
Detecting and Repairing Unintentional Change in In-use

Data in Concurrent Workflow Management System

Phan Thi Thanh Huyen and Koichiro Ochimizu

School of Information Science, Japan Advanced Institute of Science and Technology

 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

{huyenttp, ochimizu}@jaist.ac.jp

Abstract. Workflow verification has attracted a lot of attention, especially control

flow aspect. However, little research has been carried out on data verification in

workflow literature although data is one of the most important aspects of

workflow. This paper proposes an approach for detecting and repairing

Unintentional Change in In-use Data (UCID) in a Concurrent Workflow

Management System at build time. We define UCID as a situation in which some

data values are lost or some data elements are assigned values different from the

intentions of workflow designers due to non-deterministic access to shared data by

different activities. Differently from previous studies, we consider UCID in two

different ways: between concurrent activities in a single workflow (intra-UCID)

and between activities in different concurrent workflows (inter-UCID). In this

paper, we first investigate UCID situations in a workflow management system, and

then we define a Time Data Workflow, an extension of the WF-Nets with time and

data factors, with many attributes supporting UCID detection and correction.

Based on these definitions, we develop an algorithm which helps to detect

potential intra/inter-UCID at build time, along with algorithm evaluation and

UCID resolution methods. Finally, we introduce a concrete project on building a

change support environment for cooperative software development using UCID

theory.

Keywords: Unintentional Change in In-use Data, Time Data Workflow,

concurrent workflows, algorithm, Workflow Nets

1 Introduction

Correctness of a workflow model is very important, because any errors in workflow can

lead to execution failure of the corresponding process. Therefore, workflow should be

verified carefully before execution to reduce risks to the target process. Workflow

verification has received a lot of attention since the birth of the workflow concept.

However, researchers have only focused on structure verification, temporal verification

and resource verification [2] [4] [7] [9]. Most verification techniques ignore data aspect

and there is little support for data flow verification. Previous works on the data flow

aspect have concentrated on detecting common data flow errors such as missing data,

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, ISSN 1613-0073, Jan/2012, pp. 331–351.

redundant data, inconsistent data, garbage data, etc. Among them, Unintentional Change

in In-use Data (UCID) is perhaps one of the most dangerous and common problems. We

define UCID as a situation in which some data values are lost or some data elements are

assigned values different from the intentions of workflow designers due to non-

deterministic access to shared data by different activities. Assuming that workflow is

free of control errors, and activities in workflow can be scheduled within temporal

constraint, we aim to support data verification in the workflow model by concentrating

on UCID detection and correction.

Existing approaches have addressed this problem by detecting potential UCID

patterns, limited to concurrent activities of a single workflow. Unfortunately, this error

can cross a single workflow boundary. In a Workflow Management System (WFMS), in

fact, there exist many workflows executing at the same time, which we call Concurrent

Workflows, and they may be correlated if two activities from different workflows use

shared data. Even if the data flow of each workflow is correct, we cannot ensure

correctness of the whole system because of the mutual interactions among workflows.

The problem is how to detect non-deterministic access to shared data of activities

belonging to not only the same workflow but also different workflows and how to repair

this kind of data abnormality.

Reference [19] is our first efforts in handling the UCID problem. Potential UCID

situations, Time Data Workflow (TDW) concepts, along with two algorithms for

detecting intra-UCID and inter-UCID have been introduced in [19]. This paper is a

refined and extended version of the [19]. In this paper, we redefine TDW as an extension

of Workflow Nets (WF-Nets) [8] instead of Petri Nets as before. Based on these

definitions and two algorithms for detecting intra/inter-UCID in [19], a revised version

of UCID detection algorithm is built. Compared with the previous ones, this revised

algorithm is more accurate and useful. Furthermore, some heuristics for making the

algorithm more flexible and effective are discussed. UCID resolution methods are also

proposed in this paper. Then, we illustrate this theory in practice by using it in designing

workflows which represent change activities in a software change process.

Our approach in UCID detection is to observe behaviors of concurrent activities

having data relation. In the case of activities in the same workflow, their total orders can

be decided based on control flow. However, control flow does not help in the case of

activities in different workflows. Therefore, we must use activities’ execution time

attribute to identify their total orders. Regarding UCID resolution, we take advantage of

composition features of the Petri Nets to create new workflows with UCIDs removed.

The rest of this paper is organized as follows. Section 2 discusses the motivation of

our research. Section 3 defines the Time Data Workflow (TDW), an extension of the

Workflow Net with time and data factors. Section 4 introduces UCID situations caused

by concurrent activities in the same workflow (intra-UCID) or activities in different

concurrent workflows (inter-UCID) [19]. An algorithm for detecting potential UCID in

both cases of intra/inter-UCID at build time, along with algorithm evaluation, is given in

Section 5. Section 6 presents UCID resolution methods. Section 7 introduces our project

on building a change support environment for cooperative software development.

Theory about UCID problem is employed in this project to detect and repair data

abnormalities among concurrent Change Support Workflows. Section 8 reports on

332 Petri Nets & Concurrency Huyen and Ochimizu

related work and finally, Section 9 concludes the paper and discusses points to future

work.

2 Motivation

Let’s take an example. We have two workflows W1 and W2, which are being executed

independently. Workflow activities are modeled by rectangles, and data modified by an

activity are written inside the corresponding rectangle. A small arrow is attached to a

rectangle to denote an activity which is being executed. Data of the system are stored in

a central repository. W1 has five activities which modify A, X, B, C and D respectively.

B and D are modified based on the value of X created by A12. W2 also has five activities

which modify E, X, F, G and H respectively. Both A12 and A22 will modify X, but

designers of W1 and W2, who don’t have a comprehensive view of the whole system,

may not recognize this problem. This is a common problem, especially in a big system

with many workflows.

Fig. 1. Motivating example

W1

W2

X
B =

f(X)
C A

GFXE

D =

g(X)

H

X B =

f(X1)
C A

GFXE

D =

g(X)

H

X
B =

f(X1)
C A

GFXE

D =

g(X2)

H

X =

X1

X =

X1

X =

X2

X
B =

f(X1)
C A

GFXE

D =

g(X)

H

X =

X2

W1

W2

W1

W2

W1

W2

Time

Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A21 A22 A23 A24
A25

A21 A22 A23 A24 A25

A21 A22 A23 A24 A25

Repairing change in workflows Petri Nets & Concurrency – 333

Figure 1 describes some snapshots of the system at different time. For simplicity, we

concentrate on describing the change in value of data elements relating to shared data X.

In snapshot 1, A12 changes value of X to X1. In snapshot 2, A13 changes value of B based

on the value of X, X1. In the next snapshot, A22 changes value of X from X1 to X2. In the

last snapshot, A15 changes value of D based on the current value of X which is X2. If X1

is different from X2, there are two problems in this scenario: X1 is lost and D is assigned

an unexpected value because D is modified based on the value X2 instead of the value

created by activity A12, X1. This is different from the intentions of the designers of the

workflow W1 and may cause an inconsistency between B and D. Regarding our

definition of UCID, these errors are categorized into inter-UCID errors.

The first problem is similar to the lost update problem in database theory. Lost update

problem occurs when two transactions that access the same database items have their

operations interleaved in a way that makes the value of some database item incorrect

[20]. In this case, version control systems (VCSs) can be used if data of the system are

individual artifacts like documents, source codes, etc. Version control is the management

of changes to documents, programs, and other information stored as computer files.

Changes are usually identified by a number or letter code, termed the "revision number".

Each revision is associated with a timestamp and the person making the change.

Revisions can be compared, restored, and with some types of files, merged.

 Unfortunately, VCS cannot help to avoid the second problem. In this situation, if data

of the system are stored in a central database, the database management system (DBMS)

can provide some concurrency control techniques, which are used to ensure the

noninterference or isolation property of concurrently executing transactions such as

locking techniques, timestamp ordering based techniques, etc. A database transaction is a

transaction which satisfies the ACID (atomicity, consistency, isolation and durability)

properties. These properties should be enforced by the concurrency control and recovery

methods of the DBMS [20]. However, in this method, we must specify the boundary of

each transaction. This requirement is difficult to implement because there are many

people involved in a workflow and people in a workflow may know nothing about other

workflows. If the whole workflow is considered as a unique database transaction, it is

impractical because a workflow may use many data elements and may happen for a long

time.

If this type of errors is discovered at runtime, a recovery mechanism must be

performed to ensure the correctness of the whole system. However, recovery is a rather

expensive work, especially in a cooperative environment with many concurrently

executing workflows. Therefore, detecting these errors as soon as possible is necessary

to reduce risk to the target process.

This paper examines UCID situations in a general basic system without concerning

which type of workflow data is stored in the central repository of the system and the

implementation of the central repository as well.

Regarding inter-UCID, our problem domain is workflows whose data and estimated

execution time can be decided at the design phase, for example workflows in the

software evolution process. In these cases, an early UCID detection will help workflow

designers to have a more comprehensive view of the system, and make timely

adjustments to the original workflows to avoid error at runtime. We assume that the

334 Petri Nets & Concurrency Huyen and Ochimizu

following steps are conducted before workflow execution: identifying workflow

activities and their orders, assigning activity properties (data, time…), and checking

error using UCID detection and correction theory. If some potential UCID errors are

detected, the first and second steps should be re-executed, based on suggested solutions

given by UCID detection system.

With reference to workflows in which estimated execution time is not available at

design time, UCID patterns and detection method will be used to detect UCID errors

from workflow execution histories. However, this is out of the scope of this paper.

3 Time Data Workflow (TDW)

There are many ways to model a workflow, such as directed graphs, UML activity

diagram, PERT, etc. In this paper, we chose the WF-Nets based approach to model

workflow process, because it has many useful features needed in the area of business

process modeling besides the mathematical nature of the underlying Petri Nets

formalism [17].

WF-Nets is a subclass of Petri Nets dedicated for process/workflow modeling and

analysis. Petri Nets is a popular graphical and mathematical modeling language in

describing and analyzing systems which are characterized as concurrent, asynchronous,

distributed, parallel, nondeterministic and/or stochastic [17]. Formally, Petri Nets is a

tuple PN = (P, T, F) where P is a finite set of places, T is a finite set of transitions (P ∩ T

= ∅) and F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation) [8]. A Petri Nets PN =

<P, T, F> is a WF-Nets if and only if there is one source place i ∈ P, one sink place o

∈ P such that •i = ∅, o• = ∅, and every node x ∈ P ∪ T is on a path from i to o [8].

Our Time Data Workflow (TDW) is an extension of WF-Nets with time and data

factors. Time and data are represented as attributes of transitions in a TDW. In this

paper, we consider two types of relationships between an activity and a data element.

First, an activity may read a particular data element as its input data. Second, an activity

may write a particular data element as its output data. This means that this data element

is assigned a new value. Inside an activity, read always happens before write. Assuming

that durations of activities can be estimated at build time, we augment each activity A

with two time values min(A), max(A) which describe the minimum and maximum

execution durations of A respectively. The time unit is selected depending on specific

workflow applications. Based on reference point P, which is the start time of its

corresponding workflow, we can infer the Earliest Start Time, EST(A), and the Latest

Finish Time, LFT(A), of A at run time. If S(A), F(A) are the Start Time and Finish Time

of this activity at run time respectively, we can conclude that the Active Interval of A,

[S(A), F(A)], is within its Estimated Active Interval, [EST(A), LFT(A)], that is, [S(A),

F(A)] ⊆[EST(A), LFT(A)] [19].

In a TDW, activities are modeled by transitions, and causal dependencies are modeled

by places and arcs, as shown in Figure 2 [19]. Building blocks such as the AND-split,

AND-join, OR-split, OR-join are used to model sequential, conditional, parallel and

iterative control structures of workflows. AND-split and OR-split transition correspond

to transitions with two or more output places, while AND-join and OR-join transition

Repairing change in workflows Petri Nets & Concurrency – 335

correspond to transitions with multiple incoming arcs. Different symbols are attached to

original rectangles to distinguish normal transitions from transitions containing

branching conditions. Figure 2a illustrates a typical transition in a TDW, with execution

duration ranging from d1 to d2; data elements a, b are inputs and c, d, e are outputs. The

other parts of Figure 2 show how basic constructions of a workflow are represented by

TDW’s notations [19]. For the sake of simplicity, each activity is represented by a

transition. Therefore, the terms ‘activity’ and ‘transition’ are interchangeably used in this

paper.

Fig. 2. Workflow primitives specified by TDW

As an extension of WF-Nets, TDW specifies the time and data properties of a single

case in isolation, assuming that different cases are completely independent from each

other. Therefore, UCIDs are caused by activities in a single TDW instance or activities

belonging to workflow instances of different TDWs. Without the loss of generality, we

assume that each TDW has one instance only.

Activity i

Activity j

Activity k

(b)

(c)

Activity i

Pj Pk

 Activity i Activity j Activity k

tj

Pj

1 Pk

Activity i

Activity j

Activity k

Sequential Structure

AND-split Transition

ti

Pk1

1

Pk2 Activity k

AND-join Transition

Activity i

Pk1

1

Pk2

Activity k

Activity j

OR-join Transition

ti

Pj

1

Pk

 Activity i Activity j Activity k

Iterative Structure

 ti

tk

tk

 tj

tj

tj

tk tj ti

(d)

(f)

(g) tk

Pj

1

Pk

Activity j OR-split Transition ti

tj

tk

(e)

ti

tk

{d1, d2}

(a)
Pi

1

Pj

Transition

t

r: a, b

w: c, d, e

Pi

1

Pl

1

Pi

1 Pl

1

Pm

1

Pl

1

Pi

1

Pi

1

Pi

1

Pi

1

Pj

1 Pi

1

Pm

1

Pl

1

Pl

1

Pl

1

A typical transition

336 Petri Nets & Concurrency Huyen and Ochimizu

Definition 1 (Time Data Workflow – TDW) A TDW, w, is a tuple <P, T, F, id, D,

R, DE, TI > where:

─ <P, T, F> is a WF-Nets with places P, transitions T and arcs F

─ id is the workflow identifier.

─ D is a set of data elements.

─ R = {r, w, u} is a set of possible access rights to data elements (r: read, w: write, u:

use (either read or write)).

─ DE: T x R→ 2
D
 is a function that returns a set of data elements associated with a

transition and an access right.

─ TI: T → R
+
 x (R

+
 x ∞) is a time interval function that returns minimum and

maximum execution durations of a transition.

Definition 2 (Concurrent Time Data Workflow Model) A Concurrent TDW Model

cwm = (W, Twm) is a collection of TDWs which have overlapping execution times

(concurrent TDWs):

─ W = {w1, w2… wn} is a set of concurrent TDWs, where wi = < P, T, F, id, D, R,

DE, TI >.

─ Tcwm = T(w1) ∪T(w2) ∪ …∪T(wn) is the set of all transitions (activities) in cwm.

Given a TDW w as in Definition 1, we have the following definitions [19]:

Definition 3 (Path) A Path is a sequence of consecutive arcs.

A sequence p = (xo, x1, …, xk) is a Path iff ∀i, 0 < i < k – 1: (xi, xi+1) ∈F

Definition 4 (Transition Path) A sequence p = (t0, p1, t1,… , tk) is a Transition Path

iff it is a path and t0, tk ∈ T.

Definition 5 (Transition Reachability) Transition ti is reachable from tj if there

exists a transition path (ti,... , tj) on wm.

Reachable (ti, tj) = true iff ∃transition path p = (ti,... , tj)

Definition 6 (Transition Distance) Given two transitions ti, tj where Reachable (ti, tj)

= true or where Reachable (tj, ti) = true, the Transition Distance between ti, tj is the

length of the shortest path between them.

Definition 7 (Nearest Common Transition) Given two transitions ti, tj where

Reachable (ti, tj) = false and where Reachable (tj, ti) = false, their Nearest Common

Transition is the common transition which has the shortest distances to both of them,

denoted as tnct.

Definition 8 (Closest Data Relation Transition) Given two transitions ti, tj, where

their nearest common transition is not an OR-split transition, tj is called the Closest Data

Relation Transition of ti on data element d if tj just precedes ti in terms of time, and both

tj and ti use (read/write) d, denoted as tcdrt.

4 UCIDs in a Concurrent TDW Management System

A Concurrent TDW Management System is a workflow management system which is

responsible for TDW construction and management. A module of UCID detection and

correction is also integrated into this system.

Repairing change in workflows Petri Nets & Concurrency – 337

Data flow can be implemented explicitly as a part of the workflow model by using a

separate channel to pass data from one activity to another. Otherwise, it can also be

implemented implicitly through a control flow or process data store [3]. The process data

store is basically a central repository where all workflows’ activities can access or

update their data. We choose implicit data flow through the process data store as a basis

for our approach. In this implementation model, UCID may occur, particularly in cases

involving concurrent execution paths.

Given a Concurrent TDW Model cwm as in Definition 2, we have the following

definitions:

Definition 9 (Data Relation) Two activities ai, aj (i ≠ j) have data relation if DE(ai,

u)∩ DE(aj, u) ≠ ∅ [19].
Definition 10 (Concurrent activities) Two activities are called concurrent activities

iff they belong to two parallel branches of a TDW or they are in different TDWs and

have overlapping Active Intervals.

Definition 11 (Unintentional Change in In-use Data) A situation in which some

data values are lost or some data elements are assigned values different from the

intentions of workflow designers due to non-deterministic access to shared data by

different activities [19].

Here we distinguish two kinds of UCID: intra-UCID and inter-UCID. The former

considers UCID situations concerning concurrent activities in the same workflow, while

the latter is related to concurrent activities in different workflows. Definition 12, 13 are

based on definitions of read-write conflict and write-write conflict in [1].

Definition 12 (RW Intra-UCID) A situation in which an activity A tries to read data

from a shared variable x and an activity B tries to write data to the same shared variable

x and vice versa, where A, B are concurrent activities in the same workflow.
Definition 13 (WW Intra-UCID) A situation in which two concurrent activities in

the same workflow, A and B, try to write data to the same shared variable.

Fig. 3. Inter-UCIDs

Definition 14 (RW Inter-UCID) A situation in which an activity A tries to read data

from a shared variable x and an activity B tries to write data to the same shared variable

x and vice versa, where A, B are in different concurrent workflows and have overlapping

Active Interval ([S(A), F(A)] ∩ [S(B), F(B)] ≠ ∅).

TDW

wn

F(ank) F(D) S(C) S(D) S(B) S(amj) S(ank) S(ami) S(A

)

Activity ank

Time

TDW wm

Activity ami Activity amj

u: t u:t

w: t

Activity A

r: x

Activity B

w: x

Activity D

w: y

Activity C

w: y

F(C) F(amj) F(B) F(A) F(ami)

338 Petri Nets & Concurrency Huyen and Ochimizu

Definition 15 (WW Inter-UCID) A situation in which two activities A and B try to

write data to the same shared variable, where A, B are in different concurrent workflows

and have overlapping Active Interval ([S(A), F(A)] ∩ [S(B), F(B)] ≠ ∅).
Definition 16 (UWU Inter-UCID) A situation in which there are inconsistent views

of shared data by two activities in the same workflow, because their shared data are

written externally by an activity in a different concurrent workflow.

As depicted in Figure 3, two activities ami, amj of TDW wm use (read or write) data

element t, where amj is the closest to ami in terms of time and F(amj) < S(ami), which

means tcdrt(ami, t) = amj. A UWU Inter-UCID happens because activity ank of a different

workflow wn writes to t within the time interval [F(amj), S(ami)]. RW Inter-UCID and

WW Inter-UCID also happen between activity A and activity B, activity C and activity

D respectively.

5 Detection of Potential UCID in a Concurrent TDW Management

System

Regarding UCID definitions, inter-UCIDs are identified based on the Active Interval

of activities having data relation. However, Active Interval of an activity can only be

determined at runtime when it has finished its execution, and hence Estimated Active

Interval is used instead of Active Interval to find potential UCID at build time, before a

new TDW is put into the Concurrent TDW Management System to start.

5.1 Calculation of Estimated Active Interval [19]

Designating the start time of a TDW w as a reference point, Pw, we can infer the

Estimated Active Interval of an activity A [EST(A), LFT(A)] with respect to its

minimum and maximum executing durations {min(A), max(A)} and basic control

structures.

Let us say that As is the Start activity of a TDW w, then we have EST(As) = Pw and

LFT(As) = Pw + max(As). For executing activity A, EST(A) = S(A) and LFT(A) = F(A)

if A has been completed.

Sequential Connection (Figure 2b)

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)

AND-Split Connection (Figure 2c)

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)

EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak)

AND-joint Connection (Figure 2d)

EST(Ak) = MAX{EST(Ai) + min(Ai); EST(Aj) + min(Aj)}

LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak)

OR-Split Connection (Figure 2e)

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj)

EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak)

OR-joint Connection (Figure 2f)

EST(Ak) = MIN{EST(Ai) + min(Ai); EST(Aj) + min(Aj)}

Repairing change in workflows Petri Nets & Concurrency – 339

LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak)

5.2 Potential UCID Detection Algorithm

Given a Concurrent TDW Model cwm = (W, Tcwm), where W = {w1, w2, …, wk} and

Tcwm = T(w1) ∪T(w2) ∪ …∪T(wk), w = <P, T, F, id, D, R, DE, TI>. The main idea of

this algorithm is to select one activity and compare it with the other activities. If two

activities have data relation, we will check if there is a potential UCID. In the case of

concurrent activities in the same workflow, potential intra-UCIDs can be detected with

respect to Definitions 12, 13. If two compared activities are in different workflows and

have overlapping Estimated Time Intervals, there is a possibility of an RW/WW inter-

UCID occurrence (Definitions 14, 15). If only the data relation exists and one activity

occurs before the other, we will compare this situation with the definition 16 and the

pattern in Figure 3 to find out a potential UWU inter-UCID.

Step 1: Initialization:

1.1 Let S be a set of unchecked activities. S is initialized with all unfinished activities of

Tcwm;

1.2 Calculate Estimated Active Interval for all activities in S;

1.3 flag = TRUE is a Boolean variable;

Step 2: For every pairwise of activities (ami, ank) in S, execute the following steps:

2.1 Check their Data Relation

Let Umnik be the set of shared data between ami and ank: Umnik = DE(ami, u) ∩ DE(ank,u);

2.1.1 If Umnik = ∅, ami and ank do not have data relation. Therefore UCID cannot

happen between ami and ank;

2.1.2 If Umnik≠ ∅, ami and ank have data relation. Take the next step.

2.2 If ami and ank in the same workflow, check intra-UCID possibility. Otherwise, check

inter-UCID possibility;

2.2 Check intra-UCID possibility

2.2.1 If ami and ank belong to two parallel branches of a workflow, this means that their

Nearest Common Transition, denoted as tnct (ami, ank), is an AND-split transition, they

are concurrent activities. Take the next step;

2.2.2 For every data element, denoted as dmnikl, in Umnik, check the access right to

dmnikl of ami and ank:

2.2.2.1 If both of them have write access right to dmnikl, this means that dmnikl∈
DE(ami, w) and dmnikl∈DE(ank, w), then flag = FALSE. There is a potential WW

Intra-UCID between ami, ank on dmnikl;

2.2.2.2 If one activity has write access right to dmnikl and the other has read access

right to dmnikl, this means that (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or

(dmnikl∈DE(ami, r) and dmnikl∈DE(ank, w)), then flag = FALSE. There is a

potential RW Intra-UCID between ami, ank on dmnikl;

2.3 Check inter-UCID possibility /* Figure 3*/

2.3.1 If ami and ank have overlapping Estimated Active Interval, this means that

[EST(ami), LFT(ami)] ∩ [EST(ank), LFT(ank)] ≠ ∅, they are potential concurrent

activities: check RW/WW inter-UCID possibility. Otherwise, check UWU inter-UCID

possibility;

340 Petri Nets & Concurrency Huyen and Ochimizu

2.3.2 Check potential RW/WW inter-UCID

For every data element, denoted as dmnikl, in Umnik, check the access right to dmnikl of

ami and ank:

2.3.2.1 If both of them have write access right to dmnikl, this means that dmnikl∈
DE(ami, w) and dmnikl∈DE(ank, w), then flag = FALSE. There is a potential WW

Inter-UCID between ami, ank on dmnikl;

2.3.2.2 If one activity has write access right to dmnikl and the other has read access

right to dmnikl, this means that (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or

(dmnikl∈DE(ami, r) and dmnikl∈DE(ank, w)), then flag = FALSE. There is a

potential RW Inter-UCID between ami, ank on dmnikl;

2.3.3 Check potential UWU inter-UCID

Assume that LFT(ank) < EST(ami). For each data element, denoted as dmnikl, in Umnik

where ank has write access right to dmnikl: dmnikl ∈DE(ank, w), perform the following

steps:

2.3.3.1 Find out the Closest Data Relation Transition of ami on dmnikl, denoted as

amj: amj = tcdrt(ami, dmnikl). If amj = ∅, UWU inter-UCID may not happen;

2.3.3.2 If [EST(ank), LFT(ank)] ⊂[LFT(amj), EST(ami)], then flag = FALSE. There

is a potential UWU Inter-UCID among ami, amj, ank on dmnikl;

Step 3: Return flag.

5.3 Algorithm Evaluation

Let’s say n is the number of unfinished activities in a Concurrent TDW Model cwm. In

general, we must inspect n
2
 combinations of any two unfinished activities to find out

some potential UCIDs. This approach allows us to detect not only potential UCID at

build time of pre-executed TDWs, but also potential UCID at run time of running TDWs

by recalculating the Estimated Active Intervals of their unfinished activities more

accurately based on the Active Interval of finished activities. However, depending on

applications, we can reduce the number of checking steps by considering some of the

following heuristics:

─ A two dimensional table can be used to record the access right on data elements of

activities in a Concurrent TDW Model cwm. Figure 4 describes an example of data

flow matrix of a Concurrent TDW Model with three TDWs W1, W2 and W3.

{D1,…, D10} is the data set of the Concurrent TDW Model. Parallelization can be

applied here to reduce execution time. For each element in the data set of cwm,

there is a thread being responsible for checking potential UCID caused by activities

using this data element.

─ After designing a new TDW, UCID check is conducted to find potential UCIDs

before this TDW is put into the Concurrent TDW Management System for

execution. Let’s say m, k, l are the number of unfinished activities in the being

considered pre-executed TDW, other pre-executed TDWs, running TDWs

respectively, we have n = m + k + l. Because the other pre-executed TDWs have

been checked in previous examinations, we can skip combinations of two activities

in these TDWs to reduce the number of inspected combination to n
2
 – k

2
. If we just

want to detect UCIDs caused by activities in the being considered TDW, we will

Repairing change in workflows Petri Nets & Concurrency – 341

verify m x n activity combinations only. A parallel solution in this case is to create

m threads. Each thread will be responsible for one activity in this TDW and will

verify potential UCIDs on combinations created by this activity with the others in

different TDWs.

─ Because potential UCIDs just occur in activities that have shared data, we will

verify activities having shared data only. Each data element will store

identifications of unfinished activities using it. Therefore, the set of checked

activities can be limited to unfinished activities having data relation in the

Concurrent TDW Model. If the number of data elements is small, we can start from

data elements of the being considered pre-executed TDW to pick out unfinished

activities in the Concurrent TDW Model having data relations and use UCID

patterns to find out potential errors.

Fig. 4. Data flow matrix example

6 Potential UCID Resolution

In general, if potential UCIDs happen, there may be some abnormalities in data flows

or control flows of the concerned workflows. A review on the workflow design should

be conducted to make sure that this situation is not made on purpose.

Our given solutions in which some of them will change the workflow structure are

simply reference models. The final decision will depend on workflow designers to

perform modifications that actually lead to a resolved model.

33

A11 A21 A12 A13 A31 A22 A32 A14 A23 A33
D1 W R R

D2 R

D3 W R

D4 W R R R

D5 W R

D6 W R

D7 W R W R R

D8 W R

D9 W R

D10 W

W1 W2 W3

342 Petri Nets & Concurrency Huyen and Ochimizu

6.1 Potential Intra-UCID Resolution

Potential Intra-UCID may be caused by a mistake of workflow designers in designing

parallel branches of a workflow. Therefore, our solution for Intra-UCID is to change the

workflow structure by sequentializing or combining error-related activities. Two

activities causing potential WW Intra-UCID are merged into one by place/transition

fusion (Figure 5a). For RW Intra-UCID, sequentialization is applied to the related

activities. One option is that read activity happens before write activity and the other is

that write activity happens before read activity (Figure 5b). Resolution order will begin

from WW Intra-UCID cases to RW Intra-UCID cases. With regard to potential UCIDs

belonging to the same group, the priority is the happening order.

Fig. 5. Potential Intra-UCID resolution

6.2 Potential Inter-UCID Resolution

Resolving potential inter-UCID is more complex because workflows are designed for

different purposes by different designers and a designer may know nothing about the

work of the others. To resolve inter-UCID, the cooperation of different designers is

necessary and the result will highly depend on the willingness of designers to

communicate with each other.

A method which does not affect the workflow structures is to adjust the workflow

schedule by modifying the workflow start time, maximum and minimum execution

durations of activities in workflows so that inter-UCID patterns do not occur. Another

solution is to change the workflow structure.

r: x ...

w: x ...

Activity A Activity B

Activity C Activity D

...

r: x ...

...

Activity A Activity B

Activity C Activity D

... ...

...

...

Activity A Activity B

Activity C Activity D

... ...

w: x

r: x

w: x

w: y ...

w: y ...

Activity E Activity F

Activity G Activity H

... ...

...

...

Activity F

Activity H

... ...w: y

Activity EG

...

(b) RW Intra-UCID Resolution by sequentialization

(a) WW Intra-UCID Resolution by place/ transition fusion

Repairing change in workflows Petri Nets & Concurrency – 343

wm Start
wm End

 wn Start wn End

EndStart

TDW wm

TDW wn

And-Split Start
And-Join End

wm Time Start

wm Start

 wn Start

 wm End

wm Time End

wn End
wn Time Start wn Time End

r: y ...

w: y ...

Activity E Activity F

Activity G Activity HPg Ph

Pe Pf

r: y ...

...

Activity E

Activity F

Activity G Activity H

w: y

Pf

Pg Ph

EndStart

And-Split Start
And-Join End

wm Time Start

wm Start

 wn Start

 wm End

wm Time End

wn End
wn Time Start wn Time End

...

...

Activity E

Activity F

Activity G Activity H

Pf

Pg Ph

w: y

r: y

Pe

Pe

wm Start
wm End

 wn Start wn End

TDW wm

TDW wn

u: d u: d

w: d

Activity I Activity J

Activity KPk Ph

Pi PjPt

End
Start

And-Split Start And-Join End

wm Time Start

wm Start

 wn Start

 wm End

wm Time End

wn Endwn Time Start wn Time End

Activity I

Activity JPi PjPt

Pk Ph

u: d

w: d

u: d

(b) RW Inter-UCID Resolution by sequentialization

(c) UWU Inter-UCID Resolution by sequentialization

w: x ...

w: x ...

Activity A Activity B

Activity C Activity D

wm Start wm End

 wn Start wn End

...

...

Activity B

Activity D

w: x

Activity AC

EndStart

TDW wm

TDW wn

And-Split Start
And-Join End

Pa Pb

Pc Pd

wm Time Start

wm Start

 wn Start

 wm End

wm Time End

wn End

Pb

Pdwn Time Start wn Time End

(a) WW Inter-UCID Resolution by place/ transition fusion

Pa

Pc

Fig. 6. Potential Inter-UCID resolution

First, we will combine related TDWs into one workflow. In order to preserve the

structure of the original TDWs, in the new TDW, the Start place connects to an AND-

Split transition and the End place is connected to an AND-join transition. Each merged

344 Petri Nets & Concurrency Huyen and Ochimizu

TDW corresponds to a subnet starting from the AND-split transition and ending at the

AND-join transition. Because the merged TDWs are started at different times, we insert

a Time Start transition between the Start place of each merged TDW and the AND-split

transition, a Time End transition between the End place of each merged TDW and the

END-join transition. Time activities are just null activities with some duration and they

help to merge TDWs without modifying the workflow’s schedule seriously. The AND-

split transitions, AND-join transitions, Time Start transitions, Time End transition,

places and arcs connecting the related workflows together represent the dependency

relationships between different workflows which play an important role in the recovery

process in the case of workflow failure. They will not be used to identify the total order

of activities in detecting potential intra-UCID in the synthesis TDW. In the case of a

running TDW, we can create a new TDW from the original workflow by removing its

finished activities, and this new TDW will be combined with other TDWs in a normal

way. Another simpler way is to combine the pre-executed TDWs only. After that,

workflow designers can adjust the Estimated Active Interval of activities in the new

TDW by modifying workflow start time, maximum and minimum execution duration of

its activities so that UCID related activities happen after related activities of the running

TDW.

Next, we will deal with activities causing potential Inter-UCID. The mechanism to

handle potential WW/RW Intra-UCID is applied to WW/RW Inter-UCID cases (Figure

6a, 6b). Regarding UWU potential UCID, three activities related to this error are

connected as shown in Figure 6c. If there are many potential Inter-UCIDs between the

same two TDWs, the priority is Inter-UCID types (WW > RW > UWU) and occurring

time of activities respectively.

As mentioned earlier, inter-UCID resolution is very complex, especially UWU inter-

UCID. Currently, our proposed solution is just a reference model which helps workflow

managers to have a more comprehensive view of data related workflows. We will try to

improve them in the future work.

7 Application

In this section, we present a project on building a change support environment for

cooperative software development. UCID theory is used in this project to detect potential

UCID between concurrent workflows.

Software systems must be changed under various circumstances during development

and after delivery, such as for new requirement, error correction, performance

improvement, etc. However, software change is not an easy task, especially in a

cooperative environment where software artifacts with very complex dependency

relationships are created based on the cooperation of many people. Besides, other

problems such as concurrency of works, synchronization of changes on shared artifacts,

etc. also make this task more difficult. Therefore, a change support environment is

strongly demanded.

In order to help change workers to perform change activities safety and efficiently in

a cooperative environment, we use workflow to represent activities needed to implement

Repairing change in workflows Petri Nets & Concurrency – 345

a change request. We define Change Support Workflow (CSW) as a sequence of

activities required to implement a change. Activities in CSW are responsible for creating

new software artifacts or modifying exiting ones. This means that data elements of CSW

are software artifacts which need to be read, modified or created in the change

implementation process.

Fig. 7. Example of Relationships between UML Artifacts created during a software

development process

In the first phase of the project, a method for automatically generating dependency

relationships among UML elements was given [22]. Change impact analysis which

identifies potential consequences of a change can be realized by tracing the generated

dependency relationships. Result of this process will be used to generate CSW.

In large and cooperative system, there may be hundreds of CSWs executed at the

same time to react to change requirements quickly. However, when there are many

CSWs running on the same system, that UML artifacts are shared by different CSWs is

unavoidable. If CSWs having shared artifacts are executed at the same time,

inconsistencies among their data (UML artifacts) can happen. A version control system

is used in our change support environment to deal with data loss; however this system

does not help in this situation. Therefore, UCID theory is employed in this project to

deal with this problem. Potential UCID can be detected automatically at build time to

help workflow designers make timely adjustments to original workflows.

Our project supports constructing CSW based on the relationships between impacted

UML model elements which are extracted from the result of impact analysis. CSW is

modeled by TDW as follows. Each transition corresponds to an activity which creates or

modifies at least one UML artifact. Total order of two transitions is identified by

examining the dependency relationships between the artifacts modified by these

transactions. Access role write is assigned to the artifacts which need to be modified or

created; the artifacts for reference only are labeled with read access role. This draft of

CSW will help workflow designers in developing the schedule of the change process.

346 Petri Nets & Concurrency Huyen and Ochimizu

The other steps in developing change schedule such as estimating activity resources and

activity durations will be performed by workflow designers. From Activity Duration

Estimates in the schedule, minimum and maximum execution durations of transitions in

this CSW can be inferred. To reduce risks at runtime, UCID check on this CSW will be

conducted. If some potential UCIDs are reported, data and control structure of this CSW

should be adjusted in responding to suggested solutions of the change support system.

Fig. 8. Example of CSWs created based on the relationships between UML Artifacts

Table 1. Time aspect of activities in CSWs described in Figure 7

CSW

ID

Start

time Pw

Activity Name Activity

Duration

Estimates

(days)

Minimum

and

Maximum

execution

duration

Estimated

Active

Interval

W1 5 Activity 1 7.5 ± 0.5 {7,8} [5,13]

Activity 2 5.5 ± 0.5 {5,6} [12,19]

Activity 3 11 ± 1 {10,12} [17,31]

Activity 4 6 ± 1 {5,7} [27,38]

Activity 5 7 ± 1 {6,8} [27,39]

AND-joint 0 {0,0} [33,39]

W2 15 Activity A 6 ± 1 {5,7} [15,22]

Activity B 5 ± 1 {4,6} [20,28]

Activity C 5 ± 1 {4,6} [20,28]

Activity D 10 ± 1 {9,11} [24,39]

Activity E 5.5 ± 0.5 {5,6} [24,34]

Activity F 6 ± 1 {5,7} [29,41]

AND-joint 0 {0,0} [34,41]

Because CSW is constructed based on relationships between software artifacts,

potential Intra-UCIDs seldom happen. Besides, if potential UCIDs are reported, the

r: d1

w: d1

r: d1,d4

w: d4

Activity 1 Activity 2

r: d4,d8

w: d8

r: d5,d9

w: d9

Activity 4

Activity 5

End

r: d2,d4,d5

w: d5

AND-joint activity
Start Activity 3

Start

r: d2,d4,d5

w: d5

r: d2,d6

w: d6

Activity B

Activity C

r: d2

w: d2

Activity A

r: d5,d9

w: d9

r: d6,d10

w: d10

Activity D

Activity E

r: d6,d10,d11

w: d11

Activity F

End

AND-joint activity

Repairing change in workflows Petri Nets & Concurrency – 347

possibility of control flow errors is low too. In this case, workflow designers should

review data flow and pay attention to shared data elements among concurrent CSWs.

With reference to potential inter-UCID, Estimated Active Intervals of activities play a

very important role; therefore a change on project schedule may help overcome this

error.

Fig. 9. Modified CSW with potential UCID corrected

Let’s have an example. Figure 7 describes an example of relationships between UML

artifacts created in different phases of a software development process. If we change

UML Artifact 1, we need to change UML Artifacts 4, 5, 8, 9 because of the relationships

between them. Similarly, if we change UML Artifact 2, we need to change UML

Artifacts 5, 6, 9, 10, 11. By tracing the relationships starting from UML Artifact 1 and

UML Artifact 2, we can create two CSWs to respond to change requirements on UML

Artifact 1 and UML Artifact 2 respectively (Figure 8). Based on the generated

workflows, project manager can conduct other steps in project time management such as

estimating activity resources, estimating activity durations, etc. Information about

activity duration is used to detect potential UCIDs. In Table 1, the minimum and

maximum execution durations of each activity in CSWs described in Figure 8 are

calculated from the Activity Duration Estimate, quantitative assessment of the likely

number of work periods that will be required to complete an activity [18], of the

corresponding activity in the project time management. Based on these values and the

start time of the corresponding workflow, we can calculate the Estimated Active

Intervals according to the formulas given in Section 5.1. After using the Inter-UCID

detection algorithms, the following potential Inter-UCIDs are reported: WW Inter-UCID

between activity 3 and activity B on artifact 5, WW Inter-UCID between activity 5 and

activity D on artifact 9, RW Inter-UCID between activity 3 and activity A on artifact 2,

r: d1

w: d1

r: d1,d4

w: d4

Activity 1

Activity 2

r: d4,d8

w: d8

Activity 4

Activity 5-D

AND-joint activity

Activity 3-B

r: d2,d6

w: d6

r: d2

w: d2

Activity A

r: d6,d10

w: d10

r: d6,d10,d11

w: d11

AND-joint activity

r: d5,d9

w: d9

r: d2,d4,d5

w: d5

Start

And-Split Start

Time Start 2

Time Start 1

End

And-Joint End

Time End 1

Time End 2

Activity C

Activity E

Activity F

348 Petri Nets & Concurrency Huyen and Ochimizu

RW Inter-UCID between activity 5 and activity B on artifact 5. By applying the second

Inter-UCID resolution method, modifying workflow structure, we get the synthesis CSW

as described in Figure 9.

Because detecting potential UCIDs at build time is limited to workflows in which

Estimated Active Intervals can be given before execution, solving this problem at

runtime will be our next step. The model versioning system AMOR [21] offers some

methods to resolve collaborative conflict in model versioning. Regarding this approach,

all people who performed the changes are involved in eliminating the conflicts to obtain

one consistent model version. We will consider applying this approach in our

environment to increase the flexibility of the system.

8 Related Work

Workflow verification has attracted a lot of attention, especially control flow aspect.

However, little research has been carried out on data verification in the workflow

literature.

Reference [3] was one of the first studies to mention the importance of data-flow

verification, and identified possible errors in the data-flow, like missing data, redundant

data, conflict data, etc. Some general discussions on data flow modeling, specifications

and verifications have been given, but without any detailed solution. The authors in [12]

used data flow matrix and UML activity diagram to specify data flow. Based on this

specification, an algorithm for detection of some data anomalies, such as missing data,

redundant data, and potential data conflicts, was given [3]. In [11], a new workflow

model, named Dual Workflow Nets, was defined to explicitly describe both control flow

and data flow. A graph traversal approach was used in [10] to build an algorithm for

detecting lost data, missing data and redundant data. More data flow errors were

recognized and conceptualized as data flow anti-patterns and expressed in terms of

temporal logic CTL
*
 [5, 6]. By using temporal logic, available model checking

techniques can be applied to discover these anti-patterns.

Nevertheless, all of these studies consider data flow errors in a single workflow only

and no error removal method is given at all. In contrast to previous work, we address not

only the interactions of concurrent activities inside a single workflow, but also the

mutual influences between concurrent workflows, which are the sources of data flow

errors. In [19], we focused on identifying UCID situations and defining a new workflow

model as an extension of Petri Nets. Two algorithms for detecting intra-UCID and inter-

UCID were also given in this work. However, there are still many unsolved problems in

[19] and this paper is its refined and extended version. In this paper, TDW is defined as

an extension of Workflow Nets (WF-Nets) instead of Petri Nets. Because the two

algorithms in [19] had many common steps, if we use them separately, execution cost

would be high. Therefore, these two algorithms are combined to reduce the cost and to

form a more accurate and useful algorithm. Algorithm evaluation is also included in this

version. Besides, some heuristics are provided to make the algorithm more flexible and

effective. After that, some UCID resolution methods are proposed to help remove UCID

Repairing change in workflows Petri Nets & Concurrency – 349

errors. Finally, building a change support environment for cooperative software

development is introduced as an application domain for our work.

Concerning the mutual influences of the concurrent workflows approach, the research

closest to us is [7]. However [7] addressed the verification of workflow resource

constraints, and in this work, by nature, handling the resource problem is simpler than

the data problem. A Time Constraint Workflow Net was defined to model workflow.

Then, they identified the problem of resource constraints in WFMS and proposed a

pseudocode algorithm which checked the resource dependency between every two

activities. Reference [4] used hybrid automata to model the influences between

concurrent workflows, and adopted a model checking technique to detect resource

conflict problems.

9 Conclusion and Future Work

In this paper, we have presented Unintentional Change in In-use Data (UCID) concept

and classified types of UCID which can occur, between activities in a single workflow or

in different concurrent workflows. We have also proposed a Time Data Workflow based

on the WF-Nets with many attributes supporting UCID estimation. An algorithm which

helps detect intra/inter-UCIDs in a Concurrent TDW Management System has been

developed too. After that, algorithms evaluation and some solutions to resolve UCID

problem are given. Finally, we have introduced a concrete project supporting software

change development process in a cooperative software environment as an application

using UCID theory to verify change processes at build time.

As future work, we will implement a prototype of Concurrent TDW Management

System and evaluate the effectiveness of UCID detection algorithm by runtime analysis.

Then, we will improve inter-UCID resolutions and refine the generated TDW after

applying UCID resolution methods in the Concurrent TDW Management System.

Detecting and correcting UCID at runtime are our next targets. We also plan to

investigate formal verification methods to verify the correctness of our model and

method. Finally, we will integrate our system into the open source WoPeD [17]. Another

direction of our research is to extend the TDW and improve UCID detection algorithms

to address errors in resource and access control constraints.

References

1. Lee, M., Han, D., Shim, J.: Set-based access conflicts analysis of concurrent workflow

definition. In: Proceedings of Third International Symposium on Cooperative Database

Systems and Applications, pp. 189--196. Beijing, China (2001)

2. Li, H., Yang, Y., and Chen, T. Y.: Resource constraints analysis of workflow specifications.

J. Syst. Softw. 73, 2, pp. 271--285 (2004)

3. Sadiq, S., M. Orlowska, W. Sadiq and C. Foulger.: Data flow and validation in workflow

modeling. In: Proceedings of 15th Australasian Database Conference. LI, H. pp. 207--214

(2004)

350 Petri Nets & Concurrency Huyen and Ochimizu

4. Kikuchi S., Tsuchiya S., Adachi M., and Katsuyama T.: Constraint Verification for

Concurrent System Management Workflows Sharing Resources. In: Third International

Conference on Autonomic and Autonomous Systems (2007)

5. Trˇcka N., van der Aalst W.M.P., and Sidorova N.: Analyzing Control-Flow and Data-Flow

in Workfow Processes in a Unified Way. Technical Report CS 08/31, Eindhoven University

of Technology (2008)

6. Trˇcka N., van der Aalst W.M.P., and Sidorova N.: Data-Flow Anti- Patterns: Discovering

Data-Flow Errors in Workflows. In: 21st International Conference on Advanced Information

Systems (CAiSE’09). LNCS, vol. 5565, pp. 425--439. Springer-Verlag Berlin Heidelberg

(2009)

7. Zhong, J. and Song, B.: Verification of resource constraints for concurrent workflows. In:

Proceedings of the Seventh International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing, pp. 253--261 (2005)

8. Wil van der Aalst, Kees Max van Hee: Workflow Management: Models, Methods, and

Systems. MIT press, Cambridge, MA (2004)

9. Zeng, Q., Wang, H. and Xu, D: Conflict detection and resolution for workflows constrained

by resources and non-determined duration. Journal of Systems and Software 81(9), pp 1491-

-1504 (2008)

10. Sundari M.H., Sen A.K., and Bagchi A.: Detecting Data Flow Errors in Work-flows: A

Systematic Graph Traversal Approach. In: 17th Workshop on Information Technology &

Systems (WITS-2007). Montreal (2007)

11. Fan S., Dou W.C., and Chen J.: Dual Workflow Nets: Mixed Control/Data-Flow

Representation for Workflow Modeling and Verification. In: Advances in Web and Network

Technologies, and Information Management (APWeb/WAIM 2007Workshops), LNCS, vol.

4537, pp 433--444. Springer-Verlag, Berlin (2007)

12. Sun S.X., Zhao J.L., Nunamaker J.F., and Liu Sheng O.R.: Formulating the Data Flow

Perspective for Business Process Management. Information Systems Research, 17(4), pp

374--391 (2006)
13. Heinlein, C.: Workflow and process synchronization with interaction expressions and graphs.

In: Proceedings of the 17th International Conference on Data Engineering (ICDE ’01), pp.

243–252 (2001)

14. Workflow Patterns, http://www.workflowpatterns.com
15. Russell N., van der Aalst W.M.P., and ter Hofstede A.H.M.: Designing a Workfow System

Using Coloured Petri Nets. Transactions on Petri Nets and Other Models of Concurrency

(ToPNoC) III, 5800, pp 1--24 (2009)

16. Awad, A., Decker, G. and Lohmann, N.: Diagnosing and Repairing Data Anomalies in

Process Models. In: 5th International Workshop on Business Process Design. LNBIP, pp 1--

24. Springer, Heidelberg (2009)

17. Workflow Petri Net Designer, http://193.196.7.195:8080/woped

18. PMBOK Guide Fourth Edition. Project Management Institute (2008)

19. Phan Thi Thanh Huyen and Koichiro Ochimizu: Detection of Unintentional Change on In-

use Data for Concurrent Workflows. In: Proceedings of the 2010 International Conference

on Software Engineering Research and Practice (SERP 10). Las Vegas, Nevada, USA (2010)

20. Elmasri, R. and Navathe, S. B.: Fundamentals of database systems, Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA (1989)

21. Adaptable Model Versioning, http://modelversioning.org/

22. Masayuki Kotani and Koichiro Ochimizu: Automatic Generation of Dependency

Relationships between UML Elements for Change Impact Analysis. Journal of Information

Processing Society of Japan, vol. 49, no.7, pp 2265—2291 (2008)

Repairing change in workflows Petri Nets & Concurrency – 351

