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Abstract
The recent success of Large Language Models (LLM) in a wide range of Natural Language Processing
applications opens the path towards novel Question Answering Systems over Knowledge Graphs lever-
aging LLMs. However, one of the main obstacles preventing their implementation is the scarcity of
training data for the task of translating questions into corresponding SPARQL queries, particularly in
the case of domain-specific KGs. To overcome this challenge, in this study, we evaluate several strategies
for fine-tuning the OpenLlama LLM for question answering over life science knowledge graphs. In
particular, we propose an end-to-end data augmentation approach for extending a set of existing queries
over a given knowledge graph towards a larger dataset of semantically enriched question-to-SPARQL
query pairs, enabling fine-tuning even for datasets where these pairs are scarce. In this context, we also
investigate the role of semantic ”clues” in the queries, such as meaningful variable names and inline
comments. Finally, we evaluate our approach over the real-world Bgee gene expression knowledge graph
and we show that semantic clues can improve model performance by up to 33% compared to a baseline
with random variable names and no comments included.
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1. Introduction

Translating natural language questions to SPARQL, a standard query language over RDF knowl-
edge graphs, has been the subject of research for more than a decade [1, 2]. Recently, the
capacity of generalization of large language models (LLMs) to solve different tasks including
computer programming has led to breakthroughs in the performance of code generation tasks
[3]. However, although SPARQL queries can be considered as a specialized type of computer
code, several studies have pointed out limitations of LLMs for the task of SPARQL query gener-
ation [4, 5]. For instance, generated SPARQL queries can be syntactically correct, however they
are semantically wrong.
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In life sciences, several freely available scientific datasets are accessible through SPARQL
endpoints [6]. Nevertheless, life scientists are often not able to write SPARQL queries. This is
mainly because they do not know SPARQL or how the data are structured. Even for proficient
SPARQL users, understanding the data schema of knowledge bases (KB) can be a time-consuming
and complex task, which needs to be repeated for every new data source. Applying directly a
LLM for Knowledge Graph Question Answering (KGQA) may significantly simplify this process
in allowing users to interact with data directly in natural language. However, KGQA systems
over scientific data need to demonstrate high accuracy, because researchers cannot base their
studies on wrong answers. Therefore, generating SPARQL queries that can be executed over
high quality life science datasets can mitigate the problem of providing incorrect answers. This
is because answers are generated based on facts stated in a KB rather than directly from the
LLM, which is a probabilistic model that can suffer from the problem of hallucinations [5]—i.e.,
generating plausible, but factually incorrect answers. Moreover, scientific KBs are usually
curated and high-quality.

To overcome LLM limitations such as hallucinations, we explore several strategies to fine-
tune OpenLLaMA, an open source LLM, in order to develop a KGQA system over scientific
datasets. These strategies are mainly based on different ways to augment the training set of
question-to-SPARQL query pairs and knowledge transfer. As a result, the augmented training
set achieves a better coverage of the KB contents.

Finally, we apply our approach on the Bgee gene expression knowledge graph. Bgee is
a well-established KB to retrieve and compare gene expression patterns in multiple animal
species [7]. It integrates and harmonises multiple data sources that are based on heterogeneous
techniques. The choice of the Bgee data source for applying our methodology is explained in
Section 4. The main contributions of this article are summarised as follows: (i) a question-to-
SPARQL dataset augmentation approach; (ii) a fine-tuned LLM for querying gene expression
data; (iii) a methodology to fine-tune an open LLM for SPARQL query generation over life
science knowledge graphs; (iv) a large dataset for scientific question answering over Bgee.

2. Background and Related Works

Large Language Models The rise of large language models (LLMs) like GPT-3, PaLM, Chat-
GPT, and LLaMA [8, 9, 10, 11] has significantly improved the performance of natural language
processing (NLP) systems. These models, known for their vast scale and data-intensive train-
ing, excel in tasks ranging from mathematical problem-solving to commonsense reasoning
[12]. Recent research has explored enhancing LLMs through techniques like chain-of-thought
prompting (CoT) and instruction tuning [13, 14]. Notably, models like Flan-T5 have achieved
superior performance using fewer parameters, benefiting from instruction tuning [15]. Addi-
tionally, reinforcement learning from human feedback has shown promise in aligning models
with human intentions [14].

Knowledge Graphs and SPARQL Generation Recent advancements in the domain of
Large Language Models (LLMs) and knowledge graphs have introduced novel methodologies
and frameworks. The Chain of Knowledge (CoK) framework augments LLMs with structured



knowledge bases to enhance factual accuracy [16]. Concurrently, the generation of a “chain of
thought” significantly bolsters the reasoning capabilities of LLMs [13]. In a domain-specific
approach, a benchmark dataset for Knowledge Graph Question Answering in Materials Science
leverages ChatGPT to translate natural language questions into formal knowledge graph queries
[17]. Furthermore, controlled natural language has been proposed as a target for KGQA semantic
parsing, highlighting the potential of LLMs to parse with reduced training data requirements [18].
The Bio-SODA framework provides a method for natural language processing over structured
data, using a graph-based approach to translate user questions into potential SPARQL queries,
showing improvements on several real-world datasets [2]. In the broader context of SPARQL
generation systems, QAWizard leverages machine learning to learn human experiences in entity
type identification and RDF-type identification [19]. The SGPT approach combines the benefits
of end-to-end and modular systems for SPARQL query generation, emphasizing the embedding
of linguistic features from questions [20]. Additionally, the field of neural machine translation
for SPARQL query generation has been explored, with comparisons across various models and
techniques [21, 22].

SPARQL Query Datasets The development of benchmark datasets for SPARQL queries,
especially in the context of Knowledge Graph Question Answering, has gained significant
attention in domain-specific applications. Such benchmarks are instrumental in evaluating the
efficacy of models, as demonstrated by efforts that employ models like ChatGPT to seamlessly
translate natural language questions into their corresponding technical queries [17]. Recently,
the benchmark dataset so-called KQA Pro was released [23]. It is a large-scale dataset for
complex question answering over a dense subset of the Wikidata1 KB. Wikidata is an open,
general-purpose and free KB that is readable and editable by both humans and machines. The
Wikidata contents are under a free license (i.e., CC0). Although Wikidata is not a domain
specific KB, it contains relevant life science data.

3. Methodology

To produce a more accurate system, our methodology addresses two primary challenges:
question-to-SPARQL query set augmentation from an existing query set; and fine-tuning an
open LLM to generate SPARQL queries from plain text questions. An overview of our approach
is shown in Figure 1.

3.1. Question-to-SPARQL dataset augmentation

Many existing public knowledge graphs provide example queries to guide new users in exploring
the available data. However, the number of queries is usually very limited, making them
insufficient for fine-tuning LLMs. To mitigate this problem, we designed a dataset augmentation
approach to generate extra queries and their corresponding natural language questions, starting
from a representative set of existing examples. More precisely, given an example query, we
first extract all variables that represent instances of classes in the query. Next, we use both

1https://www.wikidata.org
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Figure 1: System Architecture. We augment an existing catalog of representative questions over a given
knowledge graph and fine-tune OpenLlama in two steps: We first fine-tune the base model using the
KQA Pro dataset over Wikidata. Next, we further fine-tune the resulting model using the extended set
of questions and queries over the target knowledge graph. Finally, we obtain a system for Question
Answering over Knowledge Graphs (KGQA) which translates natural language user questions into their
corresponding SPARQL queries over the target KG.

the terminological and assertion axioms of the KG in order to identify datatype properties that
can be attached to these instances. We iteratively augment the initial query with 1 extra triple
pattern, corresponding to the extra property that can be queried about the class instance. As a
concrete example, if an example query contains triple patterns concerning a Gene instance, we
additionally generate queries that ask for the gene label, identifier, description and so on. This
ensures that the training set will cover a wider range of properties from the KG.

To investigate the role of the variable names themselves, as well as of additional semantic
“clues” provided in the model prompt (e.g., inline comments providing labels of properties in
the query text), we generate the following sets of queries:

1. Queries with random variable names and no inline comments.
For this dataset, we simply remove all comments from the query text and rename all
existing variables to random values ?x0, ?x1 etc.

2. Queries with meaningful variable names.
For this dataset, we automatically rename variables with their corresponding class name
(e.g. ?gene, ?anatomicalentity etc)

3. Queries with meaningful variable names and inline comments
In addition to meaningful variable names, in this dataset we include inline comments that
describe property names (e.g. ?gene obo:RO_0002162 ?taxon. # in taxon)



3.2. Fine-tuning OpenLLaMA

In our trainingmethodology, we employed QLoRA and PEFT to fine-tune the 7 billion parameters
version of OpenLlama using four Nvidia A100 40GB GPUs. The OpenLlama fine-tuning was
conducted with a learning rate of 2e-05, a batch size of 1, and a maximum context length of
1024, without engaging in extensive hyper-parameter optimization.

We chose to fine-tune OpenLLaMA_7b_v2 with KQA Pro dataset—that contains question-
to-SPARQL queries targeting Wikidata. By doing so, we aim to use the fine-tuned model as
a base model for translating natural language questions into SPARQL queries over scientific
and domain-specific KBs. During the fine-tuning, we applied the Hugging Face SFTTrainer2 by
completing 13,500 steps on the KQA Pro dataset resulting on the OpenLLaMA+KQA_Pro model,
that is available in our GitHub repository, see Appendix A.

Finally, we used the Hugging Face SFTTrainer with 2000 steps to further fine-tune Open-
LLaMA and OpenLLaMA+KQA_Pro models with a domain-specific dataset to evaluate our
approach as described in Section 4.

4. Evaluation and discussion

We chose Bgee as a scientific KB in the life science domain to evaluate our approach. This
is justified mainly by the following reasons: (i) Bgee data are published under a free license
(i.e., CC0); (ii) Wikidata contains part of the Bgee data [24], hence fine-tuning a LLM with
Wikidata-related SPARQL query set (i.e., KQA Pro) may help the SPARQL query generation
for Bgee; (iii) both of them are real world and large KBs containing billions of triples; (iv)
although only about 15 question-to-SPARQL examples are provided by Bgee3, they are highly
representative of its contents according to data providers; (vi) Bgee represents well how complex
are the SPARQL queries to answer scientific questions, with queries composed of multiple triple
patterns. The (iv) reason is important for our training set augmentation approach, since we
assume that the provided question-to-SPARQL set covers well the main structure of the KB
contents.

To evaluate ourmethodology, we employed four distinct metrics, each specifically designed for
assessing the output of machine translation systems. These metrics were utilized to ascertain
the degree of congruence between the SPARQL queries generated by the machine and the
corresponding reference queries. The metrics employed in this evaluation include BLEU [25],
SP-BLEU [25], METEOR [26], and ROUGE-L [27]. ROUGE-L is an adaptation of the standard
ROUGE metric, emphasizing the Longest Common Subsequence, thereby providing insights
into sentence-level structural coherence. The BLEU metric quantitatively evaluates the accuracy
of word sequences in the output generated by the machine, comparing it to sequences crafted
by humans. METEOR extends the capabilities of BLEU by incorporating synonym matching
and sentence structural analysis, thus offering a more refined assessment of translation quality.

First, we evaluated the OpenLLaMA_7b_v2model4 without any fine-tuning, that is a zero-shot
evaluation, against the Wikidata and Bgee question-to-SPARQL datasets. All computed metrics

2https://huggingface.co/docs/trl/sft_trainer
3http://purl.org/sib-rdf/bgee-tutorial
4https://huggingface.co/openlm-research/open_llama_7b_v2
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(i.e., BLEU, SP-BLEU, METEOR, ROUGE-L and F1-score) were either equal or approximately
equal to zero. Therefore, the OpenLLaMA_7b_v2 model was not capable of generating SPARQL
queries that correspond to the datasets of reference without fine-tuning. The OpenLLaMA
setting row in Table 1 shows in further details the zero-shot evaluation with the Bgee dataset.

Setting BLEU SP-BLEU METEOR ROUGE-L F1-score

OpenLLaMA 0.00 0.00 0.006 0.014 0.005
Bgee random vars 0.352 0.331 0.402 0.637 0.501
Bgee meaningful vars 0.567 0.526 0.612 0.823 0.664
Bgee original 0.319 0.309 0.339 0.782 0.387
Bgee original with comments 0.474 0.442 0.520 0.826 0.570
Bgee meaningful vars comments 0.555 0.526 0.593 0.845 0.639
Wikidata Bgee random vars 0.261 0.237 0.291 0.642 0.392
Wikidata Bgee meaningful vars 0.382 0.347 0.448 0.666 0.531
Wikidata Bgee original 0.435 0.424 0.500 0.703 0.569
Wikidata Bgee meaningful vars comments 0.588 0.563 0.628 0.874 0.667

Table 1
Performance metrics for the OpenLLama model fine-tuned on the Bgee dataset with various variable
naming strategies. Except from the OpenLLaMA setting that means a zero-shot evaluation, the other
settings refer to the datasets used to fine-tune the OpenLLaMA model: “Bgee random vars” contains
queries with random variable names and no comments; “Bgee meaningful vars” is composed of queries
with meaningful variable names; “Bgee original” contains augmented queries without changing variable
names and without adding comments; “Bgee meaningful vars comments” has augmented queries with
meaningful variable names and added comments. Settings starting with “Wikidata” mean the base
model is already fine-tuned with a Wikidata query set.

Second, we applied our approach described in Subsection 3.1 to generate five different
categories of datasets based on the 15 Bgee queries available. Each generated dataset contains
513 queries, hence an increase of about 500 queries per dataset when compared with the original
dataset. All generated datasets are available in our GitHub repository (see Appendix A). These
query sets sum into more than 2500 queries over the Bgee KB. The setting column in Table
1 shows the five augmented Bgee datasets starting with the “Bgee” term that were used to
fine-tune the OpenLLaMA_7b_v2 model. Based on these results, we can conclude that providing
meaningful variable names and/or inline comments that define property labels in the SPARQL
query significantly improve all evaluated metrics when compared to queries with random
variables and without any comment. For instance, the ROUGE-L score improves about 33%
when comparing “Bgee random vars” versus “Bgee meaningful vars comments” setting in Table
1.

Third, the results in Table 1 demonstrate that using OpenLLaMA+KQA_Pro (i.e., rows in
Table 1 which start with “Wikidata”) as the base model to further fine-tune with the different
Bgee query sets does not lead to any significant improvement (or worse, the performance may
deteriorate). Nevertheless, these experiments still confirm that providing meaningful variable
names and inline comments significantly improve the model. This is clearly noticed with the
“Wikidata Bgee meaningful vars comments” setting that produces the best results for all metrics.
Furthermore, if we compare “Wikidata Bgee meaningful vars comments” with “Bgee original”



Figure 2: Enhancement in the SPARQL query generation performance (y-axis) with partitions in
increments of 25% of the “Bgee meaningful vars comments” training set (x-axis).

(i.e., query set augmented without adding comments and renaming variables), it indicates an
improvement of more than 80% for the metrics BLEU, SP-BLEU and METEOR.

Finally, we also evaluated the gain in performance of fine-tuning the model with different
augmented query subsets of “Bgee meaningful vars comments” training set. Figure 2 illustrates
the impact of the dataset augmentation on fine-tuning the OpenLLaMA model for SPARQL
query generation within the Bgee dataset context. This figure presents the performance of the
model across various metrics at incremental stages of training data augmentation: 25%, 50%,
75%, and 100% of the training set. The improvement in all metrics with the increase in training
data size from 25% to 100% suggests that adding more example questions and queries generated
automatically through our methodology can help improve the performance of the model in
generating more accurate SPARQL queries.

The different fine-tuned models presented in Table 1 for querying Bgee gene expression data
are accessible through our GitHub repository, see Appendix A.

5. Conclusion

This study has investigated a methodology for fine-tuning OpenLLaMA to generate SPARQL
queries for the task of question answering over a life science knowledge graph. In particular, we
have first used KQA_Pro, a large dataset over Wikidata, to fine-tune the base OpenLLama LLM
and then further fine-tuned this model using an augmented dataset of questions and SPARQL



queries over the Bgee gene expression database. The following conclusions can be drawn:

• Systematically augmenting a representative question-to-SPARQL query set over a sci-
entific KG significantly contributes to improving the performance of the OpenLLaMA
model for the SPARQL query generation task.

• Rewriting the SPARQL query to provide more context through inline comments and
meaningful variable names considerably improves the OpenLLaMA model.

• The knowledge transfer might deteriorate the LLM performance. Indeed, fine-tuning first
OpenLLaMA with an open-domain query set (e.g., KQA Pro) for afterwards fine-tuning it
again by targeting a domain-specific KB (e.g., Bgee) can cause the LLM to perform worse
than directly fine-tuning the LLM solely with the domain-specific query set.

As future work, we plan to improve our query set augmentation approach by also considering
property paths of length greater than one (i.e., including the neighbouring instances). Never-
theless, it may require curation since the question-query pairs generated can be nonsensical.
Last but not least, we also intend to extend our evaluation to more life science knowledge bases
such as the RIKEN metadatabase.
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The materials for this work are available in our GitHub repository at https://github.com/
RIKEN-DKO/Generation_SPARQL.
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