is the rank of the discharged assumption
𝑟𝑘p𝐴p𝛼qq.

Figure 6: Admissible rule of composition

We conclude that these two systems 𝐻𝑂𝑀𝐿𝑖 ` Ax and 𝐻𝑂𝑀𝐿′𝑖 ` Ax are equally strong.

Lemma 6. The rule of composition is derivable in the system 𝐻𝑂𝑀𝐿𝑖.

Proof. Assuming that the premises of the composition rule are derivable we can derive
the conclusion in 𝐻𝑂𝑀𝐿𝑖 by an implication detour and substitution of 𝜑 for 𝛼.

Lemma 7 (Substitution of labels). We can substitute the labels of a box and eliminate a
detour of the modal rules.

1. If we have a subderivation of 𝜔 ∶ 𝐴, derived without assumptions in 𝐻𝑂𝑀𝐿′𝑖 , and
the given formula occurrence 𝜔 ∶ 𝐴 is followed by a l𝐼 and l𝐸 concluding 𝑤 ∶ 𝐴,
then we can substitute the label 𝑤 for 𝜔 and derive 𝑤 ∶ 𝐴 without the detour.
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2. If we have a subderivation of 𝑤 ∶ 𝐴, derived without assumptions in 𝐻𝑂𝑀𝐿′𝑖 , and
the given formula occurrence 𝑤 ∶ 𝐴 is followed by a ♦𝐼 and ♦𝐸 concluding 𝜔 ∶ 𝐴,
then we can derive the conclusion of the theorem, say 𝑣 ∶ 𝐵 by eliminating the
detour.

Proof sketch. We sketch a proof for the two cases.

1. If 𝜔 ∶ 𝐴 is derivable and the premise of the rule l𝐼, in a derivation, then there
is no other strong rule (♦𝐸) introducing the label 𝜔. Thus, the label can only be
introduced by l𝐸 where the label is arbitrary or any leaf is a modal axiom or axiom
𝐴1 ´ 𝐴5 which hold, in every world, and therefore for any label including 𝑤.

2. Let 𝑤 ∶ 𝐴 be followed by ♦𝐼 and ♦𝐸 concluding 𝜔 ∶ 𝐴. Note that by the eigen-box
conditions the label 𝜔 cannot be the label of the conclusion and ♦𝐸 is the only
strong inference accessing the box with the label 𝜔. Thus, below the detour we must
have a weak rule ♦𝐼 that eliminates the eigen-label 𝜔. Because, ♦𝐼 is a weak rule,
we may eliminate the detour and substitute the label 𝜔 with 𝑤 for all occurrences
of 𝜔 and still derive 𝑣 ∶ 𝐵.

A more formal proof of the second case could be obtained by induction on the number of
inferences below the detour.

When we aim to prove some unprovability results we notice the following properties of
the axioms. The axioms as presented in section (3) all are statements about positivity of
formulas. Axioms A3 and A5 conclude the positivity of properties. Axioms A2 and A4
respectively state an implication with the succedent a positivity statement or the necessity
of a positivity statement. Therefore, if these axioms are used as the major premise in
an elimination rule, then we can only conclude positivity statements. Similarly, axiom
A1 concludes the negation of a positivity statement. We consider negation defined by
implication of falsity, so if the axiom is used as a major premise in elimination rules, then
we must have derivations of both 𝑃p𝜑q and 𝑃p¬𝜑q which make ⊥ derivable using axiom
A1. This cannot be the case if we assume the system to be consistent. We summarize
these observations in the proof of the following theorem.

Theorem 8. If the system of 𝐻𝑂𝑀𝐿′𝑖 ` Ax is consistent, then the formula ∃𝑥.𝐺p𝑥q is not
derivable.

Proof. Assume that ∃𝑥.𝐺p𝑥q is derivable in 𝐻𝑂𝑀𝐿′𝑖 ` Ax with a derivation Π. Let there
be conjectured a tentative measure that decreases with weak normalization. Namely, a
reduction in the thread beginning with the conclusion and tracing up through major
premises, is assumed to decrease the measure.

We prove that there is a derivation of ∃𝑥.𝐺p𝑥q with a lower number as given by the
conjectured inductive measure 𝑀pΠq.

Base case. Note as the base case that ∃𝑥.𝐺p𝑥q is not an axiom and therefore not
derivable with the measure 1.

Inductive cases. Assume that ∃𝑥.𝐺p𝑥q is derived by some last inference. We trace from
the conclusion through major premises of elimination rules and composition rules (possibly

56



an empty set of rules). If the trace reaches a discharged formula of composition, then
continue the trace from the minor premise of the composition. This is the major thread
of the derivation. Note that the elimination rules conclude a formula with existential
quantification, or a higher type universal formula, or a higher type variable in its positive
part. Thus, we can consider how to derive such a formula.

Case 1. When the trace ends the current formula cannot be a discharged assumption
because there are no implication introduction rules below. Because the derivation has no
assumptions the formula cannot either be an open assumption. Furthermore, none of the
elimination rules can be ⊥𝐸, because then the major premise ⊥ would be derivable and
the system inconsistent.

Case 2. By considering the axioms A2-A5 we see that elimination rules on axioms A2-
A5 can only conclude formulas of the form 𝑃p𝜑q or l𝑃p𝜑q for some 𝜑 and these axioms are
therefore excluded. To conclude ⊥ from axiom A1 would render the system inconsistent
with both 𝑃p𝜑q and 𝑃p¬𝜑q derivable without assumptions.

Case 3. Now assume that the trace ends with a modal axiom 𝐵, 𝐵˚, 4, 5 as the major
premise of an E-rule. Note that 𝑇 and 𝐾 are derivable axioms and can therefore be
excluded. The minor premise is a formula 𝐴,♦l𝐴,l𝐴,♦𝐴 respectively which has been
derived without assumptions. Consider axiom 𝐵 (𝐴 → l♦𝐴) as an example whence the
derivation Π is of the form:

𝜈 ∶ 𝐴 → l♦𝐴
𝐵

....
𝜈 ∶ 𝐴

𝜈 ∶ l♦𝐴
→𝐸

𝑤 ∶ ♦𝐴
l𝐸

𝜔 ∶ 𝐴
♦𝐸

....
∃𝑥.𝐺p𝑥q

Note that the subderivation of 𝜈 ∶ 𝐴 has no open assumptions, but derives the formula
𝜈 ∶ 𝐴 for a label 𝜈. We consider two subcases that depend on the eigen-box condition.

Subcase 3.1. If 𝜈 ≡ 𝑤, then the displayed ♦𝐸 is the only strong inference accessing the
box with label 𝜔. Thus, we may use the weak inference ♦𝐼 on 𝑤 ∶ 𝐴 with identical label:

....
𝑤 ∶ 𝐴
𝑤 ∶ ♦𝐴

♦𝐼

𝜔 ∶ 𝐴
♦𝐸

....
∃𝑥.𝐺p𝑥q

The identical label is allowed by the eigen-box condition because we assume reflexivity of
the frame. Therefore, the reduction of the derivation decreases the measure.

Subcase 3.2. If 𝜈 ı 𝑤, then there is a strong inference ♦𝐸 accessing the box labelled 𝜈

57



in the subderivation of 𝜈 ∶ 𝐴. Therefore, we may derive

....
𝜈 ∶ 𝐴
𝑤 ∶ ♦𝐴

♦𝐼

𝜔 ∶ 𝐴
♦𝐸

....
∃𝑥.𝐺p𝑥q

The reduction of the derivation decreases the measure.
Case 3 (cont.). The derivation Π with modal axioms 4 or 5 can be similarly shortened.
Now consider modal axiom 𝐵˚ (♦l𝐴 → 𝐴). In this case the shortening procedure does

not create a derivation with fewer formulas, in fact, replacing 𝐵˚ with p4q produces a
longer derivation but with fewer occurrences of axiom 𝐵˚ and the increase of length is
less than 5. We transform the derivation Π to the derivation on the right:

𝜈 ∶ ♦l𝐴 → 𝐴
𝐵˚

....
𝜈 ∶ ♦l𝐴

𝜈 ∶ 𝐴
→𝐸

....
∃𝑥.𝐺p𝑥q ↦

𝜔 ∶ l𝐴 → ll𝐴
p4q

....
𝜈 ∶ ♦l𝐴

𝜔 ∶ l𝐴
♦𝐸

𝜔 ∶ ll𝐴
→𝐸

𝜈 ∶ l𝐴
l𝐸

𝜈 ∶ 𝐴
l𝐸

....
∃𝑥.𝐺p𝑥q

Thus accordingly, the inductive measure decreases. Note that the detour via axiom p4q is
required due to the eigen-box condition that every box must be accessed by exactly one
strong inference or have the same label.

Case 4. Assume that the trace ends with an introduction rule and that there is at least
one 𝐸-rule below it. Thus, we must have an elimination rule (different from ⊥-E) with
the major premise derived by an introduction inference. Therefore we can eliminate the
pair of rules, in the case of implication we replace the pair with a composition inference,
reducing the measure of the derivation. In the case of the modal rules we can by the
lemma (7) for substitution of box labels eliminate an 𝐼 ´ 𝐸-pair.

Case 4.2 Assume that the trace ends with an 𝐼´ 𝐸-pair, but the pair is separated by an
instance of composition. Then we can reduce the derivation to a shorter derivation with
lower complexity of the composition formulas where the eigenvariable of the composition
does not occur in the formulas. Here 𝐶p𝜑q is for example the derivable formula 𝜑 → 𝜑

which does not occur as an assumption in the derivation of 𝐴 and we therefore can use
the Composition rule as a substitution rule.

r𝐴p𝛼q → 𝐵p𝛼qs1

....
𝐴p𝛼q

𝐵p𝛼q
→𝐸

r𝐴p𝜑qs2
....

𝐵p𝜑q

𝐴p𝜑q → 𝐵p𝜑q
→𝐼,2

𝐵p𝜑q
𝐶𝑜𝑚𝑝.,1

↦

....
𝐴p𝛼q

....
𝐶p𝜑q

𝐴p𝜑q
𝐶𝑜𝑚𝑝.

r𝐴p𝜑qs2
....

𝐵p𝜑q

𝐵p𝜑q
𝐶𝑜𝑚𝑝.,2
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The case of existential quantifier is similar. Note that we do not have the eigenvariable
𝛼 free in the conclusion 𝐶. Thus 𝐶p𝜙{𝛼q ≡ 𝐶 and we can reduce the rank of the composition
formula.

r∃𝜓 .𝐴p𝜓 , 𝛽qs1

𝐴p𝛼, 𝛽q

....
𝐴p𝜙, 𝜑q

∃𝜓 .𝐴p𝜓 , 𝜑q
𝐼

𝐴p𝛼, 𝜑q
𝐶𝑜𝑚𝑝.,1

....
𝐶 ↦

....
𝐴p𝜙, 𝜑q

∃𝜓 .𝐴p𝜓 , 𝜑q
∃𝐼

𝐴p𝛼, 𝜑q
∃𝐸

....
𝐶 ↦

r𝐴p𝛼, 𝜑qs1
....
𝐶

....
𝐴p𝜙, 𝜑q

𝐶
𝐶𝑜𝑚𝑝.,1

Case 5. Lastly, assume that the conclusion ∃𝑥.𝐺p𝑥q is derived by an introduction
rule with no 𝐸-rule below it. Note that the same kind of shortening argument, as
above, applies to derivations with the conclusion 𝐸p𝑡q ∧ 𝐺p𝑡q, 𝐺p𝑡q, as well as 𝑃p𝜑q ↔ l𝜑p𝑡q,
and 𝑃p𝜑q → l𝜑p𝑡q. Thus, we may assume that these formulas have been derived by
introduction rules through the definition of 𝐺p𝑡q. The derivation Π has the following form,
with 𝜑 an eigenvariable:

𝑃p𝜑q
....

l𝜑p𝑡q

𝑃p𝜑q → l𝜑p𝑡q
→𝐼

....
∃𝑥.𝐺p𝑥q

Thus, we can shorten the derivation by replacing 𝜑 with 𝐺. Note that in the derivation
below we have used the subderivation of 𝐸p𝑡q from Π.

....
𝐸p𝑡q

l𝐺p𝑡q → 𝐺p𝑡q
𝑇

r𝑃p𝜑qs1
....

l𝜑p𝑡q 𝑃p𝐺q

l𝐺p𝑡q
𝐶𝑜𝑚𝑝.,1

𝐺p𝑡q
→𝐸

𝐸p𝑡q ∧ 𝐺p𝑡q
∧𝐼

∃𝑥.𝐺p𝑥q
∃𝐼

Note that the defined inductive measure decreases through the modification of the
derivation. Thus, in all inductive cases we can decrease the inductive measure of the
derivation. Thus, there cannot exist a derivation of ∃𝑥.𝐺p𝑥q.

We can conclude that the same unprovability result holds in a system without the rule
of composition because the systems are equally strong.

Corollary 9. The formula ∃𝑥.𝐺p𝑥q is not derivable assuming 𝐻𝑂𝑀𝐿𝑖 ` Ax is consistent.

Corollary 10. The formula 𝐺𝐸𝑠𝑠𝐴𝑥 is not derivable assuming 𝐻𝑂𝑀𝐿𝑖 ` Ax is consistent.
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Proof. Assume that 𝐺𝐸𝑠𝑠𝐴𝑥 is derivable, then we have the following derivation of ∃𝑥.𝐺p𝑥q,
contradicting theorem (8):

....
𝐺𝐸𝑠𝑠𝐴𝑥

𝐿𝑒𝑚.1....
𝑁𝐸p𝑥q

∀𝜑.r𝜑𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝜑p𝑥qs
𝐷𝑒𝑓

𝐺𝐸𝑠𝑠𝐴𝑥 → l∃𝑥.𝐺p𝑥q
∀𝐸

l∃𝑥.𝐺p𝑥q
→𝐸

∃𝑥.𝐺p𝑥q
𝑇

For the same reason we have a negative solution to the derivability of l∃𝑥.𝐺p𝑥q. The
main theorem of Gödel’s ontological proof, that the existence of a godlike individual is
necessary, is simply not intuitionistically derivable.

Corollary 11. The formula l∃𝑥.𝐺p𝑥q is not derivable assuming 𝐻𝑂𝑀𝐿𝑖 ` Ax is consistent.

7. Consistency of constructive Higher-order modal logic

Note that in the proof of theorem (8) we only assume consistency of 𝐻𝑂𝑀𝐿𝑖 when dealing
with axiom A1 and ⊥𝐸, therefore let Ax′ be the set of axioms A2-A5, and 𝐻𝑂𝑀𝐿″𝑚 the
system of minimal logic where ⊥𝐸 has been excluded from the propositional rules. We
can conclude the following consistency corollary.

Corollary 12. The formula ∃𝑥.𝐺p𝑥q is not derivable in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′.

Note that if we have a derivation of 𝑃p𝜑q → l𝜑p𝑥q in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′, and assume the
additional axiom 𝐸p0q that the domain of objects is provably non-empty, then we could
derive ∃𝑥.𝐺p𝑥q as in case 5 in the proof of theorem (8). Thus, derivability of 𝑃p𝜑q → l𝜑p𝑥q
in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′ ` 𝐸p0q contradicts theorem (8).

Hence we conclude that 𝑃p𝜑q → l𝜑p𝑥q is not derivable in 𝐻𝑂𝑀𝐿″𝑚`Ax′`𝐸p0q. However,
if ∀𝜑.l𝜑p𝑥q were to be derivable in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′ ` 𝐸p0q, then 𝑃p𝜑q → l𝜑p𝑥q could be
easily derived by vacuous implication introduction. Thus, ∀𝜑.l𝜑p𝑥q cannot be derivable
in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′ ` 𝐸p0q nor in minimal higher-order modal logic without disjunction
𝐻𝑂𝑀𝐿″𝑚.

Theorem 13 (Consistency of Minimal Higher-Order Modal Logic). The formula ∀𝜑.l𝜑p𝑥q
is not derivable in 𝐻𝑂𝑀𝐿″𝑚.

If ∀𝜑.𝜑p𝑥q were derivable in 𝐻𝑂𝑀𝐿″𝑚 ` Ax′ ` 𝐸p0q, then we could derive by modal rule
l𝐼, and from this derive ∀𝜑.l𝜑p𝑥q contradicting theorem (13). Thus, we conclude that
the system of minimal higher-order logic without disjunction 𝐻𝑂𝐿″𝑚 is consistent.

Corollary 14 (Consistency of Minimal Higher-Order Logic). The formula ∀𝜑.𝜑p𝑥q is not
derivable in 𝐻𝑂𝐿″𝑚.

60



Note that the formula ∀𝜑.𝜑p𝑥q can be taken as a definition of ⊥. This allows us to
conclude that the premise of the rule ⊥𝐸 is not a derivable theorem. Thus, implying that
we may reintroduce the rule of ⊥𝐸 and 𝐻𝑂𝐿″𝑖 as well as 𝐻𝑂𝑀𝐿𝑖 are consistent.

8. Conclusions

At the core of the ontological argument is not only the conditional statement that ∃𝑥.𝐺p𝑥q
implies l∃𝑥.𝐺p𝑥q which in the proof presented above is derivable using intuitionistic logic.
Another central element is the derivability of the compatibility of the positive properties,
in other words, that ♦∃𝑥.𝐺p𝑥q is derivable. This latter statement is not intuitionistically
derivable. The problem arising with ♦∃𝑥.𝐺p𝑥q is that the standard derivation uses reductio
ad absurdum, a form of indirect proof, which is inherently classical. The notes from 1970
which were written by Dana Scott based on conversations with Gödel give an indisputably
classical proof of this statement. There the statement l∀𝑥.¬𝐺p𝑥q is assumed, and is
easily shown to imply a contradictory statement, such as 𝑃p⊥q using axiom A2. From the
contradiction we can derive the negation ¬l∀𝑥.¬𝐺p𝑥q which is classically equivalent to
♦∃𝑥.𝐺p𝑥q. Needless to say, this does not suffice in a constructive theory.

However, already Leibniz, who argued informally through a requirement of self-
consistency of perfections, could have been an inspiration for the classical principles of
Gödel’s formal ontological proof. This hypothesis is based on a contested reading of
Leibniz (see for example [21, Section 3] and the computer assisted analysis of [3]). Leibniz
assumed that perfections are unanalysable and therefore it is impossible to demonstrate
that these are incompatible. Thus, it is (classically) possible that there is an individual
that satisfies all perfections [10, pp. 137–138]. Note however that Leibniz may be formally
interpreted in a more versatile manner [21, Section 5].

We conclude that the intuitionistic unprovability of ♦∃𝑥.𝐺p𝑥q is an obstacle for the
formal system 𝐻𝑂𝑀𝐿𝑖 ` Ax where only conditional statements that all depend on ∃𝑥.𝐺p𝑥q
are provable. As soon as ∃𝑥.𝐺p𝑥q is assumed a multitude of relevant statements become
constructively provable.

Acknowledgments

This article is part of the Gödeliana research project led by Jan von Plato, which is funded
by the European Research Council (ERC), under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 787758) and from the Academy
of Finland (Decision No. 318066). Partial funding has also been received through Sara
Negri’s project Modalities and Conditionals: Systematic and Historical Studies from the
Academy of Finland (Project No.1308664).

The author is indebted to the referees for the valuable comments on an early draft.
Any potential errors in this article should be communicated to the author as this is a
work in progress at the time of writing.

61



References

[1] Anderson, C. A. (1990). Some Emendations of Gödel’s Ontological Proof. Faith and
Philosophy, Vol. 7, Issue 3, pp. 291-303.

[2] Anderson, C. A.& Gettings, M. (1996). Gödel’s ontological proof revisited. In: edited
by Hájek P. Gödel ’96, Springer.

[3] Bentert M., Benzmüller C., Streit D., & Woltzenlogel Paleo, B. (2016). Analysis
of an Ontological Proof Proposed by Leibniz. In Charles Tandy (ed.), Death and
Anti-Death, Volume 14: Four Decades After Michael Polanyi, Three Centuries After
G.W. Leibniz. Ria University Press.

[4] Benzmüller, C. & Woltzenlogel Paleo, B. (2014). Automating Gödel’s Ontological
Proof of God’s Existence with Higher-order Automated Theorem Provers. Frontiers
in Artificial Intelligence and Applications. Vol 263. IOS Press.

[5] Benzmüller, C., & Woltzenlogel Paleo, B. (2016). The Inconsistency in Gödel’s
Ontological Argument: A Success Story for AI in Metaphysics, in S. Kambhampati
(ed.), Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence–IJCAI, AAAI Press, Menlo Park, CA.

[6] Benzmüller, C. & Weber, L. & Woltzenlogel Paleo, B. (2016). Computer-Assisted
Analysis of the Anderson-Hájek Ontological Controversy. In: Logica Universalis 10.

[7] Benzmüller, C. (2022). A Simplified Variant of Gödel’s Ontological Argument. To
appear in Sophia.

[8] Bjørdal, F. (1999). Understanding Gödel’s Ontological Argument, in Timothy Childers
(ed.) The Logica Yearbook 1998, pp. 214-217, Filosofia.

[9] N. B. Cocchiarella. (1969). A Completeness Theorem in Second Order Modal Logic.
In: Theoria 35, pp. 81–103.

[10] Fitting, M. (2002). Types, Tableaus, and Gödel’s God, Kluwer Academic Publishers.
[11] Garson, J. (2018). Modal Logic. Entry in Stanford Encyclopedia of Philosophy.
[12] Gödel, K. (1970). Ontological Proof, in [13]
[13] Gödel, K. (1995). Kurt Gödel Collected Works: Unpublished essays and lectures,

Vol. 3, Oxford University Press.
[14] Hájek, P. (1996). Magari and others on Gödel’s Ontological Proof, in Ursini et alii

(eds.) Logic and Logical Algebra, pp. 125–136, Marcel Dekker.
[15] Hájek, P. (2002). A new small emendation of Gödel’s ontological proof, Studia

Logica vol 71, no. 2, pp. 149–164.
[16] Hartshorne, Charles. (1962). The Logic of Perfection. LaSalle, Il.: Open Court

Publishing Company.
[17] Kanckos, A., & Lethen, T. (2021). The Development of Gödel’s Ontological Proof.

The Review of Symbolic Logic, 14(4), 1011–1029.
[18] Kanckos, A. & Lethen, T. (2022), Kurt Gödel’s reception of Charles Hartshorne’s

ontological proof. in E Ramharter (ed.), The Vienna Circle and Religion. Vienna
Circle Institute Yearbook, Springer International Publishing, Cham, pp. 183–196.

[19] Kanckos, A. & Wolzenlogel Paleo, B. (2016). Variants of Gödel’s ontological proof
in a Natural Deduction Calculus, Studia Logica 105(3).

62



[20] Kovac̆, S. (2012). Modal collapse in Gödel’s ontological proof. In: Ontological Proofs
Today, Chapter: 15. Publisher: Frankfurt etc.: Ontos, Editors: M. Szatkowski, pp.
323–343.

[21] Lenzen, W. (2017). Leibniz’s Ontological Proof of the Existence of God and the
Problem of Impossible Objects. Log. Univers. 11, 85–104.

[22] Muskens, R. (2006). Higher Order Modal Logic. In P. Blackburn, J.F.A.K. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, Studies in Logic and
Practical Reasoning, pp. 621-653. Elsevier, Dordrecht.

[23] Scott, D. (1970). Notes in Dana Scotts hand. In: Sobel, J. H. 2001. Logic and
Theism: Arguments for and against Beliefs in God, Cambridge University Press.

[24] Sobel, J. H. (1987). Gödel’s Ontological Proof. In: edited by J. J. Thompson. On
being and saying : essays for Richard Cartwright, MIT Press.

[25] Sobel, J. H. (2001). Logic and Theism: Arguments for and against Beliefs in God,
Cambridge University Press.

[26] Sobel, J. H. (2006). On Gödel’s ontological proof, In: edited by H. Lagerund et al.,
(eds.), Modality matters: Twenty-five essays in honour of Krister Segerberg, Uppsala
Philosophical Studies.

[27] Wang, H. (1996). A Logical Journey: From Gödel to Philosophy, MIT Press.

63


