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1 Introduction

The more DLs are being used in applications such as the Semantic Web [2],
biology, and the clinical sciences, the more certain expressive weaknesses are
commented upon. A recurring set of these comments is due to the fact that only
few DLs and even fewer DL reasoners support forms of defeasible reasoning. For
example, Rector describes in [12, 16] how useful statements such as “the heart
of a human is normally located on the left hand side of the body” could be for
the clinical sciences, and OWL design patterns1 have been developed to work
around the lack of such statements.

Various combinations of DLs with nonmonotonic formalisms have been in-
vestigated so far. DL-MKNF, the combination of DLs with minimal knowledge
and negation as failure (MKNF) [9] is introduced in [4]. DL-MKNF extends DLs
with two modal operators and is considered to be a unified framework for non-
monotonic extensions of DLs since various nonmonotonic logics can be embedded
into MKNF [9]; these include default logic [13] and autoepistemic logic [10]. The
combination of DLs with default logic was introduced [1], implemented in Pellet
[7], and its translation into DL-MKNF was explained in [4]. The combination
of DLs with circumscription [3] provides a powerful and flexible alternative way
for nonmonotonic reasoning in DLs since its entailment relation is parametrized
with a set of concepts to be circumscribed. Hence we can pick different modes of
defeasibility without changing our knowledge base. Decidablity and complexity
are known for various DLs with circumscription [3], but no calculus or imple-
mentation is known. The integration of DLs with logic programming (LP) using
MKNF [11] is closely related to DL-MKNF. They differ in expressive power since
LP rules can make use of arbitrarily connected variables, yet these variables are
all quantified in the same way. In contrast, DL-MKNF allows modal operators
appearing in existential and universal restrictions. An exact comparison of this
relationship is part of our future work.

A tableau algorithm for the combination of the basic DL ALC [15] with
MKNF (ALCKNF ) has been described in [4]. As mentioned in [4], ALCKNF can
capture certain kinds of defaults and integrity constraints (ICs). For example, our
example default regarding the location of the heart in humans can be formalised

1 See http://odps.sourceforge.net/odp/html/
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as follows:

KHumanHeart ⊑ A∃Locates.Right ⊔ K∃Locates.Left.

The IC “anybody known to be a student should be known to be either male or
female” can be formalised by KStudent ⊑ AMan ⊔ AWoman.

Our work is an extension of the work described in [4]. We first present a
translation that takes an ALCKNF KB with nested modal operators into an
equivalent flat ALCKNF KB, i.e., a KB without nested modal operators. As
a consequence, we can restrict our attention to flat KBs and thus simplify the
“general” algorithm from [4]: our general algorithm is based on partitioning a
set of so-called slim modal atoms which can be roughly seen as a subset of
a set of modal atoms in [4]. Secondly, we have specified a minimality check
that is computationally less expensive than the original one. Finally, we present
a goal-directed tableau algorithm for computing models of an ALCKNF KB
based on our general algorithm which is, due to the optimised minimality check,
“exponentially cheaper” than its counterpart from [4]. Moreover, since we can
restrict our attention to flat KBs, we can also avoid the four S5 tableau rules
from [4] and thus design what we believe to be a more readable algorithm. In
[6], the interested reader can find full proofs.

2 Preliminaries

We briefly recall the syntax and semantics of ALCKNF from [4] and introduce
some notation.

2.1 Syntax and Semantics of ALCKNF

ALCKNF is defined as an extension of ALC with the two modal operators K
and A allowed in concepts and roles.

Definition 1 (ALCKNF Syntax [4]) The ALCKNF syntax is defined as fol-
lows:

C ::= ⊤ | ⊥ | Ca | C1 ⊓ C2 | C1 ⊔ C2 | ¬C | ∃R.C | ∀R.C | KC | AC
R ::= Ra | KRa | ARa,

where Ca denotes an atomic ALC concept, C1 and C2 denote arbitrary ALCKNF

concepts, and Ra denotes an atomic role.
An ALCKNF KB Σ is a tuple 〈A, T ∪ Γ 〉, where T is an ALC TBox and

Γ is a modal ALCKNF TBox, i.e., an ALCKNF TBox containing modal oper-
ators. Assertions in the ABox A are either ALC assertions or modal ALCKNF

assertions, i.e., assertions containing modal operators.

The operator K is interpreted as “known”. The operator A is simply a rewrit-
ing of ¬not, i.e., the negation of negation as failure. The operator A is inter-
preted as “already known” and thus understood as the autoepistemic operator
L in autoepistemic logic [10].
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The semantics of ALCKNF is obtained based on the following assumptions
on ALC interpretations [4]: (1): the set of names of individuals is a countable-
infinite set; (2): all ALC interpretations are defined over the same domain △ and
each individual name in every interpretation maps to the same domain element.

Definition 2 (ALCKNF Semantics [4]) An ALCKNF interpretation is a triple
(I,M,N ), where I is an ALC interpretation (△, ·I), and M and N are sets of
ALC interpretations. Atomic concepts and roles are interpreted in I as usual.
Non-atomic and modal concepts are interpreted over (I,M,N ) as follows:

(⊤)I,M,N = △
(⊥)I,M,N = ∅

(¬C)I,M,N = △ \ (C)I,M,N

(C1 ⊓ C2)
I,M,N = (C1)

I,M,N ∩ (C2)
I,M,N

(C1 ⊔ C2)
I,M,N = (C1)

I,M,N ∪ (C2)
I,M,N

(∃R.C)I,M,N = {d ∈ △ | ∃d′.(d, d′) ∈ (R)I,M,N and d′ ∈ (C)I,M,N }
(∀R.C)I,M,N = {d ∈ △ | ∀d′.(d, d′) ∈ (R)I,M,N implies d′ ∈ (C)I,M,N }

(KC)I,M,N =
⋂

J∈M(C)J ,M,N

(AC)I,M,N =
⋂

J∈N (C)J ,M,N

(KRa)I,M,N =
⋂

J∈M(Ra)J ,M,N

(ARa)I,M,N =
⋂

J∈N (Ra)J ,M,N

A concept inclusion C ⊑ D is satisfied in (I,M,N ), written (I,M,N ) |=
C ⊑ D, iff CI,M,N ⊆ DI,M,N holds. An ABox assertion C(a) is satisfied in
(I,M,N ), written (I,M,N ) |= C(a), iff a ∈ CI,M,N holds, and, R(a, b) is
satisfied in (I,M,N ), written (I,M,N ) |= R(a, b), iff (a, b) ∈ RI,M,N holds.

An inclusion C ⊑ D is satisfied in an ALCKNF structure (M,N ), written
(M,N ) |= C ⊑ D, iff C ⊑ D is satisfied in (I,M,N ) for each I ∈ M.
An assertion C(a) is satisfied in (M,N ), written (M,N ) |= C(a), iff C(a)
is satisfied in (I,M,N ) for each I ∈ M. An assertion R(a, b) is satisfied in
(M,N ), written (M,N ) |= R(a, b), iff R(a, b) is satisfied in (I,M,N ) for each
I ∈ M. A TBox T (resp. Γ ) is satisfied in (M,N ), written (M,N ) |= T (resp.
(M,N ) |= Γ ), iff all inclusions in T (resp. Γ ) are satisfied in (M,N ). An
ABox A is satisfied in (M,N ), written (M,N ) |= A, iff all assertions in A are
satisfied in (M,N ). A KB Σ is satisfied in (M,N ), written (M,N ) |= Σ, iff,
T , Γ , and A are satisfied in (M,N ).

K and A are interpreted in the same way but on different sets. The following
definition distinguishes their meanings through the maximality condition.

Definition 3 (ALCKNF Model [4]) A set of ALC interpretations M is a
model for an ALCKNF KB Σ iff the structure (M,M) satisfies Σ, and, for
each set of interpretations M′, if M ⊂ M′, then (M′,M) does not satisfy Σ.

A KB Σ is satisfiable if there exists a model for Σ. An inclusion C ⊑ D is
a consequence of a KB Σ, written Σ |= C ⊑ D, iff (M,M) |= C ⊑ D holds
for every model M of Σ. Analogously, an assertion C(a) (resp. R(a, b)) is a
consequence of Σ, written Σ |= C(a) (resp. Σ |= R(a, b)), iff (M,M) |= C(a)
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holds (resp. (M,M) |= R(a, b) holds) for every model M of Σ. Two ALCKNF

KBs Σ1 and Σ2 are equivalent, written Σ1 ≡ Σ2, if, for any set of ALC inter-
pretations M, M is a model for Σ1 iff M is a model for Σ2.

Notations. An ALCKNF concept S is subjective if each ALC subconcept of S
lies within the scope of at least one modal operator. An ALCKNF concept O is
objective if none of the ALC subconcepts of O lies within the scope of a modal
operator. In other words, objective concepts are ALC concepts. An ALCKNF

concept C is an atomic modal concept if C is of the form MD, where D is an
ALC concept. An ALCKNF concept C is in negation normal form (NNF) if
negation occurs only in front of atomic modal concepts. Two concepts C1 and

C2 are equivalent, written C1 ≡ C2, iff C
(I,M,N )
1 = C

(I,M,N )
2 holds for any

ALCKNF interpretation (I,M,N ). For two ALC KBs Σ and Σ′, Σ |= Σ′ iff Σ
entails all axioms and assertions in Σ′.

In the remainder of this paper, we assume that all concepts are in NNF, ¬̇C
denotes the NNF of ¬C, M denotes either K or A, Σ denotes an ALCKNF

KB Σ = 〈A, T ∪ Γ 〉, Ra denotes an ALC role, Ca, Da, Ea, and Fa denote ALC
concepts, and C, D, and E denote arbitrary ALCKNF concepts.

3 Syntax Restrictions

Since an ALCKNF model M is in general infinite, in [4], M is represented in
terms of an ALC KB ΣM such that M = {I | I |= ΣM}. Hence it is crucial to
make sure that each model M is ALC-representable (i.e., there is an ALC KB
ΣM s.t. M = {I | I |= ΣM}) and the corresponding ΣM is finite. In [4], to
ensure ALC-representability of ALCKNF models, an ALCKNF KB is restricted
to a subjectively quantified KB. A subjectively quantified KB is further restricted
to a simple KB to ensure the termination of the tableau algorithm.

In this section, we first loosen the definition of a subjectively quantified KB.
Our notion still ensures ALC-representability of ALCKNF models.

Definition 4 (New Subjectively Quantified KBs) A subjectively quanti-
fied ALCKNF KB Σ is an ALCKNF KB such that each concept C of the form
∃R.D or ∀R.D occurring in Σ satisfies one of the conditions: R is an ALC role
and D is an ALC concept or R is of the form MRa and D is subjective.

If R is of the form MRa, in [4], D is required to be the form of MD′ or
¬MD′. We only require D to be subjective.

Next, we loosen the definition of a simple KB [4] by allowing more concepts
to occur in ABoxes. Again, this preserves ALC-representability of ALCKNF

models and termination.

Definition 5 (New Simple KBs) Σ is simple if Σ is subjectively quantified
and satisfies the following conditions:
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1. only axioms of the form KCa ⊑ D are contained in Γ , where Ca is an ALC
concept and D is a subjectively quantified concept such that no K operator
occurs in existential and universal restrictions; and

2. for each KCa ⊑ D ∈ Γ , T 6|= ⊤ ⊑ Ca holds.

Although we restrict Σ to a simple ALCKNF KB, Σ is still expressive enough
for nonmonotonic applications such as defaults and integrity constraints.

4 Flattening an Simple ALCKNF KB

In this section, we will sketch how to flatten a KB with nested modalities, and
start with some notation. An ALCKNF concept C contains nested modal op-
erators if there is a modal operator in C lying in the scope of another modal
operator. An ALCKNF concept F is flat if F is subjective and contains no
nested modal operators. An ALCKNF role R is flat if R is of the form MRa.
An ALCKNF ABox A is flat if C is flat for each C(a) ∈ A and R is flat
for each R(a, b) ∈ A. A modal ALCKNF TBox Γ is flat if D is flat for each
KCa ⊑ D ∈ Γ . An ALCKNF KB Σ is flat if both A and Γ are flat.

In this section, we introduce a method to equivalently translate an arbitrary
ALCKNF KB to a flat one, which we believe has the following two advantages:

1. Working on flat KBs simplifies the “general” algorithm because we focus on
a smaller set of atoms, so-called slim modal atoms, which are a subset of
modal atoms in [4];

2. Flattening an ALCKNF KB replaces the four S5 tableau rules2 in [4] with a
pre-processing step which we believe makes our ALCKNF tableau algorithm
easier to understand and “trims” input ALCKNF KBs into a uniform for-
mat which we hope will make our tableau algorithm easier to optimise and
implement.

In Table 1, we present some equivalences, with which ALCKNF concepts
of the form MC can be simplified to ones without nested modal operators [6].
First-order versions of Equivalence 2 and 3 are described in [11].

Theorem 1 All equivalences from Table 1 hold.

Concepts such as KACa and K(Ca ⊔ ADa) can be translated into ACa

and KCa ⊔ ADa using Equivalence 1 and 2 in Table 1, respectively. However,
concepts such as K(Ca ⊔ (Da ⊓KEa)) or K((Ca ⊓KDa) ⊔ (Ea ⊓KFa)) cannot
be easily translated into equivalent flat concepts: we first need to translate Ca ⊔
(Da⊓KEa) and (Ca⊓KDa)⊔(Ea⊓KFa) into Conjunctive Normal Form (CNF)
using equivalences 4 to 8. As shown in [11], after translating Ca ⊔ (Da ⊓ KEa)
to its CNF (Ca ⊔Da)⊓ (Ca ⊔KEa), we can flatten K((Ca ⊔Da)⊓ (Ca ⊔KEa))
as follows: K((Ca ⊔Da)⊓ (Ca ⊔KEa)) ≡ K(Ca ⊔Da)⊓K(Ca ⊔KEa) ≡ K(Ca ⊔
Da) ⊓ (KCa ⊔ KEa).

2 There are the M-rule-1, the M-rule-2, the ¬M-rule-1, and the ¬M-rule-2.
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1 MS ≡ S
2 M(A1 ⊓ A2) ≡ MA1 ⊓ MA2

3 M(S ⊔ A) ≡ S ⊔ MA
4 (A1 ⊔ A2) ⊓ A3 ≡ (A1 ⊓ A3) ⊔ (A2 ⊓ A3) (Distributive Law 1)
5 (A1 ⊓ A2) ⊔ A3 ≡ (A1 ⊔ A3) ⊓ (A2 ⊔ A3) (Distributive Law 2)
6 ¬(A1 ⊓ A2) ≡ ¬A1 ⊔ ¬A2 (De Morgan’s Law 1)
7 ¬(A1 ⊔ A2) ≡ ¬A1 ⊓ ¬A2 (De Morgan’s Law 2)
8 ¬¬A ≡ A (Double Negative Law)

Note: S means a subjective ALCKNF concept;
A1, A2, A3, and A mean arbitrary ALCKNF concepts.

Table 1. Equivalences of ALCKNF expressions.

Theorem 2 Let D1 ≡ D2 be an equivalence and Σ[D1 → D2] the KB obtained
by replacing an occurrence of D1 in Σ with D2. Then Σ ≡ Σ[D1 → D2] holds.

In order to flatten Σ, we need to make sure that C is flat for each C(a) ∈ A
and E is flat for each KDa ⊑ E ∈ Γ . We can flatten concepts of the form KC,
but, in Σ, we may have ALC assertions, ALCKNF assertions such as D(a), or
modal axioms such as KCa ⊑ D, where D is not of the form MC. For flattening
Σ, we make use of our algorithm for flattening concepts of the form MC in [6]
by translating Σ to an equivalent KB Σ′ = 〈A′, T ∪ Γ ′〉, where
A′ := {MRa(a, b) | MRa(a, b) ∈ A } ∪ {KRa(a, b) | Ra(a, b) ∈ A} ∪

{KC(a) | C(a) ∈ A} and
Γ ′ := {KCa ⊑ KD | KCa ⊑ D ∈ Γ}.

Theorem 3 Concepts of the form MC can be translated into an equivalent flat
concept. Σ and flattened Σ′ are equivalent.

By flattening an ALCKNF KB, we may have to translate concepts into their
CNF, which might result in an exponential blow-up of the size of ALCKNF

KB. We believe that this transformation into CNF will rarely be required: for
example, KBs resulting from defaults or integrity constraints are “naturally”
flat. It will be part of our future work to look into this more closely.

5 Computing Models for a Flat ALCKNF KB

In this section, we first sketch our general algorithm for computing models for
a flat ALCKNF KB. Then we present a “goal-direct” tableau algorithm whose
correctness is based on the correctness of our general algorithm.

5.1 The General Algorithm

As described in [4], the general algorithm is an extension of the propositional
MBNF3 reasoning algorithm [14]. The algorithm for computing the models of

3 Minimal belief and negation as failure. MBNF has a minor difference from MKNF.
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an ALCKNF KB is to “blindly” guess a partition of a set of so-called atoms
(which may be infinite) and check whether such a partition satisfies a certain set
of conditions. This algorithm may not terminate and is not practical at all, but
it is the foundation for the tableau algorithm.

Our general algorithm is developed based on the one in [4], but differs in the
following two aspects.

Firstly, our algorithm computes an ALCKNF model of a flat ALCKNF KB
Σ by checking whether there is a partition of slim modal atoms for Σ (denoted
with SMA△(Σ)) satisfying a certain set of conditions.

A set of slim modal atoms is defined based on a revised version of a set of
modal atoms in [4]: The set of modal atoms MA△(Σ) of Σ w.r.t. a domain △
is defined inductively as follows:

1. if C(a)/R(a, b) ∈ A, then C(a)/R(a, b) ∈ MA△(Σ);
2. if ¬MC(x) ∈ MA△(Σ), then MC(x) ∈ MA△(Σ);
3. if C ⊔ D(x) ∈ MA△(Σ), then {C(x),D(x)} ⊆ MA△(Σ);
4. if C ⊔ D(x) ∈ MA△(Σ), then {C(x), ¬̇C(x),D(x), ¬̇D(x)} ⊆ MA△(Σ);
5. if ∃MR.C(x) ∈ MA△(Σ), then {MR(a, y), C(y) | y ∈ △} ⊆ MA△(Σ);
6. if ∀MR.C(x) ∈ MA△(Σ), then {MR(a, y), C(y) | y ∈ △} ⊆ MA△(Σ); and
7. if KC ⊑ D ∈ Γ , then {KC(x),D(x) | x ∈ △} ⊆ MA△(Σ).

The set of slim modal atoms SMA△(Σ) for Σ w.r.t. △, which is a subset of
MA△(Σ) defined above, is defined as follows:

SMA△(Σ) = {MC(x) | MC(x) ∈ MA△(Σ)}∪
{MR(x, y) | MR(x, y) ∈ MA△(Σ)}.

The set SMA△(Σ) in our algorithm can be roughly seen as a subset of the
set of modal atoms in [4]. In particular, the “value” of an atom in SMA△(Σ) is
independent from the “values” of other SMA△(Σ) atoms. Hence we do not need
to maintain these dependencies and check that they do not cause inconsistencies.

Secondly, we modify the minimality condition, and this modification will
improve the complexity of the tableau algorithm: instead of “comparing” a par-
tition of MA△(Σ) with the partitions of MA△(Σ′) in [4], where Σ′ depends on
Σ and the given partition, we prove that it is sufficient to “compare” a partition
of SMA△(Σ) with other partitions of SMA△(Σ).

5.2 The Tableau Algorithm

Like the tableau algorithm in [4], our tableau algorithm computes models of an
ALCKNF KB by means of so-called branches which correspond to finite subsets
of (slim) modal atoms.

Our tableau algorithm is different from the one in [4] in the following aspects:

1. The tableau algorithm in [4] has 11 tableau rules, while ours has only 5 rules.
Apart from the four S5 tableau rules being replaced with a pre-preprocessing
stage, we have a ⊔-rule which can be treated as a natural combination of
the ⊔-rule and the mcut-rule in [4] and a ∀-rule which can be treated as a
combination of the ∀-rule and the KR-rule in [4]. We believe that a compact
set of tableau rules makes the tableau algorithm more natural and readable;
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2. Our tableau algorithm employs a different minimality condition and can
therefor be said to be “exponentially cheaper” than the one in [4].

In this section, Σ = 〈A, T ∪ Γ 〉 represents a flat and simple ALCKNF KB.
The tableau algorithm generates a set of so-called branches. A branch satisfying
a certain set of conditions corresponds to a model of Σ. The algorithm starts
from A. Γ is taken into account in the trigger-rule (see Figure 1). T is considered
implicitly through the so-called objective knowledge of a branch and in the set
of conditions which a branch must satisfy.

The ALCKNF tableau algorithm looks similar to a standard DL tableau
algorithm. As mentioned in [4], it has the following features: (1): A DL reasoner
is used as an underlying reasoner; (2): Only modal assertions and axioms are
“decomposed” by the tableau rules. ALC assertions and axioms are “pushed
down” to a DL reasoner.

We first introduce some definitions about branches4 for Σ. The initial branch
B0(Σ) for Σ is the set A. A branch for Σ is a set of ALCKNF assertions obtained
from B0(Σ) by applying the tableau rules from Figure 1. A branch B for Σ is
completed if no rules from Figure 1 is applicable to B.

The tableau rules are introduced in Figure 1. We discuss them briefly here.

1. The ⊓-rule and the ∃-rule is analogous to usual DL tableau rules and are
the same as in [4];

2. The ⊔-rule is a bit different from a usual tableau rule for disjunction. For a
disjunction C⊔D(a) in a DL tableau rule, we add either C or D to the label
of a node. In contrast, for a disjunctive assertion C ⊔D(a) in ALCKNF , we
need to know both the “values” of C(a) and D(a) because we need them
for the minimality check at the end of the tableau algorithm. Note that the
fourth case is to generate a clash when there is an inconsistency on C⊔D(a);

3. The first half of the ∀-rule is similar to a usual DL rule for universal quan-
tification. In the second part, in order to make this algorithm correct, we
consider the relationship between KR(x, y) and AR(x, y). More precisely,
AR(x, y) is an element of SMA△(Σ) and is “hidden” in ∀AR.C(x). The
“value” of AR(x, y) in the tableau algorithm is by default “false” until the
appearance of KR(x, y) “supporting” it to be “true”.

4. The trigger-rule is needed in order to take in to account Γ . A DL reasoner
is employed here to check if Ca(x) can be entailed from “what have been
known so far”, i.e., from the K-objective-knowledge ObK(B) (defined below)
which represents the knowledge “extracted” from B and T .

The following definitions and Theorem 4 are similar to their counterparts in
[4], but they differ in that our algorithm works on a flat KB and therefor these
definitions can be based on slim modal atoms.

Definition 6 ((PB, NB)) The partition (PB, NB) associated with a branch B is
defined as follows: for M ∈ {K,A},
PB = {MC(x) | MC(x) ∈ B} ∪ {MR(x, y) | MR(x, y) ∈ B}; and
NB = {MC(x) | ¬MC(x) ∈ B}.

4 The definitions have counterparts in [4] with minor changes.
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⊓-rule if C ⊓ D(x) ∈ B and {C(x), D(x)} 6⊆ B, then add C(x) and D(x) to B.
⊔-rule if C ⊔ D(x) ∈ B, we distinguish the following four cases:

– if {C(x), ¬̇C(x), D(x), ¬̇D(x)} ∩ B = ∅, then add S to B, where S =
{C(x), D(x)}, S = {C(x), ¬̇D(x)}, or S = {¬̇C(x), D(x)};

– if {C(x), ¬̇C(x)} ∩ B 6= ∅ and {D(x), ¬̇D(x)} ∩ B = ∅, then add either D(x)
or ¬̇D(x) to B;

– if {D(x), ¬̇D(x)}∩B 6= ∅ and {C(x), ¬̇C(x)}∩B = ∅, then add either C(x) or
¬̇C(x) to B;

– if {¬̇C(x), ¬̇D(x)} ⊆ B, then add C(x) to B.
∀-rule We distinguish the following two cases:

– if ∀MR.C(x) ∈ B, then for each MR(x, y) ∈ B, if C(y) /∈ B, add C(y) to B;
– if ∀AR.C(x) ∈ B, then for each KR(x, y) ∈ B, if AR(x, y) /∈ B, add AR(x, y)

to B.
∃-rule if ∃MR.C(x) ∈ B and {MR(x, y), C(y)} 6⊆ B for any y ∈ OB, then add

MR(x, z) and C(z) to B, for some z ∈ OB ∪ {ι}, where ι 6∈ OB.
trigger-rule if KCa ⊑ D ∈ Γ , x ∈ OB, ObK(B) |= Ca(x), and {KCa(x), D(x)} 6⊆ B,

then add KCa(x) and D(x) to B.

Fig. 1. The new ALCKNF tableau rules.

Intuitively, PB is the set of atoms which are believed to be true and NB is
the set of atoms which are believed to be false. The set PB∪NB is a finite subset
of SMA△(Σ) [6]. The (infinite) atoms in SMA△(Σ) \ (PB ∪ NB) are believed to
be false.

Definition 7 (Objective Knowledge) Let B be a branch for Σ. For M ∈
{K,A}, the ALC KB ObM(B) = 〈T , {C(x) | MC(x) ∈ PB} ∪ {Ra(x, y) |
MRa(x, y) ∈ PB}〉 is called the M-objective-knowledge of B.

Next, we define what it means for a branch to be without (more or less)
obvious inconsistencies.

Definition 8 (Open Branch) Let B be a branch for Σ. B is open if, for M ∈
{K,A}, ObM(B) is satisfiable and ObM(B) 6|= C(x) for each MC(x) ∈ NB.

If there is an open and completed branch B for Σ, then there is an ALCKNF

structure (M,N ) that satisfies Σ.

Definition 9 (Pre-preferred Branch) Let B be a branch for Σ. B is pre-
preferred if the following conditions hold: (1): B is open and completed; (2):
ObK(B) |= ObA(B); and (3): ObK(B) 6|= C(x) for each AC(x) ∈ NB.

If there is a pre-preferred branch B for Σ, then there is an ALCKNF structure
(M,M) that satisfies Σ.

A pre-preferred B branch might not “identify” a model for Σ, because B
might not satisfy the minimality condition. In order to check the minimality
condition up to the renaming of the variables introduced by the ∃-rule, we use
the following definitions.5 Let S be a KB or a set of assertions. OS represents the

5 These definitions have counterparts in [4] with minor changes.
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set of individuals appearing in S. Let B be a branch for Σ, f : OB\OΣ → △\OΣ

an injection, and △ the domain of the interpretations for Σ. We denote with
f(B) the branch obtained from B by replacing each occurrence of x with f(x)
for each x ∈ OB \ OΣ . f(B) is called a renamed branch of B.

Definition 10 (Minimality Condition for B) Let B be a completed branch
for Σ. B satisfies the minimality condition if there does not exists a completed
and open branch B′ for Σ and an injection g : OB′ \ OΣ → OB \ OΣ such that
|OB′ | ≤ |OB| and all of the following conditions hold:

1. ObK(B) |= ObK(g(B′));
2. ObK(g(B′)) 6|= ObK(B);
3. ObK(B) |= ObA(g(B′)); and
4. ObK(B) 6|= C(x) for each AC(x) ∈ Ng(B′).

Intuitively, the minimality condition corresponds to the maximality condition
in Definition 3. We have the condition |OB′ | ≤ |OB| since B will not violate the
minimality condition because of a branch B′ which is “bigger” (i.e., |OB′ | >
|OB|) than B. We take renamed branches of B′ into account to guarantee that
B faithfully meets the minimality condition under the condition of changing
the variables introduced by the ∃-rule. Our minimality check is “exponentially
cheaper” than the one in [4] because our minimality condition “compares” B with
other branches for Σ while the one in [4] “compares” B with all the branches for
Σ′ (generating all branches for Σ′ is exponential because of the ⊔-rule and the
mcut-rule in [4]), where Σ′ is gained from Σ and B.

Definition 11 (Preferred Branch) Let B be a completed branch for Σ. B is
preferred if B is pre-preferred and B satisfies the minimality condition.

If there is a preferred branch B for Σ, then there is an ALCKNF structure
(M,M) satisfies Σ, and, for each set of interpretations M′, if M ⊂ M′ holds,
then (M′,M) does not satisfy Σ, i.e., M is a model for Σ.

To state the completeness of our algorithm, we need to define what it means
for a branch to represent a model: let B be a completed branch for Σ and M
a model for Σ. B represents M if B is preferred and there exists an injection
f : OB \ OΣ → △ \OΣ such that M = {I | I |= ObK(f(B))} holds.

Theorem 4 (Correctness) If B is a preferred branch for Σ, then M = {I |
I |= ObK(B)} is a model for Σ. If M is a model for Σ, then there exists a
completed branch B for Σ representing M. The tableau algorithm terminates.

6 Future Work

We are currently implementing and optimising our tableau algorithm, and hope
to be able to report on its evaluation soon. As in [7], incremental ABox reasoning
[5] will be extremely useful for our implementation. It prevents the underlying
DL reasoner from performing reasoning from scratch every time, and we believe
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that the “mostly increasing” nature of our algorithm will be well-suited to profit
from incremental reasoning. Regarding optimisations, we have developed a DL
version of the possible true choices technique [8] to avoid “stupid guesses” in the
nondeterministic ⊔-rule.
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