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Abstract
Exploring data features using visual clustering is a significant challenge of big data analytics. In this vision paper, we focus
primarily on the relationship among visual data clustering, the discovery of universalities, and the design of an evolutionary
database to propose an inter-disciplinary method for scientific data management. The feasibility of the proposed method
is empirically proven through application to a practical visual analytics environment for time-varying multi-dimensional
datasets of blazar observations.
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1. Introduction
Feature exploration is a significant challenge of big data
analytics. In response, visual data clustering [1] has be-
come a useful approach for such a task, because it enables
the identification of salient features coupled with appro-
priate user intervention. Careful visual data clustering
can lead to the discovery of universalities hidden in target
datasets. In this vision paper, we strive to demonstrate
how evolutionary database design [2] can fully support
this kind of valuable scientific activity.

2. Evolutionary Schema Design
This section proposes our evolutionary schema design
in relation to the visual discovery of universalities. We
use Universal Modeling Language (UML) [3] class dia-
grams for conceptual design, followed by translations
into corresponding relational schemas.

2.1. Sample Class
A data matrix (multi-dimensional data samples) can be
formulated as the class Samples, consisting of 𝑛𝑠 at-
tributes, as shown in Fig. 1. Samples have observational
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relationships with each other, and these can be abstracted
by a recursive association, called Samples_Transit, also
shown in Fig. 1.

The corresponding relational schema consists of the
following two third normal form (3NF) relation schemas:

Samples(sample-ID, sa-1, sa-2, ..., sa-n𝑠)

Samples_Transit(sample-ID_s, sample-ID_d, t-info).

Actual instances of Samples and mutual relationships
between the instances clearly form a weighted directed
graph and are usually visualized with a node-and-link
diagram. In the case of many Samples and dense mutual
relationships, such a diagram often suffers from visual
clutter artifacts.

Figure 1: Samples class and its recursive association
Samples_Transit

2.2. Cluster Class
Next, let us shift our attention to clustering, which al-
lows each of the samples to belong to a cluster. These
relationships can be modeled using a database abstrac-
tion called aggregation, as shown in Fig. 2, where each
cluster is described by 𝑛𝑐 attributes, many of which can
be derived from Samples attributes via the aggregation
Belong_to.
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In normal visualization, visual clutter artifacts cannot
be resolved. It is because each cluster may be accentu-
ated by an ellipse, while the original inter-instance links
usually remain unchanged.

Here, we consider making explicit the universalities
found in the Samples instances. Specifically, if asso-
ciations between Samples instances can commonly be
observed in the same pair of Clusters, we propose to
upgrade the mutual relationships between Samples to
mutual associations between Clusters, also shown in
Fig. 2.

At this point, provided that an evolutionary data
management environment is available, the correspond-
ing relational schema can be re-formulated using the
following three 3NF relation schemas:

Samples(sample-ID, cluster-ID, sa-1, sa-2, ..., sa-n𝑠)

Clusters(cluster-ID, ca-1, ca-2, ..., ca-n𝑐)

Clusters_Transit(cluster-ID_s, cluster-ID_d, meta_t-info).

Note that the aggregation Belong_to is realized via the
foreign key cluster-ID in the new definition of the rela-
tion schema Samples. Note also that the relation schema
Clusters_Transit has meta_t-info, which can be de-
rived from the t-info values of the belonging Samples.
It would be interesting to describe the occurrence prob-
ability as an attribute of meta_t-info. As a by-product
of such a universality specification, the number of inter-
cluster associations can drastically be reduced, resulting
in a simplified visualization.

Figure 2: Clusters class and its recursive association
Clusters_Transit

2.3. Subsample Class
For each instance of Clusters, idiosyncratic attributes
may have to be specified. To manage such attributes
efficiently, we propose to define a new class, Subsamples,
as a specialization of Samples, as shown in Fig. 3.

The corresponding relational schema consists of the
following (𝑛𝑐 + 1) 3NF relation schemas:

Samples(sample-ID, sa-1, sa-2, ..., sa-n𝑠)

Subsamples𝑘(sample-ID, ssa-1, ssa-2, ..., ssa-n𝑠𝑠𝑘 )

(𝑘 = 1, ..., 𝑛𝑐).

Figure 3: Subsamples class

Note that the specialization IS_A is naturally realized
by the common primary key sample-ID in the relation
schemas. The idiosyncratic attributes of Subsamples𝑘
may be used to derive new attributes of Clusters. From
the viewpoint of big data visual analytics, a remarkable
advantage of idiosyncratic attribute separation lies in its
ability to avoid the explosion of inapplicable null values
in single relation Samples.

3. Case Study
Blazars are the brightest and most energetic objects in
the universe. To demystify the physics of the magnetic
field within a relativistic jet ejected from a central black
hole of a blazar, the light from a blazar is regularly ob-
served. The Hiroshima Astrophysical Science Center
(HASC) has scrutinized optical photo-polarimetric and
near-infrared observation datasets to identify character-
istic blazar behaviors, such as light bursts (i.e., flares) and
rotated polarization (i.e., rotation), to explore recurring
time-variation patterns. TimeTubesX [4, 5] is an inte-
grated visual analytics environment that allows blazar
researchers to analyze efficiently and in detail long-term,
multi-dimensional blazar observation datasets. This sec-
tion strives to apply the evolutionary schema design in
Sec. 2 to sophisticated data management in the Time-
TubeX system.

3.1. Data
The HASC has observed the polarization, intensity, and
color (𝐶) of the light from a blazar, where the linear po-
larization is described by three Stokes parameters, 𝑄,
𝑈 , and 𝐼 , with 𝐼 denoting the total intensity of the po-
larized and unpolarized components, 𝑄 the intensity of
the linear horizontal or vertical polarization components,
and 𝑈 the intensity of the linear +1/4𝜋 or −1/4𝜋 po-
larization components, respectively. Instead of 𝑄 and
𝑈 , we mainly utilize 𝑞 and 𝑢, which can be obtained by
dividing 𝑄 and 𝑈 by 𝐼 , because 𝑞 and 𝑢 explain blazar
behaviors better than 𝑄 and 𝑈 . The observation errors
of 𝑞 and 𝑢 are described as 𝜖𝑞 and 𝜖𝑢, respectively. The
space spanned by 𝑞 and 𝑢 is termed the Stokes plane
(Fig. 4a). When analyzing time variations in the Stokes



(a) Stokes plane

(b) TimeTube

Figure 4: Visual encoding for blazar dataset

plane, blazar researchers pay careful attention to time
variations in the radial distance and polar angle on the
Stokes plane. The radial distance on the Stokes plane is
termed the polarization degree (PD), while one half of the
polar angle is the polarization angle (PA).

As illustrated in Fig. 4b, a blazar dataset can be encoded
geometrically as a single 3D volumetric tube, called a
TimeTube, which helps blazar researchers recognize intu-
itively the time variations of and correlations among the
variables described above. The quantities 𝑞 and 𝑢 are as-
signed to the 𝑥 and 𝑦 axes of the 3D visualization domain,
respectively, and time 𝑡 is assigned to the 𝑧 axis. Thus,
the four parameters related to polarization (𝑞, 𝑢, 𝜖𝑞, 𝜖𝑢)
at each timestamp 𝑡 are naturally encoded as an ellipse lo-
cated at the point (𝑥, 𝑦, 𝑧) = (𝑞(𝑡), 𝑢(𝑡), 𝑡) with a width
of 2𝜖𝑞(𝑡) and a height of 2𝜖𝑢(𝑡). See [6] for more details.

3.2. Visual Clustering
To enable blazar researchers to examine universalities in
blazar datasets, TimeTubesX provides them with time-
varying multi-dimensional subsequence clustering meth-
ods [5], together with a designated set of visual anal-
ysis methods, including the advanced sample retrieval
functionalities query-by-example and query-by-sketch [4].
The clustering methods extract subsequences of vari-

ous lengths from a long-term observation dataset, con-
sidering missing data and observation frequencies, and
then they filter subsequences with overlapping features.
The clustering methods consider correlations among
variables and compute means of subsequences without
smoothing out their features.

The timeline view of TimeTubesX in Fig. 5 summa-
rizes the temporal distributions of six found clusters of
different stripe colors.

Figure 5: Timeline view of TimeTubesX

3.3. Inter-flare Cluster Transitions
Figure 6 shows a class diagram of TimeTubesX, where
another type of database abstraction, called composition,
is used to specify Is_composed_of for composing a new
class Subsequences as a time series of Samples, whose
time-dependent attributes are the six variables described
in Sec. 3.1. Actual flare analysis detects the timing and
size of the time interval of each flare. Subsequences in-
cludes as its attributes the length, cor (the center of rota-
tion), and angle (the total amount of rotation) of the sub-
sequences, all of which can be derived through the com-
position. Note that flareID comes directly from the flare
analysis. The samples within the flare time interval of-
ten require more detailed analysis; thus, more attributes
should be immediately available, such as 𝑃𝐷, 𝑃𝐴, 𝑞,
and 𝑢. These idiosyncratic attributes are described sepa-
rately by a specialized class FlareSamples. Meanwhile,
Clusters includes as its attributes the number of subse-
quences and the cluster prototype, and Is_followed_by

is characterized by its transition probability.

Figure 6: Class diagram of TimeTubesX



Figure 7: Time-series motifs and their transitions in Time-
TubeX cluster feature view

The corresponding relational schema consists of
the following five 3NF relation schemas, where the
composition is naturally realized via the foreign key
ss-ID in the relation schema Samples:

Samples(sample-ID, ss-ID, time, Q, U, e_q, e_u, I, C)
FlareSamples(sample-ID, PD, PA, q, u)
Subsequences(ss-ID, cluster-ID, flareID, length, cor, angle)
Clusters(cluster-ID, #subsequences, cluster_prototype)
Is_followed_by(cluster-ID_s, cluster-ID_d, transit-prob).

The cluster feature view of TimeTubesX in Fig. 7 is
intended to summarize the universalities discovered in
the dataset. It displays the features of cluster prototypes
(time-series motifs) and their uninterrupted transitions.
The comprehensibility of the node-link diagram stems
mostly from the arrangement of the cluster prototypes in
terms of their similarities in multi-dimensional scaling [7],
the cluster prototypes encoded by TimeTubes at nodes,
and a limited number of intercluster transition links. The
node color is automatically selected to maximize the color
difference between labels in a L*a*b* color space, while
the link color encodes from the cluster at which the transi-
tion starts. The radius of a white ring around a TimeTube
indicates the cluster radius (i.e., within-cluster separa-
tion), which signifies the maximum distance between
a cluster prototype and all subsequences in the cluster.
The number beside the link denotes how many transi-
tions are observed between the two clusters, where the
thresholding could contribute to further distillation of
the universality.

4. Concluding Notes
In this paper, we demonstrated the possibility of bridging
three worlds, i.e., visual analytics, universality discov-
ery, and database refactoring. Through the application
of the present methodology to the practical problem of
blazar observation, we empirically proved that univer-
sality identification based on visual data clustering is
strongly supported by evolutionary schema design.
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