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Mascheroni, Wagner, and Wüstenberg . . . . . . . . . . . . . . . . . . 285

Improving a workflow management system with an agent flavour
Moldt, Quenum, Reese, and Wagner . . . . . . . . . . . . . . . . . . . 301

Automata and Petri net models for visualizing and analyzing complex ques-
tionnaires: a case study
Rölke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Detecting and repairing unintentional change in in-use data in concurrent
workflow management system
Huyen and Ochimizu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Taming the shrew – resolving structural heterogeneities with hierarchical
CPNs
Wimmer, Kappel, Kusel, Retschitzegger, Schönböck, and Schwinger . . 353
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Preface

These proceedings, part of the CEUR series, contain contributions accepted for and
presented at the workshops organized as satellite events to the “31st International
Conference on Application and Theory of Petri Nets and Other Models of Concur-
rency” (PETRI NETS 2010) and the “10th International Conference on Application
of Concurrency to System Design” (ACSD 2010), in Braga, Portugal, on June 21-22,
2010.

The five workshops were the following:

• Biological Processes & Petri Nets (BioPPN)
organized by Claudine Chaouiya and Monika Heiner

• Applications of Region Theory (ART)
organized by Jörg Desel and Alex Yakovlev

• Petri Nets and Software Engineering (PNSE)
organized by Michael Duvigneau and Daniel Moldt

• Abstractions for Petri Nets and Other models of Concurrency (APNOC)
organized by Alexander Serebrenik and Natalia Sidorova,

• Scalable and Usable Model checking for Petri nets and other models of concur-
rency (SUMo)
organized by Didier Buchs, Fabrice Kordon, Yann Thierry-Mieg, and Jeremy
Sproston

All these workshops have been organised as a discussion platform for researchers
interested in the application of Petri nets and other formal concurrency models in
many current fields of study, namely in biology, synthesis, software engineering, and
model checking. Independent reviewers have carefully reviewed all papers.

For more details, please see the PETRI NETS / ACSD 2010 website:
http://acsd-petrinets2010.di.uminho.pt

January 2012

Susanna Donatelli
Jetty Kleijn

Ricardo J. Machado
João M. Fernandes
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Introduction

This chapter contains the nine peer-reviewed contributions of the First International
Workshop on Biological Processes & Petri Nets (BioPPN 2010), held as a satellite
event of PETRI NETS 2010, in Braga, Portugal, at June 21, 2010. This workshop
has been organised as a communication platform for researchers interested in the
application of Petri nets in the broad field of integrative biology.

Integrative biology aims at deciphering essential biological processes that are driven
by complex mechanisms, involving miscellaneous interacting molecular compounds.
In this context, the need for appropriate mathematical and computational modelling
tools is widely advocated. Petri nets have proved their usefulness for the modelling,
analysis, and simulation of a diversity of biological networks, covering qualitative,
stochastic, continuous and hybrid models. The deployment of Petri nets to study
biological applications has not only generated original models, but has also motivated
fundamental research.

We received two types of contributions: research papers and work-in-progress papers.
All have been reviewed by four to five referees coming from or being recommended
by the workshop’s Program Committee. In summary, the workshop proceedings en-
close theoretical contributions as well as biological applications, demonstrating the
interdisciplinary nature of the topic.

The workshop was complemented by an invited talk Why aren’t Petri nets widely used
in biological research? given by Jorge Carneiro from Instituto Gulbenkian de Ciência
(IGC, Oeiras, Portugal). He argued that software tools for stochastic Petri nets are
well-suited for engineering artificial systems, but do not yet offer all the functionalities
one would wish to have at hand when modelling a natural biological system. He used
two application examples of stochastic Petri nets to illustrate his concerns – modelling
somatic recombination of immune receptor genes and ion channel gating in sea urchin
spermatozoa.

The workshop gathered about 30 researchers actively working on or merely interested
in the application of Petri nets to biological processes. Its main goal was to demon-
strate that this field of application raises new challenges and that Petri nets can be
highly effective to tackle such challenges. We take the lively discussion throughout
the whole day of workshop as proof that this goal had been reached. For more de-
tails see the workshop website http://www-dssz.informatik.tu-cottbus.de/BME/

BioPPN2010.

Claudine Chaouiya
Instituto Gulbenkian de Ciência, IGC
Oeiras, Portugal
chaouiya@igc.gulbenkian.pt

Monika Heiner
Brandenburg University of Technology at Cottbus
Computer Science Institute, Germany
monika.heiner@informatik.tu-cottbus.de
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Cycle structure in SR and DSR graphs:
implications for multiple equilibria and stable

oscillation in chemical reaction networks

Murad Banaji

Department of Mathematics, University of Portsmouth, Lion Gate Building, Lion
Terrace, Portsmouth, Hampshire PO1 3HF, UK.

Abstract. Associated with a chemical reaction network is a natural
labelled bipartite multigraph termed an SR graph, and its directed ver-
sion, the DSR graph. These objects are closely related to Petri nets.
The construction of SR and DSR graphs for chemical reaction networks
is presented. Conclusions about asymptotic behaviour of the associated
dynamical systems which can be drawn easily from the graphs are dis-
cussed. In particular, theorems on ruling out the possibility of multi-
ple equilibria or stable oscillation in chemical reaction networks based
on computations on SR/DSR graphs are presented. These include both
published and new results. The power and limitations of such results are
illustrated via several examples.

1 Chemical reaction networks: structure and kinetics

Models of chemical reaction networks (CRNs) are able to display a rich variety
of dynamical behaviours [1]. In this paper, a spatially homogeneous setting is
assumed, so that CRNs involving n chemicals give rise to local semiflows on
Rn
≥0, the nonnegative orthant in Rn. These local semiflows are fully determined

if we know 1) the CRN structure, that is, which chemicals react with each other
and in what proportions, and 2) the CRN kinetics, that is, how the reaction
rates depend on the chemical concentrations. An important question is what
CRN behaviours are determined primarily by reaction network structure, with
limited assumptions about the kinetics.

A variety of representations of CRN structure are possible, for example via
matrices or generalised graphs. Of these, a signed, labelled, bipartite multigraph,
termed an SR graph, and its directed version, the DSR graph, are formally similar
to Petri nets. This relationship is discussed further below.

It is now well established that graphical representations can tell us a great
deal about asymptotic behaviours in the associated dynamical systems. Pio-
neering early work on CRNs with mass-action kinetics ([2, 3] for example), had
a graph-theoretic component (using graphs somewhat different from those to
be presented here). More recently, graph-theoretic approaches have been used to
draw conclusions about multistationarity and oscillation in CRNs with restricted
classes of kinetics [4, 5].
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The applicability of such work, particularly in biological contexts, is greatly
increased if only weak assumptions are made about kinetics. Consequently, there
is a growing body of recent work on CRNs with essentially arbitrary kinetics.
It has been shown that examination of Petri nets associated with a CRN allows
conclusions about persistence, that is, whether ω-limit sets of interior points of
Rn
≥0 can intersect the boundary of Rn

≥0 [6]. Work on multistationarity has been
extended beyond the mass-action setting [7, 8]: some conclusions of this work
will be outlined below. Finally, recent work applying the theory of monotone
dynamical systems [9, 10] in innovative ways to CRNs [11] has close links with
some of the new material presented below.

Outline. After some preliminaries, the construction of SR and DSR graphs
is presented, and their relationship to Petri nets is discussed. Some recent results
about multistationarity based on cycle structure in these objects are described.
Subsequently, a new result on monotonicity in CRNs is proved. This result,
Proposition 4, is a graph-theoretic corollary of results in [12]. It bears an inter-
esting relationship to results in [11], which provide stronger conclusions about
convergence, but make different assumptions, and a somewhat different claim.
Finally, several examples, some raising interesting open questions, are presented.
At various points, in order to simplify the exposition, the results are presented
in less generality than possible, with more technical results being referenced.

2 Preliminaries

2.1 A motivating example

Consider the following simple family of CRNs treated in [13, 14]:

SYS 1
A1 +A2 
 B1

A2 +A3 
 B2

A3 
 2A1

SYS 2
A1 +A2 
 B1

A2 +A3 
 B2

A3 +A4 
 B3

A4 
 2A1

· · ·

· · ·

SYS n
Ai +Ai+1 
 Bi,

i = 1, . . . , n+ 1
An+2 
 2A1

(1)

The reader may wish to look ahead to Figure 2 to see representations of the SR
graphs associated with the first three CRNs in this family. This family will be
revisited in Section 7, and the theory to be presented will imply the following
conclusions (to be made precise below): when n is even, SYS n does not allow
multiple nondegenerate equilibria; when n is odd, SYS n cannot have a nontriv-
ial periodic attractor. Both conclusions require only minimal assumptions about
the kinetics.

2.2 Dynamical systems associated with CRNs

In a spatially homogeneous setting, a chemical reaction system in which n reac-
tants participate in m reactions has dynamics governed by the ordinary differ-
ential equation

ẋ = Γv(x). (2)

8 Petri Nets & Concurrency Banaji



x = [x1, . . . , xn]T is the nonnegative vector of reactant concentrations, and v =
[v1, . . . , vm]T is the vector of reaction rates, assumed to be C1. A reaction rate
is the rate at which a reaction proceeds to the right and may take any real value.
Γ is the (constant) n×m stoichiometric matrix of the reaction system. Since
reactant concentrations cannot be negative, it is always reasonable to assume
invariance of Rn

≥0, i.e. xi = 0⇒ ẋi ≥ 0.
The jth column of Γ , termed Γj , is the reaction vector for the jth reaction,

and a stoichiometric matrix is defined only up to an arbitrary signing of its
columns. In other words, given any m×m signature matrix D (i.e. any diagonal
matrix with diagonal entries ±1), one could replace Γ with ΓD and v(x) with
Dv(x). Obviously the dynamical system is left unchanged. The subspace Im(Γ )
of Rn spanned by the reaction vectors is called the stoichiometric subspace.
The intersection of any coset of the Im(Γ ) with Rn

≥0 is called a stoichiometry
class.

Two generalisations of (2) which include explicit inflow and outflow of sub-
strates are worth considering. The first of these is a so-called CFSTR

ẋ = q(xin − x) + Γv(x). (3)

q ∈ R, the flow rate, is generally assumed to be positive, but we allow q = 0 so
that (2) becomes a special case of (3). xin ∈ Rn is a constant nonnegative vector
representing the “feed” (i.e., inflow) concentrations. The second class of systems
is:

ẋ = xin + Γv(x)−Q(x). (4)

Here Q(x) = [q1(x1), . . . , qn(xn)]T , with each qi(xi) assumed to be a C1 function
satisfying ∂qi

∂xi
> 0, and all other quantities defined as before. Systems (4) include

systems (3) with q 6= 0, while systems (2) lie in the closure of systems (4).

Define the m × n matrix V = [Vji] where Vji =
∂vj
∂xi

. A very reasonable,
but weak, assumption about many reaction systems is that reaction rates are
monotonic functions of substrate concentrations as assumed in [14–16] amongst
other places. We use the following definition from [14] (there called NAC):

A reaction system is N1C if i) ΓijVji ≤ 0 for all i and j, and ii) Γij =
0⇒ Vji = 0.

As discussed in [14], the relationship between signs of entries in Γ and V
encoded in the N1C criterion is fulfilled by all reasonable reaction kinetics (in-
cluding mass action and Michaelis-Menten kinetics for example), provided that
reactants never occur on both sides of a reaction.

3 Introduction to SR and DSR graphs

3.1 Construction and relation to Petri nets

SR graphs are signed, bipartite multigraphs with two vertex sets VS (termed “S-
vertices”) and VR (termed “R-vertices”). The edges E form a multiset, consisting

Cycle structure in SR and DSR graphs Petri Nets & Concurrency – 9



of unordered pairs of vertices, one from VS and one from VR. Each edge is signed
and labelled either with a positive real number or the formal label ∞. In other
words, there are functions sgn : E → {−1, 1}, and lbl : E → (0,∞) ∪ {∞}. The
quintuple (VS , VR, E, sgn, lbl) defines an SR graph.

DSR graphs are similar, but have an additional “orientation function” on
their edges, O : E → {−1, 0, 1}. The sextuple (VS , VR, E, sgn, lbl,O) defines a
DSR graph. If O(e) = −1 we will say that the edge e has “S-to-R direction”, if
O(e) = 1, then e has “R-to-S direction”, and if O(e) = 0, then e is “undirected”.
An undirected edge can be regarded as an edge with both S-to-R and R-to-S
direction, and indeed, several results below are unchanged if an undirected edge
is treated as a pair of antiparallel edges of the same sign. SR graphs can be
regarded as the subset of DSR graphs where all edges are undirected.

Both the underlying meanings, and the formal structures, of Petri nets and
SR/DSR graphs have some similarity. If we replace each undirected edge in a
DSR graph with a pair of antiparallel edges, a DSR graph is simply a Petri
net graph, i.e. a bipartite, multidigraph. Similarly, an SR graph is a bipartite
multigraph. S-vertices correspond to variables, while R-vertices correspond to
processes which govern their interaction. The notions of variable and process
are similar to the notions of “place” and “transition” for a Petri net. Edges in
SR/DSR graphs tell us which variables participate in each process, with addi-
tional qualitative information on the nature of this participation in the form
of signs, labels, and directions; edges in Petri nets inform on which objects are
changed by a transition, again with additional information in the form of labels
(multiplicities) and directions. Thus both Petri net graphs and SR/DSR graphs
encode partial information about associated dynamical systems, while neither
includes an explicit notion of time.

There are some important differences, however. Where SR/DSR graphs gen-
erally represent the structures of continuous-state, continuous-time dynamical
systems, Petri nets most often correspond to discrete-state, discrete-time sys-
tems, although the translation to a continuous-state and continuous-time con-
text is possible [17]. Although in both cases additional structures give partial
information about these dynamical systems, there are differences of meaning
and emphasis. Signs on edges in a DSR graph, crucial to much of the associ-
ated theory, are analogous to directions on edges in a Petri net: for example for
an irreversible chemical reaction, an arc from a substrate to reaction vertex in
the Petri net would correspond to a negative, undirected, edge in the SR/DSR
graph. Unlike SR/DSR graphs, markings (i.e. vertex-labellings representing the
current state) are often considered an intrinsic component of Petri nets.

Apart from formal variations between Petri nets and SR/DSR graphs, dif-
ferences in the notions of state and time lead naturally to differences in the
questions asked. Most current work using SR/DSR graphs aims to inform on
the existence, nature, and stability of limit sets of the associated local semiflows.
Analogous questions are certainly possible with Petri nets, for example questions
about the existence of stationary probability distributions for stochastic Petri
nets [18]. However, much study, for example about reachability, safeness and
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boundedness, concerns the structure of the state space itself, and has no obvious
analogy in the SR/DSR case. This explains to some extent the importance of
markings in the study of Petri nets; in the case of SR/DSR graphs, the under-
lying space is generally assumed to have a simple structure, and the aim is to
draw conclusions which are largely independent of initial conditions.

3.2 SR and DSR graphs associated with CRNs

SR and DSR graphs can be associated with arbitrary CRNs and more general
dynamical systems [7, 8]. For example, the construction extends to situations
where there are modulators of reactions which do not themselves participate
in reactions, and where substrates occur on both sides of a reaction. Here, for
simplicity, the construction is presented for an N1C reaction system with stoi-
chiometric matrix Γ . Assume that there is a set of substrates VS = {S1, . . . , Sn},
having concentrations x1, . . . , xn, and reactions VR = {R1, . . . , Rm} occurring
at rates v1, . . . , vm. The labels in VS and VR will be used to refer both to the
substrate/reaction, and the associated substrate/reaction vertices.

– If Γij 6= 0 (i.e. there is net production or consumption of Si reaction j), and

also
∂vj
∂xi

is not identically zero, i.e. the concentration of substrate i affects
the rate of reaction j, then there is an undirected edge {Si, Rj}.

– If Γij 6= 0, but
∂vj

∂xi
≡ 0, then the edge {Si, Rj} has only R-to-S direction.

The edge {Si, Rj} has the sign of Γij and label |Γij |. Thus the labels on edges are
just stoichiometries, while the signs on edges encode information on which sub-
strates occur together on each side of a reaction. A more complete discussion of
the meanings of edge-signs in terms of “activation” and “inhibition” is presented
in [8]. Note that in the context of N1C reaction systems, the following features
(which are reasonably common in the more general setting) do not occur: edges
with only R-to-S direction; multiple edges between a vertex pair; and edges with
edge-label ∞.

SR/DSR graphs can be uniquely associated with (2), (3), or (4): in the case
of (3) and (4), the inflows and outflows are ignored, and the SR/DSR graph is
just that derived from the associated system (2). The construction is most easily
visualised via an example. Consider, first, the simple system of two reactions:

A+B 
 C, A
 B (5)

This has SR graph, shown in Figure 1, left. If all substrates affect the rates
of reactions in which they participate then this is also the DSR graph for the
reaction. If, now, the second reaction is irreversible, i.e. one can write

A+B 
 C, A→ B, (6)

and consequently the concentration of B does not affect the rate of the sec-
ond reaction1, then the SR graph remains the same, losing information about
irreversibility, but the DSR graph now appears as in Figure 1 right.

1 Note that this is usually, but not always, implied by irreversibility: it is possible for
the product of an irreversible reaction to influence a reaction rate.

Cycle structure in SR and DSR graphs Petri Nets & Concurrency – 11



A R1

C

BR2

1 1

1

1

1
A R1

C

BR2

1 1

1

1

1

Fig. 1. Left. The SR (and DSR graph) for reaction system (5). Negative edges are
depicted as dashed lines, while positive edges are bold lines. This convention will be
followed throughout. Right. The DSR graph for reaction system (6), that is, when B
is assumed not to affect the rate of the second reaction.

4 Paths and cycles in SR and DSR graphs

In the usual way, cycles in SR (DSR) graphs are minimal undirected (directed)
paths from some vertex to itself. All paths have a sign, defined as the product
of signs of edges in the path. Given any subgraph E, its size (or length, if it is a
path) |E| is the number of edges in E. Paths of length two will be called short
paths. Any path E of even length also has a parity

P (E) = (−1)|E|/2sign(E).

A cycle C is an e-cycle if P (C) = 1, and an o-cycle otherwise. Given a cycle
C containing edges e1, e2, . . . , e2r such that ei and e(i mod 2r)+1 are adjacent for
each i = 1, . . . , 2r, define:

stoich(C) =

∣∣∣∣∣
r∏

i=1

lbl(e2i−1)−
r∏

i=1

lbl(e2i)

∣∣∣∣∣ .

Note that this definition is independent of the starting point chosen on the cycle.
A cycle with stoich(C) = 0 is termed an s-cycle.

An S-to-R path in an SR graph is a non-self-intersecting path between an S-
vertex and an R-vertex. R-to-R paths and S-to-S paths are similarly defined,
though in these cases the initial and terminal vertices may coincide. Any cycle is
both an R-to-R path and an S-to-S path. Two cycles have S-to-R intersection
if each component of their intersection is an S-to-R path. This definition can be
generalised to DSR graphs in a natural way, but to avoid technicalities regarding
cycle orientation, the reader is referred to [8] for the details. Further notation
will be presented as needed.

Returning to the family of CRNs in (1), these give SR graphs shown in Fig-
ure 2. If all reactants can influence the rates of reactions in which they partici-
pate, then these are also their DSR graphs (otherwise some edges may become
directed). Each SR graph contains a single cycle, which is an e-cycle (resp. o-
cycle) if n is odd (resp. even). These cycles all fail to be s-cycles because of the
unique edge-label of 2.
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SYS 1

2

SYS 2

2

SYS 3

2

Fig. 2. The structure of the SR graphs for SYS 1, 2 and 3 in (1). For simplicity
vertices are unlabelled, but filled circles are S-vertices while open circles are R-vertices.
Unlabelled edges have edge-label 1.

5 Existing results on CRNs, injectivity and monotonicity

5.1 Injectivity and multiple equilibria

A function f : X → Rn is injective if for any x, y ∈ X, f(x) = f(y) implies
x = y. Injectivity of a vector field on some domain is sufficient to guarantee that
there can be no more than one equilibrium on this domain. Define the following
easily computable condition on an SR or DSR graph:

Condition (∗): All e-cycles are s-cycles, and no two e-cycles have S-to-R
intersection.

Note that if an SR/DSR graph has no e-cycles, then Condition (∗) is trivially
fulfilled. A key result in [7] was:

Proposition 1. An N1C reaction system of the form (4) with SR graph satis-
fying Condition (∗) is injective.

Proof. See Theorem 1 in [7].

In [8] this result was strengthened considerably and extended beyond CRNs.
In the context of CRNs with N1C kinetics it specialises to:

Proposition 2. An N1C reaction system of the form (4) with DSR graph sat-
isfying Condition (∗) is injective.

Proof. See Corollary 4.2 in [8].

Proposition 2 is stronger than Proposition 1 because irreversibility is taken
into account. In the case without outflows (2), attention must be restricted to
some fixed stoichiometric class. The results then state that no stoichiometry
class can contain more than one nondegenerate equilibrium in the interior of the
positive orthant [8, 19]. (In this context, a degenerate equilibrium is defined to
be an equilibrium with a zero eigenvalue and corresponding eigenvector lying in
the stoichiometric subspace.) The case with partial outflows was also treated.
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5.2 Monotonicity

A closed, convex, solid, pointed cone K ⊂ Rn is termed a proper cone [20].
The reader is referred to [20] for basic definitions related to cones. Any proper
cone defines a partial order on Rn as follows: given two points x, y ∈ Rn:

1. x ≥ y ⇔ x− y ∈ K;
2. x > y ⇔ x ≥ y and x 6= y;
3. x� y ⇔ x− y ∈ intK.

An extremal ray is a one dimensional face of a cone. A proper cone with exactly
n extremal rays is termed simplicial. Simplicial cones have the feature that unit
vectors on the extremal rays can be chosen as basis vectors for a new coordinate
system. Consider some linear subspaceA ⊂ Rn. Then any closed, convex, pointed
cone K ⊂ A with nonempty interior in A is termed A-proper. If, further, K has
exactly dim(A) extremal rays, then K is termed A-simplicial.

Consider some local semiflow φ defined on X ⊂ Rn. Assume that there is
some linear subspace A ⊂ Rn with a coset A′

with nonempty intersection with
X, and such that φ leaves A′ ∩ X invariant. Suppose further that there is an
A-proper cone K such that for all x, y ∈ A′ ∩ X, x > y ⇒ φt(x) > φt(y) for
all values of t ≥ 0 such that φt(x) and φt(y) are defined. Then we say that
φ|A′∩X preserves K, and that φ|A′∩X is monotone. If, further, x > y ⇒
φt(x)� φt(y) for all values of t > 0 such that φt(x) and φt(y) are defined, then
φ|A′∩X is strongly monotone. A local semiflow is monotone with respect to the
nonnegative orthant if and only if the Jacobian of the vector field has nonnegative
off-diagonal elements, in which case the vector field is termed cooperative.

Returning to (3), in the case q = 0, all stoichiometry classes are invariant,
while if q > 0, there is a globally attracting stoichiometry class. Conditions for
monotonicity of φ restricted to invariant subspaces of Rn were discussed exten-
sively in [12]. Here the immediate aim is to develop graph-theoretic corollaries
of one of these results, and to raise some interesting open questions.

Given a vector y ∈ Rn, define

Q1(y) ≡ {v ∈ Rn | viyi ≥ 0}.

A matrix Γ is R-sorted (resp. S-sorted) if any two distinct columns (resp.
rows) Γi and Γj of Γ satisfy Γi ∈ Q1(−Γj). A matrix Γ

′
is R-sortable (resp.

S-sortable) if there exists a signature matrix D such that Γ ≡ Γ
′
D (resp.

Γ ≡ DΓ ′
) is well-defined, and is R-sorted (resp. S-sorted).

Proposition 3. Consider a system of N1C reactions of the form (3) whose sto-
ichiometric matrix Γ is R-sortable, and whose reaction vectors {Γk} are linearly
independent. Let S = Im(Γ ). Then there is an S-simplicial cone K preserved by
the system restricted to any invariant stoichiometry class, such that each reaction
vector is collinear with an extremal ray of K.

Proof. This is a specialisation of Corollary A7 in [12].
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Systems fulfilling the assumptions of Proposition 3, cannot have periodic or-
bits intersecting the interior of the positive orthant which are stable on their
stoichiometry class. In fact, mild additional assumptions ensure strong mono-
tonicity guaranteeing generic convergence of bounded trajectories to equilibria
[9, 10].

6 Graph-theoretic implications of Proposition 3

Some more notation is needed for the results to follow. The S-degree (R-
degree) of an SR graph G is the maximum degree of its S-vertices (R-vertices).
Analogous to the terminology for matrices, a subgraph E is R-sorted (S-
sorted) if each R-to-R (S-to-S) path Ek in E satisfies P (Ek) = 1. Note that E is
R-sorted if and only if each R-to-R path Ek of length 2 in E satisfies P (Ek) = 1.

An R-flip on a SR/DSR graph G is an operation which changes the signs
on all edges incident on some R-vertex in G. (This is equivalent to exchanging
left and right for the chemical reaction associated with the R-vertex). An R-
resigning is a sequence of R-flips. An S-flip and S-resigning can be defined
similarly. Given a set of R-vertices {Rk} in G, the closed neighbourhood of {Rk}
will be denoted G{Rk}, i.e., G{Rk} is the subgraph consisting of {Rk} along with
all edges incident on vertices of {Rk}, and all S-vertices adjacent to those in
{Rk}.
Proposition 4. Consider a system of N1C reactions of the form (3) with stoi-
chiometric matrix Γ , and whose reaction vectors {Γk} are linearly independent.
Define S = Im(Γ ). Associate with the system the SR graph G. Suppose that

1. G has S-degree ≤ 2.
2. All cycles in G are e-cycles.

Then there is an S-simplicial cone K preserved by the system restricted to any
invariant stoichiometry class, such that each reaction vector is collinear with an
extremal ray of K.

The key idea of the proof is simple: if the system satisfies the conditions of
Proposition 4, then the conditions of Proposition 3 are also met. In this case,
the extremal vectors of the cone K define a local coordinate system on each sto-
ichiometry class, such that the (restricted) system is cooperative in this coordi-
nate system. This interpretation in terms of recoordinatisation is best illustrated
with an example.

Consider SYS 1 from (1) with SR graph shown in Figure 2 left, which can
easily be confirmed to satisfy the conditions of Proposition 4. Define the following
matrices:

Γ =




−1 0 2
−1 −1 0

0 −1 −1
1 0 0
0 1 0



, T =




−1 0 2
−1 1 0

0 1 −1
1 0 0
0 −1 0



, T

′
=




1 −2 2 0 0
1 −1 2 0 0
1 −1 1 0 0
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Γ , the stoichiometric matrix, has rank 3, and so Proposition 4 applies. Let
x1, . . . , x5 be the concentrations of the five substrates involved, v1, v2, v3 be the
rates of the three reactions, and vij ≡ ∂vi

∂xj
. Assuming that the system is N1C

means that V ≡ [vij ] has sign structure

sgn(V ) =




+ + 0 − 0
0 + + 0 −
− 0 + 0 0




where + denotes a nonnegative quantity, and − denotes a nonpositive quantity.
Consider now any coordinates y satisfying x = Ty. Note that T is a re-signed
version of Γ . Choosing some left inverse for T , say T

′
, gives y1 = x1−2x2 +2x3,

y2 = x1 − x2 + 2x3 and y3 = x1 − x2 + x3. (The choice of T
′

is not unique, but
this does not affect the argument.) Calculation gives that J = T

′
ΓV T has sign

structure

sgn(J) =



− + +
+ − +
+ + −


 ,

i.e., restricting to any invariant stoichiometry class, the dynamical system for
the evolution of the quantities y1, y2, y3 is cooperative. Further, the evolution of
{xi} is uniquely determined by the evolution of {yi} via the equation x = Ty.

It is time to return to the steps leading to the proof of Proposition 4. In
Lemmas 1 and 2 below, G is an SR graph with S-degree ≤ 2. This implies the
following: consider R-vertices v, v

′
and v

′′
such that v 6= v

′
and v 6= v

′′
(v

′
= v

′′

is possible). Assume there exist two distinct short paths in G, one from v to v
′

and one from v to v
′′
. These paths must be edge disjoint, for otherwise there

must be an S-vertex lying on both A and B, and hence having degree ≥ 3.

Lemma 1. Suppose G is a connected SR graph with S-degree ≤ 2, and has some
connected, R-sorted, subgraph E containing R-vertices v

′
and v

′′
. Assume that

there is a path C1 of length 4 between v
′

and v
′′

containing an R-vertex not in
E. Then either C1 is even or G contains an o-cycle.

Proof. If v
′

= v
′′
, then C1 is not even, then it is itself and e-cycle. Otherwise

consider any path C2 connecting v
′

and v
′′

and lying entirely in E. C2 exists
since E is connected, and P (C2) = 1 since E is R-sorted. Since G has S-degree
≤ 2, and |C1| = 4, C1 and C2 share only endpoints, v

′
and v

′′
, and hence together

they form a cycle C. If P (C1) = −1, then P (C) = P (C2)P (C1) = −1, and so C
is an o-cycle. ut

Lemma 2. Suppose G is a connected SR graph with S-degree ≤ 2 which does
not contain an o-cycle. Then it can be R-sorted.

Proof. The result is trivial if G contains a single R-vertex, as it contains no
short R-to-R paths. Suppose the result is true for graphs containing k R-vertices.
Then it must be true for graphs containing k+1 R-vertices. Suppose G contains
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k+ 1 R-vertices. Enumerate these R-vertices as R1, . . . , Rk+1 in such a way that
G− ≡ G{R1,...,Rk} is connected. This is possible since G is connected.

By the induction hypothesis, G− can be R-sorted. Having R-sorted G−, con-
sider Rk+1. If all short paths between Rk+1 and R-vertices in G− have the same
parity, then either they are all even and G is R-sorted; or they are all odd, and
a single R-flip on Rk+1 R-sorts G. (Note that an R-flip on Rk+1 does not affect
the parity of any R-to-R paths in G−.) Otherwise there must be two distinct
short paths of opposite sign, between Rk+1 and R-vertices v

′
, v

′′ ∈ G− (v
′

= v
′′

is possible). Since G has S-degree ≤ 2, these paths must be edge-disjoint, and
together form an odd path of length 4 from v

′
to Rk+1 to v

′′
. By Lemma 1, G

contains an o-cycle. ut
PROOF of Proposition 4. From Lemma 2, if no connected component of

G contains an o-cycle then each connected component of G (and hence G itself)
can be R-sorted. The fact that G can be R-sorted corresponds to choosing a
signing of the stoichiometric matrix Γ such that any two columns Γi and Γj

satisfy Γi ∈ Q1(−Γj). Thus the conditions of Proposition 3 are satisfied. ut

7 Examples illustrating the result and its limitations

Example 1: SYS n from Section 1. It is easy to confirm that the reactions in
SYS n have linearly independent reaction vectors for all n . Moreover, as illus-
trated by Figure 2, the corresponding SR graphs contain a single cycle, which,
for odd (even) n is an e-cycle (o-cycle). Thus for even n, Proposition 1 and
subsequent remarks apply, ruling out the possibility of more than one positive
nondegenerate equilibrium for (2) on each stoichiometry class, or in the case
with outflows (4), ruling out multiple equilibria altogether; meanwhile, while for
odd n, Proposition 4 can be applied to (2) or (3), implying that restricted to any
invariant stoichiometry class the system is monotone, and the restricted dynam-
ical system cannot have an attracting periodic orbit intersecting the interior of
the nonnegative orthant.

Example 2: Generalised interconversion networks. Consider the fol-
lowing system of chemical reactions:

A
 B, A
 C, A
 D, B 
 C (7)

with SR graph shown in Figure 3. Formally, such systems have R-degree ≤ 2 and
have SR graphs which are S-sorted. Although Proposition 4 cannot be applied,
such “interconversion networks”, with the N1C assumption, in fact give rise to
cooperative dynamical systems [12], and a variety of different techniques give
strong convergence results, both with and without outflows [16, 11, 21].

This example highlights that there is an immediate dual to Lemma 2, and
hence Proposition 4. The following lemma can be regarded as a restatement of
well-known results on systems preserving orthant cones (see [10], for example,
and the discussion for CRNs in [11]). Its proof is omitted as it follows closely
that of Lemma 2.
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D R1 C R4

R2 A R3 B

Fig. 3. The SR graph for reaction system 7. All edge labels are 1 and have been omitted.
The system preserves the nonnegative orthant.

Lemma 3. Let G be an SR graph with R-degree ≤ 2 and containing no o-cycles.
Then, via an S-resigning, G can be S-sorted.

Although the S-sorting process is formally similar to the R-sorting one, the in-
terpretation of the result is quite different: changing the sign of the ith row of Γ
and the ith column of V is equivalent to a recoordinatisation replacing concen-
tration xi with −xi. Such recoordinatisations give rise to a cooperative system
if and only if the original system is monotone with respect to an orthant cone.

Example 3: Linearly independent reaction vectors are not neces-
sary for monotonicity. Consider the system of three reactions involving four
substrates

A
 B + C, B 
 D, C +D 
 A (8)

with stoichiometric matrix Γ and SR graph shown in Figure 4.

Γ =




−1 0 1
1 −1 0
1 0 −1
0 1 −1




R1 B

C

R3A D

R2

Fig. 4. The stoichiometric matrix and SR graph for reaction system 8. All edge labels
are 1 and have been omitted.

Note that Γ is R-sorted, but has rank 2 as all row-sums are zero. As before,
let xi be the concentrations of the four substrates involved. Now, choose new
coordinates y satisfying x = Ty, where

T =




1 0 0
0 1 0
−1 0 0

0 0 1


 .
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Note: i) T has rank 3, ii) Im(Γ ) ⊂ Im(T ), and iii) regarding the columns of T
as extremal vectors of a cone K, K has trivial intersection with Im(Γ ). One can
proceed to choose some left inverse T

′
of T , and calculate that the Jacobian

J = T
′
ΓV T has nonnegative off-diagonal entries. In other words the y-variables

define a cooperative dynamical system. The relationship between T and Γ is
further discussed in the concluding section.

Note that although K has empty interior in R4, both K and Im(Γ ) lie in the
hyperplane H = Im(T ) defined by x1 +x3 = 0. As K is H-proper, attention can
be restricted to invariant cosets of H. With mild additional assumptions on the
kinetics, the theory in [21] can be applied to get strong convergence results, but
this is not pursued here.

Example 4a: The absence of o-cycles is not necessary for mono-
tonicity. Consider the following system of 4 chemical reactions on 5 substrates:

A
 B + C, B 
 D, C +D 
 A C + E 
 A (9)

Define

Γ =




−1 0 1 1
1 −1 0 0
1 0 −1 −1
0 1 −1 0
0 0 0 −1




and T =




1 0 0 0
0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1



.

Γ , the stoichiometric matrix, has rank 3, and the system has SR graph containing
both e- and o-cycles (Figure 5). Further, there are substrates participating in 3
reactions, and reactions involving 3 substrates (and so it is neither R-sortable nor
S-sortable). Thus, all the conditions for the results quoted so far in this paper,
and for theorems in [11], are immediately violated. However, applying theory in
[12], the system is order preserving. In particular, Im(T ) is a 4D subspace of R5

containing Im(Γ ) (the stoichiometric subspace), and T defines a cone K which
is preserved by the system restricted to cosets of Im(T ).

R4 C

E

R1A B R2

R3 D

Fig. 5. The SR graph for reaction system 9. All edge labels are 1 and have been omitted.

Example 4b: The absence of o-cycles is not necessary for mono-
tonicity. Returning to the system of reactions in (5), the system has SR graph
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containing an o-cycle (Figure 1, left). Nevertheless, the system was shown in
[12] to preserve a nonsimplicial cone for all N1C kinetics. In fact, the further
analysis in [21] showed that with mild additional assumptions this system is
strongly monotone and all orbits on each stoichiometry class converge to an
equilibrium which is unique on that stoichiometry class. It is worth mentioning
that this example is fundamentally different from Example 4a, and that it is
currently unclear how commonly reaction systems preserve orders generated by
nonsimplicial cones.

8 Discussion and open questions

The results presented here provide only a glimpse of the possibilities for analysis
of limit sets of CRNs using graph-theoretic – and more generally combinatorial –
approaches. The literature in this area is growing rapidly, and new techniques are
constantly being brought into play. Working with the weakest possible kinetic
assumptions often gives rise to approaches quite different from those used in
the previous study of mass-action systems. Conversely, it is possible that such
approaches can be used to provide explicit restrictions on the kinetics for which
a system displays some particular behaviour.

The paper highlights an interesting duality between questions of multista-
tionarity and questions of stable periodic behaviour, a duality already implicit
in discussions of interaction graphs [22–25]. Loosely, the absence of e-cycles (pos-
itive cycles) is associated with injectivity for systems described by SR graphs (I
graphs); and the absence of o-cycles (negative cycles) is associated with absence
of periodic attractors for systems described by SR graphs (I graphs). The con-
nections between apparently unrelated SR and I graph results on injectivity have
been clarified in [26], but there is still considerable work to be done to clarify
the results on monotonicity.

One open question regards the relationship between the theory and examples
presented here on monotonicity, and previous results, particularly Theorem 1 in
[11], on monotonicity in “reaction coordinates”. Note that by Proposition 4.5 in
[11] the “positive loop property” described there is precisely Conditions 1 and 2
in Proposition 4 here. At the same time, the requirement that the stoichiometric
matrix has full rank, is not needed for monotonicity in reaction coordinates.
In some cases (e.g. Example 3 above), it can be shown that this requirement
is unnecessary for monotonicity too, but it is currently unclear whether this is
always the case. On the other hand, as illustrated by Examples 4a and 4b, the
positive loop property is not needed for monotonicity.

Consider again Examples 3 and 4a. The key fact is that their stoichiometric
matrices admit factorisations Γ = T1T2, taking the particular forms




−1 0 1
1 −1 0
1 0 −1
0 1 −1


 =




1 0 0
0 1 0
−1 0 0

0 0 1






−1 0 1

1 −1 0
0 1 −1


 (Example 3), and
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−1 0 1 1
1 −1 0 0
1 0 −1 −1
0 1 −1 0
0 0 0 −1




=




1 0 0 0
0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1







−1 0 1 1
1 −1 0 0
0 1 −1 0
0 0 0 −1


 (Example 4a).

In each case, the first factor, T1, has exactly one nonzero entry in each row. On
the other hand, the second factor, T2, is S-sorted. The theory in [12] ensures
that these conditions are sufficient (though not necessary) to guarantee that the
system restricted to some coset of Im(T1), is monotone with respect to the order
defined by T1. The dynamical implications of this factorisation result will be
elaborated on in future work.

A broad open question concerns the extent to which the techniques pre-
sented here extend to systems with discrete-time, and perhaps also discrete-
state space. In [6], there were shown to be close relationships, but also subtle
differences, between results on persistence in the continuous-time, continuous-
state context, and results on liveness in the discrete-time, discrete-state context.
Even discretising only time can lead to difficulties: while the interpretation of
injectivity results in the context of discrete-time, continuous-state, systems is
straightforward, the dynamical implications of monotonicity can differ from the
continuous-time case. For example, strongly monotone disrete-time dynamical
systems may have stable k-cycles for k ≥ 2 [27]. When the state space is dis-
crete, an additional difficulty which may arise concerns differentiability of the
associated functions, an essential requirement for the results presented here.

Finally, the work on monotonicity here has an interesting relationship with
examples presented by Kunze and Siegel, for example in [28]. This connection
remains to be explored and clarified.
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24. M. Kaufman, C. Soulé, and R. Thomas. A new necessary condition on interaction

graphs for multistationarity. J. Theor. Biol., 248(4):675–685, 2007.
25. D. Angeli, M. W. Hirsch, and E. Sontag. Attractors in coherent systems of differ-

ential equations. J. Diff. Eq., 246:3058–3076, 2009.
26. M. Banaji. Graph-theoretic conditions for injectivity of functions on rectangular

domains. J. Math. Anal. Appl., 370:302–311, 2010.
27. J. F. Jiang and S. X. Yu. Stable cycles for attractors of strongly monotone discrete-

time dynamical systems. J. Math. Anal. Appl., 202:349–362, 1996.
28. H. Kunze and D. Siegel. A graph theoretic approach to strong monotonicity with

respect to polyhedral cones. Positivity, 6:95–113, 2002.

22 Petri Nets & Concurrency Banaji



On the Importance of the
Deadlock Trap Property for Monotonic Liveness

Monika Heiner1, Cristian Mahulea2, Manuel Silva2

1 Department of Computer Science, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

monika.heiner@tu-cottbus.de
2 Instituto de Investigación en Ingenieŕıa de Aragón (I3A),
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Abstract. In Petri net systems, liveness is an important property cap-
turing the idea of no transition (action) becoming non-fireable (unattain-
able). Additionally, in some situations it is particularly interesting to
check if the net system is (marking) monotonically live, i.e., it remains
live for any marking greater than the initial one. In this paper, we dis-
cuss structural conditions preserving liveness under arbitrary marking
increase. It is proved that the deadlock trap property (DTP) is a neces-
sary condition for liveness monotonicity of ordinary nets, and necessary
and sufficient for some subclasses. We illustrate also how the result can
be used to study liveness monotonicity for non-ordinary nets using a sim-
ulation preserving the firing language. Finally, we apply these conditions
to several case studies of biomolecular networks.

1 Motivation

Petri nets are a natural choice to represent biomolecular networks. Various types
of Petri nets may be useful – qualitative, deterministically timed, stochastic, con-
tinuous or hybrid ones, depending on the available information and the kind of
properties to be analysed. Accordingly, the integrative framework demonstrated
by several case studies in [GHR+08], [HGD08], [HDG10] applies a family of re-
lated Petri net models, sharing structure, but differing in their kind of kinetic
information.

A key notion of the promoted strategy of biomodel engineering is the level
concept, which has been introduced in the Petri net framework in [GHL07]. Here,
a token stands for a specific amount of mass, defined by the total mass divided
by the number of levels. Thus, increasing the token number to represent a certain
amount of mass means to increase the resolution of accuracy.

This procedure silently assumes some kind of behaviour preservation while
the marking is increased (typically multiplied by a factor) to represent a finer
granularity of the mass flowing through the network. However, as it is well-known
in Petri net theory, liveness is not monotonic with respect to (w.r.t.) the initial
marking for general Petri nets. Thus, there is no reason to generally assume that
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there is no significant change in the possible behaviour by marking increase.
Contrary, under liveness monotonicity w.r.t. the initial marking we can expect
continuization (fluidization) to be reasonable. However, only a particular kind
of monotonicity seems to be needed for continuization: homothetic liveness, i.e.,
liveness preservation while multiplying the initial marking by k [RTS99], [SR02].

At structural level, (monotonic) liveness can be considered using transforma-
tion (reduction) rules [Ber86], [Sil85], [Mur89], [Sta90], the classical analysis for
ordinary nets based on the Deadlock Trap Property (DTP) [Mur89], [Sta90], or
the results of Rank Theorems, which are directly applicable to non-ordinary nets
[TS96], [RTS98]. In this paper, we concentrate on the DTP, which will initially
be used for ordinary net models, and later extended to non-ordinary ones.

This paper is organized as follows. We start off with recalling relevant notions
and results of Petri net theory. Afterwards we introduce the considered subject
by looking briefly at two examples, before turning to our main result yielding
a necessary condition for monotonic liveness. We demonstrate the usefulness of
our results for the analysis of biomolecular networks by a variety of case studies.
We conclude with an outlook on open issues.

2 Preliminaries

We assume basic knowledge of the standard notions of place/transition Petri
nets, see e.g. [DHP+93], [HGD08], [DA10]. To be self-contained we recall the
fundamental notions relevant for our paper.

Definition 1 (Petri net, syntax).
A Petri net is a tuple N = 〈P, T,Pre,Post〉, and a Petri net system is a

tuple Σ = 〈N ,m0〉, where

– P and T are finite, non-empty, and disjoint sets. P is the set of places. T
is the set of transitions.

– Pre,Post ∈ N|P|×|T| are the pre- and post-matrices, where | · | is the car-
dinality of a set, i.e., its number of elements. For a place pi ∈ P and a
transition tj ∈ T , Pre(pi, tj) is the weight of the arc connecting pi to tj (0
if there is no arc), while Post(pi, tj) is the weight of the arc connecting tj to
pi.

– m0 ∈ N|P |≥0 gives the initial marking.
– m(p) yields the number of tokens on place p in the marking m. A place
p with m(p) = 0 is called empty (unmarked) in m, otherwise it is called
marked (non-empty). A set of places is called empty if all its places are
empty, otherwise marked.

– The preset and postset of a node x ∈ P ∪ T are denoted by • x and x • .
They represent the input and output transitions of a place x, or the input
and output places of a transition x. More specifically, if tj ∈ T , • tj = {pi ∈
P |Pre(pi, tj) > 0} and tj • = {pi ∈ P |Post(pi, tj) > 0}. Similarly, if pi ∈ P ,
• pi = {tj ∈ T |Post(pi, tj) > 0} and pi • = {tj ∈ T |Pre(pi, tj) > 0}.
We extend both notions to a set of nodes X ⊆ P ∪ T and define the set of
all prenodes •X :=

⋃
x∈X

• x, and the set of all postnodes X • :=
⋃

x∈X x • .
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– A node x ∈ P ∪T is called source node, if • x = ∅, and sink node if x • = ∅.
A boundary node is either a sink or a source node (but not both, because we
assume a connected net).

Definition 2 (Petri net, behaviour). Let 〈N ,m0〉 be a net system.

– A transition t is enabled at marking m, written as m[t〉, if
∀p ∈ •t : m(p) ≥ Pre(p, t), else disabled.

– A transition t, enabled in m, may fire (occur), leading to a new marking m′,
written as m[t〉m′, with ∀p ∈ P : m′(p) = m(p)− Pre(p, t) + Post(p, t).

– The set of all markings reachable from a marking m0, written as [m0〉, is
the smallest set such that m0 ∈ [m0〉, m ∈ [m0〉 ∧m[t〉m′ ⇒m′ ∈ [m0〉.

– The reachability graph (RG) is a directed graph with [m0〉 as set of nodes,
and the labelled arcs denote the reachability relation m[t〉m′.

Definition 3 (Behavioural properties). Let 〈N ,m0〉 be a net system.

– A place p is k-bounded (bounded for short) if there is a positive integer
number k, serving as an upper bound for the number of tokens on this place
in all reachable markings of the Petri net: ∃ k ∈ N0 : ∀m ∈ [m0〉 : m(p) ≤ k .

– A Petri net system is k-bounded (bounded for short) if all its places are
k-bounded.

– A transition t is dead at marking m if it is not enabled in any marking m′

reachable from m: 6 ∃ m′ ∈ [m〉 : m′[t〉.
– A transition t is live if it is not dead in any marking reachable from m0.
– A marking m is dead if there is no transition which is enabled in m.
– A Petri net system is deadlock-free (weakly live) if there are no reachable

dead markings.
– A Petri net system is live (strongly live) if each transition is live.

Definition 4 (Net structures). Let N = 〈P, T,Pre,Post〉 be a Petri net.
N is

– Homogeneous (HOM) if ∀p ∈ P : t, t′ ∈ p• ⇒ Pre(p, t) = Pre(p, t′);
– Ordinary (ORD) if ∀p ∈ P and ∀t ∈ T , Pre(p, t) ≤ 1 and Post(p, t) ≤ 1;
– Extended Simple (ES) (sometimes also called asymmetric choice) if it is

ORD and ∀ p, q ∈ P : p• ∩ q• = ∅ ∨ p• ⊆ q• ∨ q• ⊆ p•;
– Extended Free Choice (EFC) if it is ORD and ∀ p, q ∈ P : p•∩ q• = ∅∨p• =
q•.

Definition 5 (DTP). Let N = 〈P, T,Pre,Post〉 be a Petri net.

– A siphon (structural deadlock, co-trap) is a non-empty set of places D ⊆ P
with •D ⊆ D • .

– A trap is a non-empty set of places Q ⊆ P with Q • ⊆ •Q.
– A minimal siphon (trap) is a siphon (trap) not including a siphon (trap) as

a proper subset.
– A bad siphon is a siphon, which does not include a trap.
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– An empty siphon (trap) is a siphon (trap), not containing a token.
– The Deadlock Trap Property (DTP) asks for every siphon to include an

initially marked trap, i.e., marked at m0.

The DTP can be reformulated as: minimal siphons are not bad and the
maximal traps included are initially marked.

Definition 6 (Semiflows). Let N = 〈P, T,Pre,Post〉 be a net.

– The token flow matrix (or incidence matrix if the net is pure, i.e., self-loop
free) is a matrix C = Post− Pre.

– A place vector is a vector y ∈ Z|P |; a transition vector is a vector x ∈ Z|T |.
– A P-semiflow is a place vector y with y ·C = 0, y ≥ 0, y 6= 0;

a T-semiflow is a transition vector x with C · x = 0, x ≥ 0, x 6= 0.
– The support of a semiflow x, written as supp(x), is the set of nodes corre-

sponding to the non-zero entries of x.
– A net is conservative if every place belongs to the support of a P-semiflow.
– A net is consistent if every transition belongs to the support of a T-semiflow.
– In a minimal semiflow x, supp (x) does not contain the support of any other

semiflow z, i.e., 6 ∃ semiflow z : supp (z) ⊂ supp (x), and the greatest com-
mon divisor of x is 1.

– A mono-T-semiflow net (MTS net) is a consistent and conservative net that
has exactly one minimal T-semiflow.

For convenience, we give vectors (markings, semiflows) in a short-hand nota-
tion by enumerating only the non-zero entries. Finally, we recall some well-known
related propositions (see for example [Mur89], [Sta90]), which might be useful
for the reasoning we pursue in this paper.

Proposition 1 (Basics).

1. An empty siphon remains empty forever. A marked trap remains marked for
ever.

2. If R and R′ are siphons (traps), then R ∪R′ is also a siphon (trap).
3. A minimal siphon (trap) is a P-strongly-connected component, i.e., its places

are strongly connected.
4. A deadlocked Petri net system has an empty siphon.
5. Each siphon of a live net system is initially marked.
6. If there is a bad siphon, the DTP does not hold.
7. A source place p establishes a bad siphon D = {p} on its own, and a sink

place q a trap Q = {q}.
8. If each transition has a pre-place, then P • = T , and if each transition has

a post-place, then •P = T . Thus, in a net without boundary transitions, the
whole set of places is a siphon as well as a trap (however, not necessarily
minimal ones).

9. For a P-semiflow x it holds • supp(x) = supp(x) • . Thus, the support of a
P-semiflow is siphon and trap as well (however, generally not vice versa).
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Proposition 2 (DTP and behavioural properties).

1. An ordinary Petri net without siphons is live.
2. If N is ordinary and the DTP holds for m0, then 〈N ,m0〉 is deadlock-free.
3. If N is ES and the DTP holds for m0, then 〈N ,m0〉 is live.
4. Let N be an EFC net. 〈N ,m0〉 is live iff the DTP holds.

We conclude this section with a proposition from [CCS91], which might be
less known.

Proposition 3 (MTS net and behavioural properties). Liveness and
deadlock-freeness coincide in mono-T-semiflow net systems.

3 Monotonic Liveness

If a property holds for a Petri net N with the marking m0, and it also holds in
N for any m ≥m0, then it is said to be monotonic in the system 〈N ,m0〉. In
this paper we are especially interested in monotonic liveness.

Definition 7 (Monotonic liveness).
Let 〈N ,m0〉 be a Petri net system. It is called monotonically live, if being

live for m0, it remains live for any m ≥m0.

We are looking for conditions, at best structural conditions, preserving live-
ness under arbitrary marking increase. To illustrate the problem, let’s consider
a classical example [Sta90], [SR02].

Example 1. The netN in Figure 1 is ES, conservative, consistent, and covered by
one T-semiflow. It is live for the given initial marking m1 = (2p1, p4). Adding
a token to place p5 yields the initial marking m2 = (2p1, p4, p5) and the net
system remains live for m2 ≥ m1. However, adding a token to p4 yields the
initial marking m3 = (2p1, 2p4) and the net behaviour now contains finite firing
sequences, i.e., it can run into a deadlock (dead state). Thus, the net system is
not live for m3 ≥m1. It is not monotonically live.

How to distinguish both cases? The net has two (minimal) bad siphons
D1 = {p1, p2} and D2 = {p1, p3}. There is no chance to prevent these siphons
from getting empty for arbitrary markings. D1 can potentially be emptied
by firing t2 ∈ D1

• \ •D1, and D2 by firing t1 ∈ D2
• \ •D2. The latter case

destroyed the liveness for m3 as it will equally occur for all initial markings
allowing transition sequences containing one of the troublemakers, in this
example t1 and t2, sufficiently often. �

One lesson learnt from the previous example is, a net does not have to make
use of the additional tokens. Thus, all behaviour (set of transition sequences),
which is possible for m is still possible for m′, with m ≤ m′. However, new
tokens may allow for additional system behaviour, which is actually well-known
in Petri net theory, see Proposition 4.
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minimal deadlock, not containing a trap:
D1={p1, p2}; D2={p1,p3}
t1 may clean D2, t2 may clean D1;
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Fig. 1. A mono-T-semiflow and ES Petri net N and its reachability graph
for the marking m1 = (2p1, p4), generating the language LN (m1) =
(t1t2t3)∗{ε, t1, t1t2}. The siphon {p1, p3} does not contain a trap, i.e., it is a
bad siphon. If the initial marking is increased, it can potentially become empty
by firing of t1.
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t3
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Fig. 2. Two other reachability graphs for the net N in Figure 1 for the initial
markings m2 = (2p1, p4, p5) and m3 = (2p1, 2p4); both are greater than m1.
Obviously, LN (m1) ⊂ LN (m2), LN (m1) ⊂ LN (m3), but 〈N ,m3〉 is not live
while 〈N ,m1〉 is live.

Proposition 4. For any net N and two markings m and m′, with m ≤ m′,
it holds LN (m) ⊆ LN (m′) [BRA83]; nevertheless, 〈N ,m〉 may be live while
〈N ,m′〉 not.

Example 1 is a mono-T-semiflow net, i.e., a net, where liveness and deadlock-
freeness coincide (see Proposition 3). We look briefly at Example 2 to understand
that this does not generally hold if there are several T-semiflows breathing life
into the net.

Example 2. The net N in Figure 3 is a slight extension of Example 1. It is ES,
conservative, consistent and covered by two T-semiflows: x1 = (t1, t2, t3),x2 =
(t4, t5). It is live for the initial marking m1 = (2p1, p4).
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minimal deadlock, not containing a trap:

D1={p1, p2}, D2={p1,p3};

t2 may clean D1, t1 may clean D2;
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transitions t1, t2, t3 are non-live.

Fig. 3. An ES Petri net which is not mono-T-semiflow. It is live for the initial
marking m1 = (2p1, p4). The siphon {p1, p2} is bad. So it can potentially become
empty by firing t2 sufficiently often. This happens for the initial marking m2 =
(2p1, p4, 2p5), making the net non-live, however keeping it deadlock-free (observe
that {p3, p6} behaves as a trap if the firing of t3 is blocked forever).

The net has the following minimal siphons D1 = {p1, p2}, D2 = {p1, p3, p6},
and D3 = {p4, p5}; the first two are bad siphons. With the initial marking
m2 = (2p1, p4, 2p5), D1 can become empty by firing twice t2 ∈ D1

• \ •D1,
which destroys the liveness, without causing a dead state. The transitions t4, t5
are live, the others not. Thus, the net system is not live, but deadlock-free. �

The loss of liveness is not necessarily monotonic itself; i.e., a net may be live
for m1, non-live for a marking m2 with m2 ≥m1, and live again for a marking
m3 with m3 ≥m2 (which works for all examples in this paper). Liveness may
also be lost by marking multiples (homothetic markings). Examples 1 and 2 are
homothetically live, Example 3 in Section 5 not.

4 Monotonic Liveness of Ordinary Nets

Let us turn to liveness criteria suitable for our objective looking at ordinary nets
first. Liveness criteria not relying on the marking obviously ensure monotonic
liveness. Unfortunately, there are only a few.

First of all, there are some structural reduction rules, see, e.g., [Sil85], [Ber86],
[Mur89], [SR99]. To give a sample, the following reduction rule is easy to accept:
a source transition is live, and all its post-places are unbounded. The transition
and its post-places can be deleted (for analysis purposes); the reduction can be
iterated as many times it is applicable. Sometimes, this kind of reasoning allows
to decide liveness (for examples, see Section 6).

Besides structural reduction we have the DTP, which in most cases does
depend on the marking, but it is obviously monotonic w.r.t. the marking: if each
siphon contains a marked trap at m, then – of course – it contains a marked
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trap at m′ ≥ m. Thus, the DTP-related conclusions on behavioural properties
in Proposition 2 are monotonic as well:

Proposition 5 (Monotonic DTP).

1. An ordinary net without siphons is monotonically live.
2. An ordinary net system which holds the DTP is monotonically deadlock-free.
3. A live ES net system which holds the DTP is monotonically live.
4. An EFC net system is monotonically live iff the DTP holds.

Proposition 5.1 can be considered as a special case of the DTP. Then, there
must be source transitions (see Proposition 1.8), and the net is not strongly
connected and not bounded.

Lemma 1. Let be N an ordinary Petri net. If N is monotonically live, then
there are no bad siphons.

Proof. We will prove its reverse – if there exist a bad siphon, then the net system
is not monotonically live – by contradiction. Let PS be a bad siphon. Then there
exist troublemaking transitions Θi ∈ PS

• \ • PS . There must be such transitions,
because otherwise PS

• = • PS , and then the siphon PS would be a trap as well.
Since the net system is monotonically live, the marking of the places P \

PS can be increased in such a way that it will never restrict the firing of the
transitions PS

• , i.e., the transitions depending on the siphon. Therefore, we can
consider the subnet restricted to PS in isolation.

We will show that the subsystem restricted to PS can be emptied eventually
by increasing the marking, hence cannot be monotonically live. Obviously we
can assume that PS is a minimal siphon. We consider two cases.

(1) The siphon has no forks (tj is a fork if |tj • | > 1). Based on the P-strongly-
conectedness (see Proposition 1.3), there exists at least one path from each place
p ∈ PS to one of the troublemakers Θi. Moving a token from p to •Θi does not
increase the marking of any other place of PS not belonging to the considered
path. Obviously, this path can contain joins (tj is a join if | • t| > 1), but we can
add any tokens that are missing in the input places of the join. Firing the join,
the marking of the places in the siphon is not increased. Using this process we
can move the tokens from any p ∈ PS to some •Θi, and by firing Θi when it
is enabled, PS can be emptied. Thus, the net system can not be monotonically
live.

(2) On the contrary, let us assume that there exists at least one fork tj and
let p1, p2 ∈ tj • be its output places. For the same reason as discussed in case (1),
there exists a directed path from both places to one or several troublemakers.
If all paths from p1 to any troublemaker Θi contain tj , then they form a trap.
This is impossible because siphons are assumed to be bad. By symmetry, in the
case in which the paths from p2 to troublemakers contain tj , there exists a trap
as well.

Finally, let us assume that there exists a path from p1 to a troublemaker
Θi and one path from p2 to a troublemakers Θk, none of them containing tj .
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On both paths the same kind of reasoning can be applied (in an iterative way
if several forks appear). Therefore, the siphon can be emptied even if firing tj
increases the tokens in PS . �

Lemma 1 helps to preclude monotonic liveness for Examples 1 and 2 as well
as for all other non-monotonically live examples we are aware of.

Theorem 1. Let be N an ordinary Petri net. If 〈N ,m0〉 is monotonically live,
then the DTP holds.

Proof. The structural check of the DTP can have three possible outcomes.

1. If there are no siphons, then the DTP holds trivially and the net is mono-
tonically live (see Proposition 5.1).

2. If there are bad siphons, then the DTP does not hold for any initial marking
and the net is not monotonically live (see Lemma 1).

3. If each siphon includes a trap, then the maximal trap PT in every minimal
siphon PS has to be initially marked to fulfill the DTP. Because we assume
liveness of the net system, there has to be at least one token in each minimal
siphon (see Proposition 1.5). Let us assume that a token is not in PT , but
in a place p ∈ PS \PT . If there exists at least one path without forks from p
to a troublemaking transition Θi ∈ PS

• \ • PS not containing any transition
belonging to the trap, • PT , then p can be emptied using the same reasoning
as used in the proof of Lemma 1, case (1). Therefore the net can not be live.
If the path from p to a troublemaking transition Θi ∈ PS

• \ • PS contains a
fork, then the output places of the fork will be marked when p is emptied,
and the paths from the output places of the forks to the output should be
considered separately.
Finally, if all paths from p to the troublemaking transitions contain at least
one transition • PT , then the trap PT is not maximal since PT together with
all places belonging to the above mentioned paths (including all non-minimal
ones) from p to transitions • PT are also a trap. �

According to Theorem 1, the DTP establishes a necessary condition for mono-
tonic liveness, which complements Proposition 5.3.

Corollary 1. A live ES net system is monotonically live iff the DTP holds.

Moreover, for those systems for which deadlock-freeness is equivalent to live-
ness, the DTP is a sufficient criteria for liveness monotonicity. This leads, for
example, to the following theorem:

Theorem 2. Let be N an ordinary mono-T-semiflow Petri net which for m0

fulfills the DTP. Then the system 〈N ,m〉 is live for any m ≥m0.

Proof. It follows from Proposition 5.2 (DTP and deadlock-freeness mono-
tonicity) and Proposition 3 (equivalence of liveness and deadlock freeness in
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mono-T-semiflow net systems). �

Therefore, the DTP is a sufficient criterion for monotonic liveness of ordinary
mono-T-semiflow net systems as well. In summary, while the DTP is in general
neither necessary nor sufficient for liveness, it turns out to be the case to keep
alive ordinary ES nets or ordinary mono-T-semiflow nets under any marking
increase.

5 Monotonic Liveness of Non-ordinary Nets

It is well-known that non-ordinary nets can be simulated under interleaving
semantics by ordinary ones [Sil85] (see Figure 4 for an example). Let us look
on the net structures we get by this simulation to learn how far the results for
ordinary nets of Section 4 can be uplifted to non-ordinary nets.

p1

p1

a

b

c

d

a

b

d

c

2

5

2

3

unfolding of non-ordinary nets to ordinary nets

Fig. 4. A general principle to simulate a non-ordinary net system by an ordinary
net system (here, the firing language of the second net projected on {a, b, c, d}
is always equal to that of the first) [Sil85].

Example 3. We take a non-ordinary net from [SR02] and consider its simula-
tion by an ordinary net, which we construct according to the general principle
demonstrated in Figure 4.

The two net systems in Figure 5 are conservative, consistent, and live for the
given initial marking. The ordinary net on the right hand side is not ES, and it
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has two minimal bad siphons {q1, p1, p1b, p1c}, {p2, p1, p1b, p1c}. Thus, according
to Lemma 1, it is not monotonically live. Because our simulation preserves
the projection of the firing language, in particular, preserves monotonicity
of liveness. Thus, we conclude that the model on the left hand side is not
monotonically live. Indeed, both nets are not live for any initial marking with
an even number of tokens in p1, but live for infinitely many other markings
greater than or equal to (1, 1). �

As a consequence of firing simulation by the ordinary net systems of the
non-ordinary ones (preserving always the markings of the places involved in the
head of the tail and complement, here q1 and q1co), liveness monotonicity can
be studied on the ordinary simulation.

q1coq1

p1c p1b

p2

p1

t2t1

p1

p2
t1 t2

23

Fig. 5. A non-ordinary Petri net system and its simulation by an ordinary one.
Both systems are non-live for any initial marking with an even number of tokens
in p1, and live for any other odd marking. Note that the markings of q1 and q1co
should not be increased in order to keep the language simulation in the right
hand model. The net system on the right has a bad siphon {q1, p1, p1b, p1c} that
can potentially become empty by firing t2 sufficiently often.

6 Applications

We consider a variety of test cases of our benchmark repository to demonstrate
the helpfulness of the DTP for biomolecular networks. The following list sketches
some basic characteristics. The essential analysis results are summarized in Ta-
ble 1. All models hold the DTP, they are consistent and (supposed to be) live.
For non-ordinary nets, the DTP refers to its simulation by an ordinary one.

1. Apoptosis (size: 37 places, 45 transitions, 89 arcs) is a signal transduc-
tion network, which governs complex mechanisms to control and execute
genetically programmed cell death in mammalian cells. Disturbances in the
apoptotic processes may lead to various diseases. This essential part of nor-
mal physiology for most metazoan species is not really well understood; thus
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there exist many model versions. The validation by Petri net invariants of
the model considered here is discussed in [HKW04], [HK04].

2. RKIP (size: 11 places, 11 transitions, 14 arcs) models the core of the in-
fluence of the Raf-1 Kinase Inhibitor Protein (RKIP) on the Extracellular
signal Regulated Kinase (ERK) signalling pathway. It is one of the standard
examples used in the systems biology community. It has been introduced in
[CSK+03]; the corresponding qualitative, stochastic, continuous Petri nets
are scrutinized in [GH06], [HDG10].

3. Biosensor (size: 6 places, 10 transitions, 21 arcs) is a gene expression net-
work extended by metabolic activity. The model is a general template of a
biosensor, which can be instantiated to be adapted to specic pollutants. It is
considered as qualitative, stochastic, and continuous Petri net in [GHR+08]
to demonstrate a model-driven design of a self-powering electrochemical
biosensor.

4. Hypoxia (size: 14 places, 19 transitions, 56 arcs) is one of the well-
studied molecular pathways activated under hypoxia condition. It mod-
els the Hypoxia Induced Factor (HIF) pathway responsible for regulating
oxygen-sensitive gene expression. The version considered here is discussed in
[YWS+07]; the corresponding qualitative and continuous Petri nets are used
in [HS10] to determine the core network.

5. Lac operon (size: 11 places, 17 transitions, 41 arcs) is a classical example
of prokaryotic gene regulation. We re-use the simplified model discussed in
[Wil06]. Its corresponding stochastic Petri net is considered in [HLGM09].

6. G/PPP (size: 26 places, 32 transitions, 76 arcs) is a simplified model of the
combined glycolysis (G) and pentose phosphate pathway (PPP) in erythro-
cytes (red blood cells). It belongs to the classical examples of biochemistry
textbooks, see e.g. [BTS02], and thus of systems biology as well. The model
was first discussed using Petri net technologies in [Red94]. Its validation by
Petri net invariants is shown in [HK04], and a more exhaustive qualitative
analysis in [KH08].

7. MAPK (size: 22 places, 30 transitions, 90 arcs) models the signalling
pathway of the mitogen-activated protein kinase cascade, published in
[LBS00]. It is a three-stage double phosphorylation cascade; each phosphory-
lation/dephosphorylation step applies the mass action kinetics pattern. The
corresponding qualitative, stochastic, and continuous Petri net are scruti-
nized in [GHL07], [HGD08].

8. CC – Circadian clock (size: 14 places, 16 transitions, 58 arcs) refers to the
central time signals of a roughly 24-hour cycle in living entities. Circadian
rhythms are used by a wide range of organisms to anticipate daily changes
in the environment. The model published in [BL00] demonstrates that cir-
cadian network can oscillate reliably in the presence of stochastic biomolec-
ular noise and when cellular conditions are altered. It is also available as
PRISM model on the PRISM website (http://www.prismmodelchecker.org).
Its corresponding stochastic Petri net belongs to the benchmark suite used in
[SH09]. We consider here a version with inhibitor arcs modelled by co-places.
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9. Halo (size: 37 places, 38 transitions, 138 arcs) is a cellular signaling and reg-
ulation network, describing the phototaxis in the halobacterium salinarum
[NMOG03]. It models the sophisticated survival strategy, which the halobac-
terium developed for harsh conditions (high temperature, high salt). A light
sensing system and flagellar motor switching allows the cells to swim to
those places of their habitat where the best light conditions are available.
The model is the result of prolonged investigations by experimentally work-
ing scientists [Mar10].

10. Pheromone (size: 42 places, 48 transitions, 119 arcs) is a signal transduc-
tion network of the well understood mating pheromone response pathway in
Saccharomyces cerevisiae. The qualitative Petri net in [SHK06] extends a for-
mer ODE model [KK04]. The Petri net was validated by Petri net invariants
and a partitioning of the transition set.

11. Potato (size: 17 places, 25 transitions, 78 arcs) describes the main car-
bon metabolism, the sucrose-to-starch breakdown in Solanum tuberosum
(potato) tubers. The qualitative Petri net model was developed in co-
operation with experimentally working scientists, experienced in ODE mod-
elling. Its validation by Petri net invariants is discussed in [HK04], and a
more detailed pathway exploration in [KJH05].

Table 1. Some biomolecular case studies; all of them hold the DTP, are con-
sistent and live.

# case study multiplicities net class bounded liveness shown by

1 apoptosis ORD ES no Proposition 2.1
2 RKIP ORD ES yes Proposition 2.3
3 biosensor ORD ES no Proposition 2.3

4 hypoxia ORD not ES no structural reduction
5 lac operon HOM not ES no structural reduction
6 G/PPP HOM not ES no structural reduction

7 MAPK ORD not ES yes dynamic analysis (RG)
8 CC HOM not ES yes dynamic analysis (RG)
9 halo not HOM not ES yes dynamic analysis (RG)

10 pheromone HOM not ES no by reasoning
11 potato not HOM not ES no by reasoning

Contrary, the model of signal transduction events involved in the angiogenesis
processes, which is discussed in [NMC+09] as a stochastic and continuous Petri
net model (size: 39 places, 64 transitions, 185 arcs) is to a large extent covered by
a (non-minimal) bad siphon. Thus, even if the net is live for a certain marking m,
there is always a larger marking m′, which will allow to remove all tokens from
the bad siphon. Consequently, an arbitrary marking increase will not preserve
liveness.
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7 Tools

The Petri nets for the case studies have been constructed using Snoopy [RMH10],
a tool to design and animate or simulate hierarchical graphs, among them qual-
itative, stochastic and continuous Petri nets as used in the case studies in Sec-
tion 6. Snoopy provides export to various analysis tools as well as import and
export of the Systems Biology Markup Language (SBML).

The qualitative analyses have been made with the Petri net analysis tool
Charlie [Fra09], complemented by the structural reduction rules supported by
the Integrated Net Analyser INA [SR99].

8 Conclusions

We have discussed the problem of monotonic liveness, with one of the motivations
originating from bio-model engineering. We have presented a new result showing
the necessity of the DTP for monotonic liveness.

Moreover, we immediately know – thanks to the well-known propositions of
the DTP – that ordinary ES nets are monotonically iff the DTP holds. Further-
more, we know – because the DTP monotonically ensures deadlock freeness –
that for any net class, in which liveness and deadlock freeness coincide, mono-
tonic liveness is characterized by the DTP. We have shown one instance for this
case: the mono-T-semiflow nets (MTS).

We have demonstrated the usefulness of our results by applying them to a
variety of biomolecular networks.

One of the remaining open issues is: what are sufficient conditions for mono-
tonic liveness for more general net structures? While none of our test cases is an
MTS net, this line might be worth being explored more carefully, e.g. by looking
at FRT nets (Freely Related T-Semiflows) [CS92] and extensions.
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Abstract. Motivated by the graded posteriorization during the AP axis
development in the frog Xenopus laevis, we propose an abstract Petri net
model for the formation of a gradient of proteins in a chain of cells.

Keywords: gradient formation, planar signalling, Petri net model

1 Introduction

Petri nets have been shown to be very promising for molecular and cellular
biology, in particular for metabolic, signalling and gene-regulatory networks (see
e.g. [1, 2, 6, 9, 10, 14, 20, 30, 31]). In this paper we propose Petri nets as an abstract
modelling tool for higher level developmental processes in the organism, e.g., on
tissue and organ level, taking cells as central elements.

Currently, we are working on a case study: the embryonic development of
the anterior-posterior i.e., head-to-tail axis (AP axis) in the model organism
Xenopus laevis, the African clawed frog. The development of this model embryo
has been studied thoroughly and a huge amount of literature is available to
draw from when building and validating the model, see references in [3, 15].
Moreover, this case study comprises several different subprocesses, found in many
biological processes, that require modelling solutions. The aim of our project is to
eventually model the entire process of AP axis development. Hence we envisage
a final model consisting of several building blocks, most of which describing
generic biological processes. Each of the subprocesses poses modelling challenges
which, when solved, may lead to templates for similar developmental processes,
incorporating multiple levels of both spatial and temporal information, also in
other organisms. Petri nets are particularly useful in modelling such biological
processes, due to their intuitive graphical component, which resembles biological
diagrams, and their ability to model concurrency. Our case study appears to be
very well suited to explore new ways in which Petri nets can be applied to
developmental biology.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 39–53.
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In this paper we present a fundamental approach to modelling a particular
subprocess: the formation of a morphogen gradient, which helps instigate the
differentiation of the cells along the developing axis. This subprocess is a good
starting point, since it is relatively simple conceptually, in comparison to the
other subprocesses in the case study. In early development, gradients are cru-
cial ([36]) and finding a modelling solution for the generic process of gradient
formation will not only serve the modelling of this case study, but will also be
useful for the modelling of other developmental processes. By staying very close
to the biological sequence of events in gradient formation, rather than focusing
on a concrete outcome, the model should be generally applicable and robust.

Throughout this paper the emphasis will be on abstraction and modelling
decisions, as opposed to implementation of specific biological data; we present
a basic Petri net modelling gradient formation, which serves as a proof of con-
cept for our approach. In the remainder of this paper we outline the biological
background of gradient formation in general and in this particular case study.
Subsequently we describe our modelling decisions and we present the model. In
the last section the possibilities of the model and future work are discussed.

2 PT-nets with activator arcs

For a general introduction to Petri nets we refer to [27]. In this paper, we use
PT-nets with activator arcs ([17]), and a maximally concurrent execution rule [5].

Petri nets are defined by an underlying structure consisting of places and
transitions. These basic elements are connected by directed, weighted arcs. In
the Petri net model considered in this paper, there are moreover activator arcs
connecting places to transitions. In modelling, places are usually the passive
elements, representing local states, and transitions the active elements. Here,
global states, referred to as markings, are defined as mappings assigning to each
place a natural number (of tokens corresponding to available resources).

A PTA-net, is a tuple N = (P, T, W,Act , m0) such that:

– P and T are finite disjoint sets, of the places and transitions of N , resp.
– W : (T × P ) ∪ (P × T ) → N is the weight function of N .
– Act ⊆ P × T is the set of activator arcs of N .
– m0 : P → N is the initial marking of N .

In diagrams, places are drawn as circles, and transitions as boxes. Activator arcs
are indicated by black-dot arrowheads. If W (x, y) ≥ 1, then (x, y) is an arc
leading from x to y; it is annotated with its weight if this is greater than one.
A marking m is represented by drawing in each place p exactly m(p) tokens as
small black dots. We assume that each transition t has at least one input place
(there is at least one place p such that W (p, t) ≥ 1).

When a single transition t occurs (‘fires’) at a marking, it takes tokens from
its input places and adds tokens to its output places (with the number of tokens
consumed/produced given by the weights of the relevant arcs). Moreover, if there
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is an activator arc (p, t) ∈ Act , then transition t can only be executed at the
given marking if p contains at least one token, without the implication of tokens
in p being consumed or produced when t occurs. Thus, the difference with a
self-loop, i.e., an arc from p to t and vice versa, is that the activator arc only
tests for the presence of tokens in p.

We define the executions of N in the more general terms of simultaneously
occurring transitions. A step is a multiset of transitions U : T → N. Thus U(t)
specifies how many times transition t occurs in U . (Note that if we exclude the
empty multiset, single transitions can be considered as minimal steps.) Step U

is enabled (to occur) at a marking m if m assigns enough tokens to each place
for all occurrences of transitions in U and, moreover, all places tested through
an activator arc by a transition in U , contain at least one token.

Formally, step U is enabled at marking m of N if, for all p ∈ P :

– m(p) ≥
∑

t∈T U(t) · W (p, t)
– m(p) ≥ 1 whenever there is a transition t such that U(t) ≥ 1 and (p, t) ∈ Act .

If U is enabled at m, it can be executed leading to the marking m′ obtained
from m throught the accumulated effect of all transition occurrences in U :

– m′(p) =
∑

t∈T U(t) · (W (t, p) − W (p, t)) for all p ∈ P .

Finally, a step U is said to be max-enabled at m if it is enabled at m and there
is no step U ′ that strictly contains U (meaning that U ′ 6= U and U(t) ≤ U ′(t)
for all transitions t) and which is also enabled at m. We denote this by m[U〉m′.
A (max-enabled) step sequence is then a sequence σ = U1 . . . Un of non-empty
steps Ui such that m0 [U1〉m1 · · · mn−1 [Un〉mn, for some markings m1, . . . , mn

of N . Then mn is said to be a reachable marking of N (under the maximally
concurrent step semantics).

To conclude this preliminary section, we elaborate a bit on the choice of
this particular net model. First, it should be observed that it follows from the
above definitions that the semantics allows auto-concurrency, the phenomenon
that a transition may be executed concurrently with itself. This approach makes
it possible to use transitions for a faithful modeling of natural events like the
independent (non-sequential) occurrence in vast numbers of a biochemical reac-
tion in a living cell. Note that the degree of auto-concurrency of a transition can
easily be controlled by a dedicated place with a fixed, say k, number of tokens
connected by a self-loop with that transition implying that never more than k

copies of that transition can fire simultaneously.
Activator arcs were introduced in [16] as a means of testing for the presence

of at least one token in a place, and so they are similar to other kinds of net
features designed for the same reason. We mentioned already self-loops by which
the presence of a token in a place can be tested only by a single transition (which
‘takes and returns’ the token) and not simultaneously by an arbitrary number
of transition occurrences in a step. Two other mechanisms which do allow such
multiple testing are context arcs [25] and read (or test) arcs [34]. Both, however,
display important differences when compared with activator arcs. A context arc
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testing for the presence of a token in place p by transition t indicates that after
a step in which t participates has been executed, p must still contain a token
which precludes the occurrence in the same step of transitions that have p as an
output place. A read arc is also different, but less demanding in that there must
exist a way to execute sequentially (i.e., one-by-one) all transition occurrences
in the step, without violating the read arc specification. In both cases, one can
easily see that activator arcs are most permissive since they only check for the
presence of a token before the step is executed (this is often referred to as a
priori testing). We feel that a priori testing is more appropriate for biological
applications as the ‘lookahead’ implied by the other two kinds of test arcs is
hard to imagine in reality.

Finally, we rely in this paper on maximal concurrency in the steps that are
executed which reflects the idea that execution of transitions is never delayed.
This may also be viewed as a version of time-dependent Petri nets where all
transitions have a firing duration of 1. However, the maximal concurrency we
apply in this paper does not derive from Petri nets with time, but rather from
Petri nets with localities [19] leading to a locally maximal semantics. This se-
mantics is what we plan to use to model other aspects of the development as
well. Here one may think of e.g., the locally synchronous occurrence (in pulses)
of reactions in individual compartments of a cell.

3 Biological background and modelling decisions

In biology, the term gradient is used to describe a gradual and directed change in
concentration of a morphogen through a group of cells, e.g., a tissue. Morphogens
are signalling molecules that cause cells in different places in the body to adopt
different fates and thereby help establish embryonic axes. Morphogens are pro-
duced in a localized source of a tissue, the source cell(s), and emanate from this
region, forming a concentration gradient ([13, 32]). A morphogen gradient has an
immediate effect on the differentiation of the cells along it; cells are able to ’read’
their position along the gradient and determine their developmental fate accord-
ingly. They have a range of possible responses and the morphogen concentration
dictates which response will be exhibited ([13, 32]). In establishing their devel-
opmental fate, cells take into account the morphogen concentration. When the
morphogen concentration over the entire gradient is increased (or decreased),
the cells should accordingly change their response to that corresponding to a
higher (or lower) level of morphogen.

The mechanisms by which the morphogen travels through a cell layer have
been the topic of some debate and are not yet fully understood. Three mech-
anisms have been described, shown schematically in Figure 1: (A) diffusion
through the extracellular matrix ([8, 11, 23]), either passively, like a drop of ink
in water ([11]), or facilitated by receptors on the cell surface which guide the
morphogens along ([8]), as shown in the figure; (B) sequential internalization of
the morphogen molecules in vesicles in the cells, a process called endocytosis,
and subsequent re-emission ([7, 8, 32]); (C) direct contact between the cells by
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Fig. 1. Left: three possible mechanisms for gradient formation: diffusion (A), endocy-
tosis and subsequent re-emission (B) and transport through cytonemes (C). Right: an
overview of the process of AP axis formation in Xenopus laevis

means of tentacle-like threads of cytoplasm, called cytonemes, connecting the
cells ([13]). These mechanisms are not necessarily mutually exclusive and some
studies conclude that a combination of mechanisms underlies the formation of
a gradient. It is important to note that both diffusion and endocytosis take
place between neighbouring cells, while cytonemes connect all cells directly to
the source. This makes it very different from a modelling perspective, as will be
discussed below.

Unfortunately, knowledge of the exact concentrations and shapes of most
gradients is limited. This is mainly due to the transient nature of morphogen
gradients and the low concentrations at which they are effective, both of which
make it difficult to visualize the morphogens ([11]). Many morphogens are rapidly
degraded or prevented from binding to receptors by antagonistic proteins ([11]).
Much of the information on gradients is therefore obtained indirectly, by observ-
ing their effect, i.e., the responses of the cells along it ([11]).

AP axis formation in Xenopus laevis: a case study. The AP axis for-
mation in Xenopus laevis takes place during the early embryonic stage of gas-
trulation and ensures the development of anterior structures near the head and
posterior structures towards the tail. The process can be seen as divided into
two steps, which take place sequentially ([26]), cf. Figure 1. The first step is
activation; a group of cells in the outer cell layer of the embryo, the ectoderm,
change their developmental identity and form a rectangular strip of tissue, called
the neurectoderm ([3, 15]). It is this strip of cells in which the AP axis will ulti-
mately be established, leading to gradual posteriorization of cells nearer to the
tail-end of the embryo.
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During the second step, transformation, the axis is formed in the neurec-
toderm by means of two mechanisms: vertical and planar signalling between
neighbouring cells ([3, 15]). Here we focus on the second. Planar signalling occurs
within the neurectoderm in a direction parallel to the future axis (and is there-
fore called ‘planar’). Concentration gradients of several morphogens are formed
in the neurectoderm along the future AP axis. Source cells on the posterior
end of the neurectoderm produce the morphogens, which then get distributed
throughout the tissue. Individual cells sense their position along these gradi-
ents and take on a more or less posterior fate according to the concentration
of these posteriorizing molecules ([12, 15]), thereby establishing the formation of
an AP axis. In the planar signalling of our case study three types of signalling
molecules play a role: retinoic acid (RA), fibroblast growth factors (Fgf) and
Wnts ([22, 29, 35]). All of these are produced at the posterior end of the embryo
and together these promote posterior cell fates, while inhibiting anterior fates.
Although it is clear that all three types are important in axis formation, it is
not yet fully understood how these proteins interact in establishing cell fate. A
general and abstract modelling approach, focusing on the underlying common
process of gradient formation, makes it possible to later add specific data on any
of the morphogens in particular or on combinations of these.

Modelling decisions. We have chosen cells as the elementary units in our
model to be represented as places in a Petri net. Earlier studies ([4, 21, 24]) have
successfully modelled cell-to-cell signalling, starting from a lower biological level,
using places to represent genes and proteins. Although this allows a high level of
detail, it also complicates the net and makes it difficult to identify single cells.
In our approach the cellular level represents the intermediate level between the
subcellular levels, on which the morphogen signalling between cells takes place,
and the tissue/organ level, where whole cell layers may move.

Tokens are used to represent a certain level of concentration (see [10]) within
the overall gradient of the morphogen system, without differentiation between
morphogens or their quantities. As mentioned before, in most cases no quan-
titative data are available, since morphogen gradients are often transient and
difficult to visualize ([13]). As in [21], our approach is therefore partially qualita-
tive and partially quantitative. The significance of tokens in a place is not purely
qualitative; not only the presence or absence but also the exact number of tokens
determine the course of events. However, the numbers of tokens do not represent
actual numbers of molecules, making the model semi-qualitative. Our Petri net
model can, however, also be used to model specific morphogens, incorporating
quantitative data, by assigning exact concentrations to the tokens and thereby
making the model completely quantitative. For certain morphogens quantita-
tive data exist, for instance for the gradient of Fgf8 in zebrafish, which can be
seen to spread extracellularly through the processes of diffusion, endocytosis and
degradation ([28]). Also, for some gradients found in biological processes, exper-
imental data have enabled to deduce mathematical expressions, describing the
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quantitative morphogen concentrations ([33]). When modelling these gradients,
these formulas can be incorporated in the parameters of our Petri net model.

Neighbourhood communication. It is our aim to develop a faithful model for
gradient formation. Rather than having the net simply distribute the proper
pre-computed amount of tokens over the places representing the cells, the actual
transport of morphogen between cells can be read off from the Petri net model
during execution. Consequently, when building the model we have to specify
explicitly which process of gradient formation is to be modelled. Here we choose
to model morphogens moving between neighbouring cells, i.e., the Petri net will
implement a mechanism similar to diffusion or endocytosis and subsequent re-
emission, but not transport through cytonemes (since this does not take place
between neighbouring cells). However, we foresee no problems in the abstract
implementation of the latter process. The difference between diffusion and en-
docytosis is apparent on a lower biological level and could be modeled by sub-
nets. Furthermore, often the ratio of the concentrations between neighbouring
cells is not known due to lack of quantitative data, and it may vary depending
on the gradient considered. Therefore we have a parameter ρ in our model to
represent this ratio and to determine the amount of tokens to be transported
between places during the simulation of gradient formation. Since we do not
distinguish the molecular mechanisms of diffusion, endocytosis and degradation
of morphogens in this model, ρ represents the final ratio of morphogens between
neighbouring cells and morphogen degradation is implicit. To model explicitly
both the production of morphogens in the local source cells and the degradation
in the target cells, subnets could be added. This should make the source and sink
mechanisms of gradient formation transparent and allow the user to experiment
with different configurations.

Implementation. In the organism, gradient ratios arise passively as a conse-
quence of physical laws. However, to accurately reflect the biological process of
gradient formation underlying the spread of morphogens from cell to cell, our
formal model has to compute the number of tokens passed on based on the ratio
ρ. Hence the model includes explicit separate computational units for the nec-
essary calculations. In particular, these parts of the net control the transport
of tokens between places. In this way a close relation to the biological process
can be maintained in one part of the net, with the underlying computations
performed by a subnet in the background. At all times, the marking of the net
will be consistent with biological observations of (the effect of) the gradient,
i.e., the ratio is maintained and places corresponding to cells further away from
the source will never have more tokens than places (cells) closer to it. Another
important feature of the model is the use of concurrent steps rather than indi-
vidually occurring transitions. Cells only react to their environment and have
no knowledge of other cells than their immediate neighbours. Non-adjacent cells
can be simultaneously involved in the transport of morphogens. This leads to an
execution mode consisting of concurrent steps. Moreover, these steps are maxi-
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mal to reflect that also in the net model morphogens are moved to a next cell
as soon as possible.

4 Gradients and Petri Nets

Following the ideas outlined in the previous section, we will propose a formal
model for the formation of a gradient.

Our assumptions regarding the biological process of gradient formation are
as follows. Given is a segment of k adjacent cells with the i-th cell immediate
neighbour of the (i + 1)-th cell. Morphogens can be transported only between
immediate neighbours. Morphogens move from cells with higher concentration
to neighbours with lower concentration, as long as their concentration ratio does
not exceed a given gradient ratio 0 < ρ < 1. We assume that ρ is a rational
number, i.e., ρ = N

M
, where M > N ≥ 1. Initially, the first cell x1 contains a

quantity (has concentration level) K of a morphogen. These assumptions lead
to the following modelling problem.

Given are k ≥ 1 places x1, . . . , xk, representing a segment of k cells with
place xi corresponding to the i-th cell. In the initial marking m0, the
first place x1 contains K tokens and there are no tokens in the other
places.
In the net modelling the mechanism of gradient formation, we need to
shift tokens from x1 in the direction of the last place xk. Places and/or
transitions may be added, but in such a way that for any reachable
marking m the following hold.
1. The number of tokens in the xi’s remains constant, i.e.,

m(x1) + · · · + m(xk) = K token preservation

2. The tokens are distributed monotonically along the sequence of k

places, i.e.,

m(x1) ≥ . . . ≥ m(xk) monotonicity

3. The ratio of the numbers of tokens in two neighbouring places does
not exceed ρ, i.e., for every 1 ≤ i < k with m(xi) ≥ 1:

m(xi+1)
m(xi)

≤ ρ ratio

4. Shifting continues until moving even one token would violate the
above, i.e., if no tokens are shifted after marking m was reached,
then for every 1 ≤ i < k with m(xi) > 1:

m(xi+1)+1
m(xi)−1 > ρ termination

Moreover, the relative position of a place within the sequence plays no
role. In particular, the mechanism should be easily scalable and insen-
sitive to the specific values of k and K. ⊓⊔
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If we look at the above formulation of properties (2) and (3) — monotonicity
and preservation of the gradient ratio — and recall that ρ = N

M
and M > N ,

it is easy to observe that these two properties are together equivalent to stating
that, for every 1 ≤ i < k, N ·m(xi) − M ·m(xi+1) ≥ 0. We will call a marking m

satisfying this inequality consistent and denote αi
df
= N ·m(xi)−M ·m(xi+1), for

every 1 ≤ i < k. Note that the initial marking is consistent.
Similarly, if we look at the above formulation of properties (2) and (4) —

monotonicity and termination — it is easy to observe that together they are
equivalent to the statement that, for every 1 ≤ i < k, N ·m(xi) − M ·m(xi+1) <

M + N . We will call a consistent marking m satisfying this inequality stable.
Note that for a given ρ, k and K, there may be more than one stable marking.
For example, if ρ = 1

2 , k = 5 and K = 111, then the following are two different
stable markings:

x1 x2 x3 x4 x5

59 29 14 6 3
x1 x2 x3 x4 x5

58 29 14 7 3

We are now ready to propose a generic solution for the above problem.
For a given consistent marking m and each 1 ≤ i < k, move βi tokens from xi to
xi+1 where βi ≤

⌊

αi

M+N

⌋

, and at least one βi must be non-zero if at least one of

the values
⌊

αi

M+N

⌋

is non-zero. We denote the resulting marking by mβ1...βk−1
.

An intuitive reason for proposing such a mechanism for shifting tokens is that
the number of tokens in xi that are ‘balanced’ by tokens in xi+1 is M

N
·m(xi+1),

because each token in xi+1 is equivalent to M
N

tokens in xi. Hence there are
m(xi) −

M
N
·m(xi+1) unbalanced tokens in xi. The ‘portion’ of each unbalanced

token that could be safely transferred to xi+1 is N
M+N

. Hence in total we may

safely transfer
⌊

N
M+N

·(m(xi) −
M
N
·m(xi+1))

⌋

tokens, which is precisely
⌊

αi

M+N

⌋

tokens. Clearly, some of the numbers β1, . . . , βk−1 can be zero, and by the con-
dition above, all βi’s are zeros if and only if the marking is stable:

Proposition 1. β1 = · · · = βk−1 = 0 if and only if m is stable.

Crucially, by the mechanism proposed consistent markings are always trans-
formed into consistent markings.

Proposition 2. If m is a consistent marking then mβ1...βk−1
is also consistent.

According to the above, any number of tokens not exceeding
⌊

αi

M+N

⌋

can be
moved simultaneously from xi to xi+1 (for every i < k), and consistency will
be preserved. Clearly, the new consistent marking is different from the previous
one if and only if, for at least one i, we have βi ≥ 1. The idea now is to keep
changing the marking on x1, . . . , xk until a marking m has been reached such
that

⌊

αi

M+N

⌋

= 0, for all 1 ≤ i < k, which is equivalent to αi < M + N , for
all 1 ≤ i < k. In other words, this m is a stable marking. Since tokens cannot
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be shifted forever, this procedure will always terminate in a stable marking
(formally, we can show this by considering a weighted distance to the end of the
chain of the K tokens; it never increases and always decreases in a non-stable
state).

Looking now from the point of view of a Petri net implementation of the
proposed mechanism, what we are after is a net Nshift comprising the places
x1, . . . , xk and such that if m is a marking of Nshift whose projection on these k

places is consistent, then a step U can occur at m if

– it moves at most
⌊

αi

M+N

⌋

tokens from xi to xi+1, for all 1 ≤ i < k;
– at least one token is moved from xi to xi+1 for at least one 1 ≤ i < k, unless

the projection of m onto x1, . . . , xk is stable.

In fact, in the proposed implementation, we will be preceding the ‘token-shifting’
with a ‘pre-processing’ stage which seems to be unavoidable unless one uses some
kind of arcs with complex weights depending on the current net marking.

Implementation. In the implementation of the proposed shifting mechanism,
as many tokens as possible should be shifted from one neighbour to the next.
That means that, at each stage we have, for every 1 ≤ i < k, βi =

⌊

αi

M+N

⌋

.
Moreover, tokens are shifted from a place without any assumptions whether new
tokens will come to that place from its other neighbour. Thus we need to provide
a Petri net structure capable of ‘calculating’ the value of expressions like

⌊

N ·m(xi) − M ·m(xi+1)

M + N

⌋

.

Our proposed gradient forming mechanism distinguishes three phases: I, II
and III. An auxiliary net N3phase , shown in Figure 2(b), is used to schedule
the transitions implementing the calculations. It controls these transitions via
the places wI and wII and activator arcs. For the full picture of the system
one should combine the figures for all pairs (xi, xi+1) with a single copy of the
net in Figure 2(b). Note that all places with identical label (in particular wI ,
wII , and wIII) should be identified. That other parts of the encompassing net
model do not interfere with the calculations carried out during phases I and II
can be ensured by connecting the relevant transitions with the place wIII using
activator arcs.

For every 1 ≤ i < k, transition ti is intended to shift tokens from xi to xi+1

(phase III). To achieve this, we use two disjoint sets of new, auxiliary places,
x′

1, . . . , x
′

k and x′′

1 , . . . , x′′

k . These places are initially empty. The idea is to fill x′

i

with N ·m(xi) tokens and x′′

i+1 with M ·m(xi+1) tokens (phase I). The latter are
used for the removal of M ·m(xi+1) tokens from x′

i (phase II). After this, there
are αi tokens remaining in x′

i. Finally, for each group of N +M tokens in x′

i, one
token is shifted from xi to xi+1. The construction (for xi and xi+1) is shown in
Figure 2(a).

The overall mechanism operates in cycles of three consecutive, maximally
concurrent steps such that for every 1 ≤ i < k:
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(a)

xi

x
′

i
x
′′

i+1

xi+1

w
III
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w
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w
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w
I

ti

di

c
′

i
c
′′

i+1

e
′′

i+1e
′

i

M+N

N M

(b)

w
I

w
II

w
III

Fig. 2. (a) The main part of the construction for the solution (note that e
′′

i+1 is
introduced for later use when one might want to remove or add tokens to the xi’s from
‘outside’; in the standard (consistent) situation it is never activated as after phase 2,
place x

′′

i+1 is empty.); and (b) the subnet N3phase enforcing the three phases.

I. Transition c′i, inserts (in m(xi) auto-concurrent occurences) N ·m(xi) tokens
into x′

i. In the same step, transition c′′i+1, inserts (in m(xi) auto-concurrent
occurences) M ·m(xi+1) tokens into x′′

i+1. Simultaneously, transitions e′i and
e′′i+1 empty x′

i and x′′

i+1 of any residual tokens left from the previous cycle.
II. Next, transition di (in M ·m(xi+1) auto-concurrent occurences) empties x′′

i+1

and leaves in x′

i the difference αi = N ·m(xi) − M ·m(xi+1).
III. In the third step, the occurrences of transition ti transfer βi =

⌊

αi

M+N

⌋

tokens from xi to xi+1.

Proposition 3. Each cycle results in transferring βi tokens from xi to xi+1.

Note that in this implementation with the control net N3phase , neighbour-
ing pairs are either all involved in calculations (step 1 and 2 of the cycle) or
tokens are transferred between neighbours (step 3). During the whole operation
of the adjustment process (except for the transfer phase), the token counts in
the places xi representing the cells are unchanged and they can be accessed
for reading by other transitions (and thus influence neighbouring cells). In other
words, calculations are orthogonal to the basic operation of the net (the gradient
formation).

As an example, let us consider the case when ρ = 1
2 , k = 4 and K = 100.

Then executing the constructed net in a maximally concurrent manner leads to
the following sequence of markings on the xi after each cycle and eventually to
a stable marking:

x1 100 67 67 60 60 57 57 56 56 55 54
x2 0 33 22 29 25 28 26 27 26 25 26
x3 0 0 11 8 12 10 12 12 13 12 12
x4 0 0 0 3 3 5 5 5 5 6 6
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The next example shows what happens if we start from a (non-initial) con-
sistent marking (again ρ = 1

2 ):

x1 200 167 156 . . .

x2 50 67 67 . . .

x3 0 16 22 . . .

x4 0 0 5 . . .

The construction works without any problems, if we start with a consistent
marking. In case 0 > αi for some i, then transition ti is not executed, but the
transitions ti−1 and ti+1 may still be executed and lead to an adjustment of the
marking causing ti to become active in the next cycle. A further observation
is that adding (or removing) tokens at some point, will trigger a re-adjustment
process which tries to re-establish the correct ratios between the markings of
adjacent places xi. This process is unpredictable, but to deal with that case
we have included transition e′′i+1 which in the standard (consistent) situation is
never activated since then, after phase 2, place x′′

i+1 is empty.
An important characteristics of the proposed solution is that it is purely local

and does not assume anything about the number of tokens which may appear in
the xi’s nor the length of the chain. In other words, it is truly generic. What’s
more it also works if M and N are different for different pairs of neighbouring
places, i.e., if rather than a uniform gradient ratio ρ there is a ratio ρi for each
pair of neighbours xi and xi+1.

Another feature of our solution is the maximal concurrency semantics in-
tended to reflect the idea of morphogens (simultaneously) moving from cell to
neighbouring cell whenever that is possible. The preliminary sequential seman-
tics model we developed (but not reproduced here) is more complicated as it
also needs inhibitor arcs which test for absence of tokens (to decide whether or
not tokens should still be shifted). Moreover, one needs to decide that xi either
receives or sends tokens at each stage. In a step model it can both receive and
send. Also, with the maximal concurrency semantics, the number of states of
the model is dramatically reduced.
The auxiliary net N3phase is used to partly sequentialize the behaviour in order
to separate the pre-processing phases from the actual shifting phase. This net
could also have been made local to the subnet in Figure 2(a), with different
copies of it assigned to different localities. This would have given the additional
possibility of controlling the degree of synchronisation between different parts of
the gradient model by using a locally maximal step semantics.

Finally, we would like to point out that the activator arcs in our implementa-
tion are used only to control the calculation and can actually be avoided in case
there would be a limit on the number of tokens in each place xi at any time.
(Then the activator arcs can be eliminated basically by having separate copies of
N3phase for each 1 ≤ i < k, transfer around sufficiently many tokens in a bundle,
and replace activator arcs by self-loops). This assumption corresponds to having
(or knowing) some capacity bound on the concentration levels of morphogens in
a cell and so may be biologically sound!
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5 Conclusion

Starting from gradient formation in the AP axis development in the model or-
ganism Xenopus laevis, we have presented a novel approach to using Petri nets in
developmental biology by focusing on the cellular rather than subcellular levels
and abstracting from concrete proteins and genes. This has led to a parame-
terized Petri net model for the general process of gradient formation through
diffusion and endocytosis.

Assumptions regarding gradient formation have been formulated based on
essential features of this process as reported in the literature. These assumptions
underlie the precise requirements given that should be satisfied by an abstract
Petri net model of gradient formation. A crucial point here is the consistency
that is maintained during the execution of the model. Hence the realization
of the gradient is faithfully reflected. Moreover the close relationship between
biological process and evolution of the formal model makes it possible to apply
existing Petri net techniques to analyse what happens during gradient formation.
In particular cause-effect relations should be properly reflected in the process
semantics of the modelling Petri net ([17, 18]).

Another main contribution of this approach is its generic nature, leading to
a model that is scalable and applicable to a plethora of specific gradients. Also
scalability is a consequence of the faithful reflection of the biological process.
Since the final token (morphogen) distribution is not directly computed from
the initial amount of morphogen and the length of the chain of cells, but rather
simulates the communication between neighbouring cells, the length plays no
role in the occurrence of the steps. The model as presented here represents a
one-morphogen system without relying on quantitative data, but exact values
could be assigned to ratio and individual tokens. Moreover, it provides a basis
for simulation of simultaneous gradient formation (different morphogens with
different experimental initial markings) and for inhibiting/activating interactions
between them. Simulation with actual biological data to validate the model
should be a next step. In addition, we will focus our attention on the extension
of this still rather basic model to more dimensions, e.g., rather than having
just a single line of cells, we consider the spread of morphogens from a source
throughout a tissue plane or volume.

In [4, 21], Petri nets are used to model developmental processes in a way
similar to our approach when it comes to the semi-qualitative use of tokens
and the use of maximal concurrency. In these papers however, the focus is on
subcellular levels. Petri net places are used to represent genes and gene products,
where in our approach cells, as basic units in a tissue, are modelled by places.
Having cells as basic units should prove to be a useful intermediate position
convenient for ‘zooming in and out’ between subcellular and tissue level. It is
our aim to model more subprocesses of the AP axis formation. For instance
the different molecular processes underlying diffusion and endocytosis could be
modeled in subnets, allowing the user to compare the different effects of these
mechanisms. Also the degradation of morphogens could be modeled by a subnet,
making the entire process more explicit. The choice of cells as main elements is
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expected to be particularly suitable not only in this ‘vertical’ linking processes,
but also for the ‘horizontal’ connections between processes taking place on the
same cellular level. Having molecules or genes as places would result in specific
net models for certain processes, as would taking tissue structures, such as the
neurectoderm. Cells however can play a role in different processes simultaneously.

The next step in the modelling of the AP axis development in Xenopus
laevis will focus on the vertical signalling (see Figure 1). This process occurs
concurrently with the planar signalling of gradient formation and involves the
same cells. This will challenge us to explore further the possibilities of Petri nets
as a model for concurrent and independent processes in high level developmental
biology.
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Abstract. Mathematical models are widely used to create complex bio-
chemical models. Model reduction in order to limit the complexity of a
system is an important topic in the analysis of the model. A way to lower
the complexity is to identify simple and recurrent sets of reactions and
to substitute them with one or more reactions in such a way that the
important properties are preserved but the analysis is easier.
In this paper we consider the typical recurrent reaction scheme E +
S −−⇀↽−− ES −−→ E + P which describes the mechanism that an enzyme,
E, binds a substrate, S, and the resulting substrate-bound enzyme, ES,
gives rise to the generation of the product, P . If the initial quantities and
the reaction rates are known, the temporal behaviour of all the quantities
involved in the above reactions can be described exactly by a set of dif-
ferential equations. It is often the case however that, as not all necessary
information is available, only approximate analysis can be carried out.
The most well-known approximate approach for the enzyme mechanism
is provided by the kinetics of Michaelis-Menten. We propose, based on
the concept of the flow-equivalent server which is used in Petri nets to
model reduction, an alternative approximate kinetics for the analysis of
enzymatic reactions. We evaluate the goodness of the proposed approx-
imation with respect to both the exact analysis and the approximate
kinetics of Michaelis and Menten. We show that the proposed new ap-
proximate kinetics can be used and gives satisfactory approximation not
only in the standard deterministic setting but also in the case when the
behaviour is modeled by a stochastic process.

1 Introduction

Mathematical models are widely used to describe biological pathways because,
as it is phrased in [1], they “offer great advantages for integrating and evaluating
information, generating prediction and focusing experimental directions”. In the
last few years, high-throughput techniques have increased steadily, leading to
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the production of a huge volume of data used to derive the complex texture
behind the biological/biochemical mechanisms, and creating in this way the
structure needed for mathematical modelling. Indeed, many models based on
the combination and the integration of various elements in order to investigate
their relationships and behaviour have been devised which become more complex
with the growth of available data. The complexity is reflected in the number of
dynamic state variables and parameters, as well as in the form of the kinetic
rate expressions.

Such complexity leads to difficulties both from the point of view of defining
the model as the parametrisation becomes unfeasible and for what concerns the
analysis of the model. It is often the case hence that in order to have a model
which is feasilble for the analysis simplifications must be performed.

In this paper we focus our attention on the simplified, approximate treatment
of a set of reactions that very often appears as building blocks of complex models.
We consider the reactions

E + S
k1−→←−

k−1

ES
k2−→ E + P (1)

describing that the enzyme, E, attaches reversibly to the substrate, S, forming
the substrate-bound enzyme ES which gives rise then to the product P releasing
the enzyme. This and similar enzymatic reactions are widely studied in biology.
The most common approximate approach to deal with them is provided by the
Michaelis-Menten (MM) kinetics (called also Michaelis-Menten-Henri kinetics)
which, based on quasi-steady-state assumptions, connects the speed of producing
P directly to the concentration of E and P , omitting the explicit modeling of
ES.

Fig. 1. Petri net representation of the reactions given in (1)

System of enzymatic reactions can be described by Petri nets [2] (Figure 1
shows the Petri net corresponding to the reactions given in (1)) and then anal-
ysed by methods developed for this formalism. We propose for the reactions in
(1) an alternative to the approximate Michaelis-Menten kinetics. This new ap-
proximate kinetics is based on a concept widely used in the analysis of Petri nets
and models described by other formalisms like queueing networks and process
algebras. This concept is called the flow equivalent server [3]. The application of
this concept, similarly to the Michaelis-Menten kinetics, leads to a simplified set
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of reactions in which the intermediate complex ES is not modeled explicitly. The
difference is, however, that, since the application of the flow equivalent server
(FES) is based on assumptions that are different and less strict than those used
by the Michaelis-Menten kinetics, the resulting approximation is more robust.

The concept of flow equivalent server has already been used in [4] where a
complex signal transduction model was considered. In that paper we have shown
that this concept can be applied not only to the small set of reactions given in
(1) but also to bigger submodels. This leads to a simplified model which has less
parameters and whose analysis is not as heavy as that of the complete one. For
the model presented in [4] it was shown that the quantitative temporal behaviour
of the simplified model coincides satisfactorily with that of the complete model
and that important qualitative properties are maintained as well. In this paper
our goal is to study in detail the goodness of the FES based approximation for
the reactions in (1) and to compare it to the widely-used approximate kinetics
of Michaelis, Menten and Henri.

The paper is organised as follows. Section 2 provides the necessary back-
ground, Section 3 describes the concept of the flow equivalent server and Section
4 presents the results of the comparison between the approximation approaches.
We conclude with a discussion and an outlook on future works in Section 5.

2 Background

In 1901 Henri [5] proposed a partly reversible reaction scheme to describe the
enzymatic process. According to this scheme the enzyme E and the substrate
S form, through a reversible reaction, the enzyme-substrate complex ES. This
complex can then give rise to the product P through an irreversible reaction
during which the enzyme is freed and can bind again to other molecules of the
substrate. This scheme is summarised in (1) where k1 is the rate of the binding
of E and S, k−1 is the rate of the unbinding of ES into E and S and k2 is the
rate at which ES decays to the product P freeing the enzyme E.

There are two typical approaches to associate a quantitative temporal be-
haviour to the reactions in (1). The first results in a deterministic representation
while the other in a stochastic one. In the following we give a brief idea of both
approaches. For a detailed description see, for example, [6, 7].

The deterministic approach describes the temporal behaviour of a reaction
with a set of ordinary differential equations (ODE). For the reactions in (1) we
have

d[E]

dt
=− k1[E][S] + (k−1 + k2)[ES] (2)

d[S]

dt
=− k1[E][S] + k−1[ES]

d[ES]

dt
= k1[E][S]− (k−1 + k2)[ES]

d[P ]

dt
= k2[ES]
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where [X ] is the concentration of molecule X at time t. These equations state
that the rate at which the concentration of a given molecule changes equals the
difference between the rate at which it is formed and the rate at which it is
utilised. The four equations can be solved numerically to yield the concentration
of E, S, ES and P at any time t if both the initial concentration levels ([S]0, [E]0,
[ES]0, [P ]0) and the reaction rates (k1, k−1, k2) are known. In the determin-
istic approach the concentrations of the molecules are described by continuous
quantities.

In the stochastic approach a continuous time Markov chain (CTMC) is used
to describe the process. Each state of the chain is described by a vector of inte-
gers in which the entries give the quantities of the molecules, which, accordingly,
assume discrete values. These discrete values are resulting either directly from
molecule count or from discretization of continuous values. Reactions are mod-
eled by transitions between the states. For example, from state |x1, x2, x3, x4|
where x1, x2, x3 and x4 are the quantities of the molecules E, S, ES and P ,
respectively, there is a transition to state |x1 − 1, x2 − 1, x3 + 1, x4| with rate
k1x1x2 which corresponds to the binding of one molecule E with one molecule
S to form one molecule of ES. It is easy to see that even for small models the
corresponding CTMC can have a huge state space whose transition rate struc-
ture is non-homogeneous. Exact analytical treatment of these chains is often
unfeasible and in most cases simulation is the only method that can be used for
their analysis.

2.1 Michaelis-Menten approximate kinetics

Under some assumptions, the temporal, quantitative dynamics of the mechanism
described by the reactions in (1) can be summarised as follows. Initially we have a
certain amount of substrate, denoted by [S]0, and enzyme, denoted by [E]0, and
no complex ES ([ES]0 = 0). Assuming that k2 is significantly smaller than k1

and k−1, a brief transient period occurs during which the amount of the complex
ES quickly increases up to a “plateau” level where it remains stable for a long
period of time. As the ratio of [S]0/[E]0 increases, the time needed to reach the
condition d[ES]/dt ≈ 0 decreases and the period during which d[ES]/dt ≈ 0
increases. In this period we have approximately

d[ES]

dt
= k1[E][S]− [ES](k−1 + k2) = 0

from which, considering that the total amount of enzyme is conserved, i.e. [E]+
[ES] = [E]0, the quantity of ES can be expressed as

[ES] =
[E]0[S]

k−1+k2

k1
+ [S]

=
[E]0[S]

kM + [S]
(3)

where the term kM = k−1+k2

k1
is called the Michaelis-Menten constant. Applying

(3), the speed of the production of P can be approximated by

vMM =
k2[E]0[S]

[S] + kM
(4)
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Accordingly, after the “plateau” level of ES is reached, the kinetic parameters
k1, k−1 and k2 together with [S] and the initial total quantity of the enzyme,
[E]0, determine the overall rate of the production of P .

Applying the approximate kinetics of Michaelis and Menten, the differential
equations describing the reactions become

d[E]

dt
= 0 (5)

d[S]

dt
=− k2[E][S]

[S] + kM

d[P ]

dt
=

k2[E][S]

[S] + kM

3 Approximate kinetics by flow equivalent server

In this section we derive an alternative approximate kinetics for the analysis of
enzymatic reactions, based on the concept of the flow equivalent server. This
technique was originally proposed in the context of the steady-state solution of
queueing networks [3, 8, 9] and can be adapted to our purposes with a proper
interpretation of the assumptions on which it is based. The idea behind this
concept is to consider the reactions given in (1) as a fragment of a large biological
system in which substrate S is produced by an ”up-stream” portion of the system
and product P is used ”down-stream” within the same system. The goal of
the flow equivalent method is to consider the flow of moles that move from
the substrate to the product, in the presence of an enzyme that catalyse this
phenomenon, and to evaluate its intensity in order to define the overall speed of
a ”composite” reaction that captures this situation in an abstract manner.

Figure 2 depicts the Petri net corresponding to the reactions of (1) organ-
ised in order to make explicit the relationship between the substrate S and the
product P , via the enzyme E, enclosing in a dashed box the elements of the
system whose dynamics we want to mimic with the composite transition. This

Fig. 2. Petri net of the reactions in (1) organised for computation of the flow equivalent-
transition (above) and its approximation (below)
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picture makes evident the fact that the speed of the composite transition must
depend not only on the speeds of the transitions included in the box but also
on the quantities present in the box, namely, the total amount of enzyme. As-
suming to know the kinetic constants of the reactions inside the box and the
quantity of the enzyme, the speed of the composite transition also depends on
the amount [S] that participates in the reactions and that may change during
the evolution of the whole system. Following this point of view, it is possible
to conceive a characterisation of the speed of the composite transition that is
conditioned on the quantity of S. The flow equivalent approach accounts for this
observation by computing the intensity of the flow of moles that reaches place
P assuming that the total amount of S remains constant. Technically, this is
obtained by short-circuiting the output and input places of the sub-net (intro-
ducing an immediate transition [10] that connects place P with place S) and
by computing the throughput along the short-circuit which will be conditioned
on the initial amount of S and that will thus be computed for all the possible
values of S. In general, this amounts to the construction of a table that looks
like that depicted in Figure 3, where S1, S2, ..., Sn represent different values
of the amount of substrate S for which the speeds of the composite reaction
vFES(S1), vFES(S2), ..., vFES(Sn) are computed, given that k1, k−1, k2, and
#E are assumed to be the values of the kinetics constant of the reactions in the
box and of the amount of enzyme E.

In practice, this corresponds to the construction and to the (steady state)
solution of the continuous time Markov chain (CTMC) that corresponds to the
sub-model in isolation. Providing the speed of the composite transition in the
tabular form highlighted by Figure 3 is convenient for cases where the domain
of the function is “small”, but may be impractical in many common situations.
Despite the computational complexity of the approach, we must notice that the
equilibrium assumption of the flow equivalent method is used only to obtain
an approximate characterisation of the throughput for different sets of initial
conditions and does not mean that the equivalent speed can only be used for
steady state analysis.

The concept of flow equivalent server described above is used traditionally in
a stochastic setting. However, it can be applied in a deterministic setting as well
using arguments that are summarized by the following points. The complexity
of the approach in the stochastic setting becomes prohibitive when the amount
of the substrate S becomes very large. On the other hand, this is the case in

Given k1, k−1, k2, and #E

S1 vF ES(S1)

S2 vF ES(S2)

· · · · · ·
Sn vF ES(Sn)

Fig. 3. Flow Equivalent Server characterisation
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which the stochastic (or at least the average) behaviour of the model is conve-
niently captured by a set of ODE, i.e., by a deterministic model. Moreover, in
the case of our model, the equilibrium solution of the set of differential equa-
tions corresponding to the short-circuited model is simple enough to obtain an
analytic expression for the speed of the composite transition as it is described
in the following.

We assume that the initial condition is [E]0 = M1, [S]0 = M2, [ES]0 = 0,
and [P ]0 = 0. We will denote the steady state measures of the compounds by
[E], [S], [ES] and [P ]. In the short-circuited version of the reactions given in (1),
moles transformed in P are immediately moved back to S and consequently its
steady state measure is zero (i.e., [P ] = 0). The steady state measures of the
other compounds can be determined by considering

– the fact that in steady state the rate of change of the quantities of the
different compounds is zero, i.e., we have

d[E](t)

dt
= 0 = −k1[E][S] + k−1[ES] + k2[ES] (6)

d[S](t)

dt
= 0 = −k1[E][S] + k−1[ES] + k2[ES]

d[ES](t)

dt
= 0 = +k1[E][S]− k−1[ES]− k2[ES]

which are three dependent equations;
– and the following equations expressing conservation of mass

[E] + [ES] = M1, [S] + [ES] = M2 (7)

In (6) and (7) we have three independent equations for three unknowns. There
are two solutions but only one of them guarantees positivity of the unknowns.
The speed of producing P is given by the steady state quantity of ES multiplied
by k2. This speed is

vFES =
k2

(
[E] + [S] + kM −

√
([E]− [S])2 + 2kM ([E] + [S]) + k2

M

)

2
(8)

Accordingly, the set of ordinary differential equations describing the reactions
given in (1) becomes

d[E]

dt
= 0 (9)

d[S]

dt
=−

k2

(
[E] + [S] + kM −

√
([E]− [S])2 + 2kM ([E] + [S]) + k2

M

)

2

d[P ]

dt
=

k2

(
[E] + [S] + kM −

√
([E]− [S])2 + 2kM ([E] + [S]) + k2

M

)

2

which explicitly reflects the assumption of the conservation of E and the obser-
vation that substrate S is transformed into product P .
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4 Numerical illustration

In this section, we first compare in Section 4.1 the MM and FES approximate
kinetics from the point of view of the speed they assign to the production of P as
function of the reaction rates (k1, k−1, k2) and the concentration of the enzyme
and the substrate ([E], [S]). Subsequently, in Sections 4.2 and 4.3 we compare
the quantitative behaviour of the approximations to that of the full model in the
deterministic and in the stochastic setting, respectively.

It is easy to check that as the quantity of the substrate tends to infinity the
two approximate kinetics lead to the the same speed of production. In both cases
for the maximum speed of production we have

vmax = lim
[S]→∞

vMM = lim
[S]→∞

vFES = k2[E] (10)

Another situation in which the two approximate kinetics show perfect corre-
spondence is when the quantity of the enzyme is very low. This can be shown
formally by observing that

lim
[E]→0

vMM

vFES
= 1 (11)

4.1 Production speeds

A typical way of illustrating the approximate Michaelis-Menten kinetics is to
plot the production speed against the quantity of the substrate. Figure 4 gives
such illustrations comparing the speeds given by the two approximate kinetics.
Reaction rate k2 is either 0.1, 1 or 10 and reaction rates k1 and k−1 are varied
in order to cover different situations for what concerns the ratio k1/k−1. Two
different values of [E] are considered. The limit behaviours expressed by (10)
and (11) can be easily verified in the figures. On the left sides of the figure it
can be observed that for small values of [E] the two approximations are almost
identical for all considered values of the reaction rates, thus in agreement with
the trend conveyed by (11). It can also be seen that for larger values of [E] the
two approximations are rather different and the difference is somewhat increasing
as k2 increases, and becomes more significant for higher values of k1/k−1. In all
cases the curves become closer to each other when the amount of [S] increases.

4.2 Deterministic setting

In this section we compare the different kinetics in the deterministic setting. Once
the initial quantities and the reaction rates are defined, the systems of differential
equations given in (2),(5) and (9) can be numerically integrated and this provides
the temporal behaviour of the involved quantities, used as references for the
comparisons.

For the first experiments we choose such parameters with which the two ap-
proximate kinetics result in different speeds of production. Based on Figure 4 this
is achieved whenever the quantity of the enzyme is comparable to the quantity
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Fig. 4. Production speed as function of substrate quantity with [E] = 0.1 for the figures
on the left side and with [E] = 10 on the right side; reaction rates are given in the
legend in order k1, k−1 and k2

of the substrate. Accordingly, we set [E]0 = [S]0 = 10. For the full model [ES]0
needs to be set too, and we choose [ES]0 = 0. This choice does not help the
approximations. They assume that the total enzyme concentration [E]0 + [ES]0
is immediately distributed between [E] and [ES], thus making possible an im-
mediate (consistent) production of P . On the contrary, in the full model the pro-
duction of [ES] takes time and thus the speed of the production of P must start
from 0, growing to a high value only later. Figures 5 and 6 depict the quantity of
the product and the speed of its production as functions of time for two differ-
ent sets of reaction rates. In both figures the kinetics based on flow equivalence
provides precise approximation of the production of P . The Michaelis-Menten
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kinetics instead fails to follow the full model, but this is not surprising as the
derivation of this kinetics assumes small amount of enzymes. It can also be seen
that high values of k1/k−1 (Figure 6) lead to worst approximation in case of
Michaelis-Menten kinetics. On the right hand side of the figures one can observe
that for the full model the speed of producing P is 0 at the beginning and then
it increases fast to the speed foreseen by the FES approximation.
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Fig. 5. Quantity of product (left) and speed of production (right) as function of time
with k1 = 1, k−1 = 10, k2 = 0.1, [E] = 10 and initial quantity of substrate equals 10
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Fig. 6. Quantity of product (left) and speed of production (right) as function of time
with k1 = 10, k−1 = 1, k2 = 0.1, [E] = 10 and initial quantity of substrate equals 10

A second set of experiments is illustrated in Figures 7 and 8. We choose
sets of parameters with which the speed of production of the MM and FES
approximations are similar. In these cases both approximations are close to the
reference behaviour. Still, it can be seen that for high values of k1/k−1 (Figure
8) the approximation provided by the Michaelis-Menten kinetics is slightly less
precise.
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Fig. 7. Quantity of product (left) and speed of production (right) as function of time
with k1 = 1, k−1 = 10, k2 = 0.5, [E] = 1 and initial quantity of substrate equals 10
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Fig. 8. Quantity of product (left) and speed of production (right) as function of time
with k1 = 10, k−1 = 1, k2 = 0.5, [E] = 1 and initial quantity of substrate equals 10

In the following we turn our attention to the cases in which both the approx-
imations are less reliable. In Figure 9 we plotted the case k1 = 0.1, k−1 = 0.1,
k2 = 0.1, [E] = 1, [S]0 = 1 and [ES]0 = 0. As mentioned earlier, with [ES]0 = 0
the initial production speed in the original model is 0 while it is immediately
high in the approximate kinetics. With low values of k1 and k−1, the time taken
by the system to reach the quasi-steady-state situation assumed by the approx-
imate kinetics is quite long. For this reason there is a longer initial period in
which P is produced by the approximations at a “wrong” speed. Furthermore,
decreasing k1 and k−1 would lead to a longer period in which the approximate
kinetics are not precise (see Figure 9).

Another way of “disturbing” the approximations is to dynamically change
the quantity of the substrate in the system. In the original model, because of
the intermediate step yielding ES, the speed of producing P changes only after
some delay. On the contrary, the approximations react immediately. The harsher
the change in the quantity of the substrate the larger is the difference between
the original model and the approximations. This phenomenon is reflected in the
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Fig. 9. Quantity of product (left) and speed of production (right) as function of time
with k1 = 0.1, k−1 = 0.1, k2 = 0.1, [E] = 1 and initial quantity of substrate equals 1
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Fig. 10. Quantity of product (left) and speed of production (right) as function of time
with k1 = 0.1, k−1 = 0.1, k2 = 0.1, [E] = 1, initial quantity of substrate equals 1 and
adding substrate to the system according to (12)

model by adding the following term to the differential equation that describes
the quantity of the substrate:

10(U(t− 5)− U(t− 5.1))− 10(U(t− 10)− U(t− 10.1)) (12)

where U denotes the unit-step function. The effect of (12) is to add 1 unit of
substrate to the system in the time interval [5, 5.1] and to take away 1 unit
of substrate from it in the time interval [10, 10.1]. The resulting behaviour is
depicted in Figure 10. The approximations change the speed of producing P
right after the change in the quantity of the substrate while the original model
reacts to the changes in a gradual manner. Naturally, if the quantity of the
substrate undergoes several harsh changes then the MM and the FES kinetics
can result in bad approximation of the full model.

4.3 Stochastic setting

In the following we compare the different kinetics in the stochastic setting, by
analysing the corresponding CTMCs. In particular, we determine by means of
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simulation the average and the variance of the quantity of the product as function
of time. The simulations were carried out in Dizzy [11].

The reaction rates for the first set of experiments are k1 = k−1 = k2 = 1.
As in the previous section, this choice allows to test a situation where the speed
of the two approximations are different. For the same reason, we choose the
same initial quantity for the enzyme and the substrate [E]0 = [S]0 = 1. In
the stochastic setting the discretization step, denoted by δ, has to be chosen as
well. This choice has a strong impact because as the granularity with which the
concentrations are modeled is increased, the behaviour of the CTMC tends to
the deterministic behaviour of the corresponding ODE. Figures 11 and 12 depict
the average and the variance of the quantity of the product with δ = 0.01 and
δ = 0.001, respectively. In both figures the approximate kinetics based on flow
equivalence gives good approximation of the original average behaviour while
the Michaelis-Menten approximation results in too fast production of P . On the
right side on the figures one can observe that also the variance is approximated
better by the FES approximation.
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Fig. 11. The average (left) and the variance (right) of the quantity of the product as
function of time with k1 = 1, k−1 = 1, k2 = 1, [E]0 = [S]0 = 1 and δ = 0.01
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For the second set of experiments we set k1 = 10 and k−1 = k2 = 1 and
as initial states we choose again [E]0 = [S]0 = 1. In this case too, as it was
shown in Figure 4, the speeds of production of P as predicted by the MM and
FES approximations are quite different. Figures 13 and 14 depict the resulting
behaviour for two different values of δ. As in case of the deterministic setting,
the Michaelis-Menten approximation suffers from the increased k1/k−1 ratio and
becomes less precise than before. The FES based approach still results in good
approximation for both the average and the variance of the production.
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Fig. 13. The average (left) and the variance (right) of the quantity of the product as
function of time with k1 = 10, k−1 = 1, k2 = 1, [E]0 = [S]0 = 1 and δ = 0.01
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5 Conclusion

In this paper we have considered the approximate treatment of the basic enzy-
matic reactions E+S −−⇀↽−− ES −−→ E+P . In particular, an approximate kinetics,
based on the concept of flow equivalent server, has been proposed for its analy-
sis. This FES approximate kinetics has been compared to both the exact model
and to the most common approximate treatment, namely, the Michaelis-Menten
kinetics. We have shown that the FES kinetics is more robust than the one of
Michaelis-Menten.

The FES approximation for the basic enzymatic reactions is computationally
convenient due to the fact that it has been possible to find an analytic expression
for the speed of the composite reaction in this case. While it is very unlikely for
this to be true in the case of more complex kinetics, the method is very general
and we will study it further within this context to see if it is possible to find other
functional expressions for the speed of the composite reaction. One direction of
research will be computing the flow equivalent characterization of the kinetics
for a number of specific parameter sets and then of constructing the functional
representations via interpolation.
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Abstract. Petri nets have become an effective formalism to model bi-
ological systems. However, attempts to simulate biological systems by
low-level Petri nets are restricted to relatively small models, and they
tend to grow quickly for modeling complex systems, which makes it
more difficult to manage and understand the nets. Motivated by this,
we propose a colored Petri net-based framework for modeling, simulat-
ing, and analyzing complex biological systems. We give the definitions
of biochemically interpreted colored qualitative Petri nets (QPNC) and
colored stochastic Petri nets (SPNC) and describe their functionalities
and features implemented in the Petri net tool Snoopy. We use two exam-
ples, the cooperative ligand binding and the repressilator, to demonstrate
how to construct and simulate QPNC and SPNC models, respectively.

1 Motivation

With the rapid growth of data being generated in the biological field, it has be-
come necessary to organize the data into coherent models that describe system
behavior, which are subsequently used for simulation, analysis or prediction. A
large variety of modeling approaches has already been applied to modeling a
wide array of biological systems (see [HK09] for a review). Among them, Petri
nets are especially suitable for representing and modeling the concurrent, asyn-
chronous, and dynamic behavior of biological systems, which were first intro-
duced to the qualitative analysis of the biochemical reaction systems by Reddy
et al. [RML93]. Motivated by the qualitative analysis of Petri nets, many ap-
plications of Petri nets (e.g. stochastic Petri nets, timed Petri nets, continuous
Petri nets, and hybrid Petri nets, etc.) have been developed for modeling and
simulating biological systems [GH06]. Since biological processes are inherently
stochastic, stochastic Petri nets have recently become a modeling paradigm for
capturing their complex dynamics, which can help to understand the behav-
ior of complex biological systems by integrating detailed biochemical data and
providing quantitative analysis results, see e.g. [JP98], [NOG+05], [PRA05].

Petri nets provide a formal and clear representation of biological systems
based on their firm mathematical foundation for the analysis of biochemical
properties. However, low-level Petri nets do not scale. So attempts to simulate
biological systems by low-level Petri nets have been mainly restricted so far
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to relatively small models. They tend to grow quickly for modeling complex
systems, which makes it more difficult to manage and understand the nets, thus
increasing the risk of modeling errors [Mur07]. Two known modeling concepts
improving the situation are hierarchy and color. Hierarchical structuring has
been discussed a lot, see e.g. [MWW09], while the color has gained little attention
so far. Thus, we investigate how to apply colored Petri nets to modeling and
analyzing biological systems. To do so, we not only provide compact and readable
representations of complex biological systems, but also do not lose the analysis
capabilities of low-level Petri nets, which can still be supported by automatic
unfolding. Moreover, another attractive advantage of colored Petri nets for a
biological modeler is that they provide the possibility to easily increase the size
of a model consisting of many similar subnets just by adding colors.

In this paper, we propose a colored Petri net-based framework for modeling,
simulating, and analyzing biological systems. We are developing tools to support
this new framework. Two prototypes for colored qualitative Petri nets (QPNC)
and colored stochastic Petri nets (SPNC) have been implemented in Snoopy, a
tool for modeling and animating/simulating hierarchical graph-based formalisms
[Sno10]. We will describe these two prototypes and some applications.

This paper is organized as follows. Section 2 outlines the colored Petri net-
based framework for modeling, simulating and analyzing biological systems and
gives the definitions of QPNC and SPNC . Section 3 discusses the function-
alities and features for QPNC and SPNC , which have been implemented in
Snoopy. Section 4 shows how to construct basic colored Petri net components,
and gives two examples to demonstrate QPNC and SPNC , respectively. Section
5 summarizes related work. Finally, conclusions and outlook are given.

2 Colored Petri net-based framework

In this section, we propose a colored Petri net-based framework for modeling,
and simulating/analyzing biological systems, illustrated in Fig. 1, which extends
the Petri net-based framework for modeling, and simulating/analyzing biological
systems introduced in [GHL07], i.e., the new proposed framework is in fact the
colored version of the existing framework. Both of these frameworks unify the
qualitative, stochastic and continuous Petri net paradigms, but the colored ver-
sion provides more compact and readable representations of complex biological
systems.

The new framework relates three modeling paradigms: QPNC , SPNC , and
colored continuous Petri nets (CPNC), just like the Petri net-based framework
that relates qualitative Petri nets (QPN), stochastic Petri nets (SPN) and
continuous Petri nets (CPN). QPNC is an abstraction of SPNC and CPNC ,
while SPNC and CPNC are mutually related by approximation. The user can
refer to [GHL07] to take a closer look at the detailed relationship between these
three paradigms. In the following, we will describe QPNC and SPNC in detail,
but not CPNC as we have not investigated CPNC yet.
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Fig. 1. Colored Petri net-based framework for modeling, and simulating/analyzing
biological systems.

2.1 Colored qualitative Petri Nets (QPNC)

We assume basic knowledge of the standard notions of qualitative place/transition
Petri nets, see e.g. [Mur89], [HGD08]. In the following, we will briefly describe
QPN , and then give the definition of QPNC .

QPN is the basic Petri net class, which consists of places, transitions, and
arcs. QPN does not associate a time with transitions or the sojourn of tokens
at places, and thus is time-free [GHL07]. QPNC is a colored extension of QPN .

Colored Petri nets were first proposed by Jensen [Jen81], which combine
Petri nets with capabilities of programming languages to describe data types and
operations, thus providing a flexible way to create compact and parameterizable
models. In colored Petri nets, tokens are distinguished by the ”color”, rather
than having only the ”black” one. Besides, arc expressions, an extended version
of arc weights, specify which tokens can flow over the arcs, and guards that are
in fact Boolean expressions define additional constraints on the enabling of the
transitions [JKW07]. In the following, we give the definition of the QPNC based
on the definition of colored Petri nets by Jensen [JKW07]. Here we denote by
EXP the set of expressions that comply with a predefined syntax, which are
used as arc expressions, guards, etc.

Definition 1. A QPNC is a tuple < P, T, F,
∑

, C, g, f,m0 >, where:

– P is a finite, non-empty set of places.

– T is a finite, non-empty set of transitions.

– F is a finite set of directed arcs, such that F ⊆ (P × T ) ∪ (T × P ).
–

∑
is a finite, non-empty set of types, also called color sets.

– C : P →
∑

is a color function that assigns to each place p ∈ P a color set

C(p) ∈
∑

.

– g : T → EXP is a guard function that assigns to each transition t ∈ T a

guard expression that has the Boolean type.
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– f : F → EXP is an arc function that assigns to each arc a ∈ F an arc

expression that has a multiset type C(p)MS, where p is the place connected

to the arc a, and C(p)MS is the multiset on the color set C(p).
– m0 : P → EXP is an initialization function that assigns to each place p ∈ P

an initialization expression that has a multiset type C(p)MS.

QPNC is a colored extension of the qualitative place/transition net extended
by different kinds of arcs, e.g., inhibitor arc and read arc [HRR+08]. These kinds
of arcs are not explicitly denoted in the definition above.

2.2 Colored Stochastic Petri Nets (SPNC)

In this section, we will briefly recall stochastic Petri nets (SPN) and their ex-
tensions, and then introduce colored stochastic Petri nets (SPNC).

SPN are an extension of qualitative place/transition Petri nets. As with
a qualitative Petri net, a stochastic Petri net maintains a discrete number of
tokens on its places. But contrary to the time-free case, a firing rate (waiting
time) is associated with each transition, which is a random variable, defined
by an exponential probability distribution. The semantics of a stochastic Petri
net is described by a continuous time Markov chain (CTMC). The CTMC of a
stochastic Petri net without parallel transitions is isomorphic to the reachability
graph of the underlying qualitative Petri net, while the arcs between the system
states are now labelled by the transition rates [HLG+09].

There are quite a number of various extensions based on the fundamental
stochastic Petri net class SPN , see e.g. [MBC+95], [Ger01]. For example, gen-
eralized stochastic Petri nets (GSPN) are stochastic Petri nets (SPN) extended
by inhibitor arcs and immediate transitions. Deterministic and stochastic Petri
nets (DSPN) are generalized stochastic Petri nets (GSPN) extended by deter-
ministic transitions [HLG+09].

While SPN and its extensions offer enormous modeling power, managing
large-scale Petri net models is difficult due to the fact that tokens are indistin-
guishable. To alleviate this limitation, the SPNC is presented to uplift biochem-
ically interpreted extended stochastic Petri nets introduced in [HLG+09] to a
colored version. As in the QPNC , in the SPNC , tokens are distinguished by the
”color”, and arc expressions and guards have the same meaning. Before expres-
sions are evaluated to values, the variables in the expressions must get assigned
values, which is called binding. A binding of a transtion t ∈ T exactly corre-
sponds to a transition instance, denoted by t(b), i.e., each binding will become
an uncolored transition after unfolding. The set of all bindings for a transition t

constitutes the set of all the instances of transition t, denoted by TI(t). The set
of all instances for all transitions T of a net is denoted by TI(T ). In contrast,
each color c ∈ C(p) for a place p ∈ P exactly corresponds to a place instance,
denoted by p(c), i.e., each color will become an uncolored place after unfolding.
We let PI(p) denote all the instances of a place p and PI(P ) all the instances
of all places P of a net. In the following, we give the definition of SPNC based
on QPNC .
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Definition 2. A biochemically interpreted colored stochastic Petri net SPNC

is a tuple < P, T, F,
∑

, C, g, f, v, l,m0 >, where:

– < P, T, F,
∑

, C, g, f,m0 > is a QPNC .

– T is refined as the union of three disjoint transition sets, i.e. T := Tstoch ∪
Tim ∪ Ttimed with:

• Tstoch, the set of stochastic transitions with exponentially distributed

waiting time,

• Tim, the set of immediate transitions with waiting time zero, and

• Ttimed, the set of transitions with deterministic waiting time.

– F is refined as the union of two disjoint arc sets, i.e., F := FN ∪ FI with:

• FN ⊆ (P × T ) ∪ (T × P ) is the set of directed standard arcs,

• FI ⊆ P × T is the set of directed inhibitor arcs.

– v : TI(Tstoch) → H is a function that assigns a stochastic hazard function

h(t(b)) to each transition instance t(b) ∈ TI(t) of each transition t ∈ Tstoch,

whereby H :=
⋃

t(b)∈TI(T ){ht(b)|ht(b) : N
|•t(b)|
0 → R

+} is the set of all stochas-

tic hazard functions, and v(t(b)) = h(t(b)) for all transitions t ∈ Tstoch.

– l : TI(Ttimed) → R
+ assigns a non-negative deterministic waiting time to

each transition instance t(b) ∈ TI(t) of each deterministic transition t ∈
Ttimed.

Please note, the stochastic hazard function in SPNC is defined for each
transition instance of each colored transition. The domain of h(t(b)) is restricted
to the set of preplace instances of t(b), denoted by •t(b) with •t(b) := {p(c) ∈
PI(P )|f(p(c), t(b)) 6= 0}. For sake of simplicity, such features as read arcs and
scheduled transitions are not explicitly mentioned in the definition above. For
the semantics of SPNC refer to [HLG+09].

Colored Petri nets, such as QPNC and SPNC , allow to build more compact
and parametric representations of biological systems by, e.g., folding similar sub-
nets which are then distinguished by colors. Therefore, it is possible to concisely
represent complex systems that would have required a huge low-level Petri net.
This provides an effective way to model and simulate very complex biological
systems which would have been difficult with other modeling approaches.

3 Colored Petri net implementation in Snoopy

Snoopy is a generic and adaptive tool for modeling and animating/simulating
hierarchical graph-based formalisms. Snoopy runs on Windows, Linux, and Mac
operating systems. It is available free of charge for non-commercial use, and
can be obtained from our website [Sno10]. However QPNC and SPNC are still
prototypes and thus not included in the official release so far.

Snoopy provides the following functionalities for QPNC and SPNC :

– Rich data types for color set definition, consisting of dot, integer, string,
Boolean, enumeration, index, product and union. The user can use these
data types to define distinguishable tokens.
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– Colored Petri net models as drawn as usual, and automatic syntax checking
of declarations and expressions.

– Automatic animation, and single-step animation by manually choosing a
binding. Thus, the user can run animation automatically or control the ani-
mation manually.

– Simulation is done on an automatically unfolded Petri net, and simulation
results for colored or uncolored places/transitions are given together or sep-
arately. This functionality only applies to SPNC .

– Several simulation algorithms to simulate SPNC , including the Gillespie
stochastic simulation algorithm (SSA) [Gil77].

– QPNC and SPNC are exported to different net formalisms, and thus can be
analyzed by different tools such as CHARLIE [Fra09] and IDD-CSL [SH09].

In addition, there are some functionalities and features that are especially
helpful for modeling biological systems, which are described as follows.

– Concise specification of initial markings. In a biological model, there are
often large quantities of species to be modeled. So the initial markings may
be set in many different ways.
• Specifying the color and its corresponding tokens as usual.
• Specifying a set of colors with the same number of tokens.
• Using a predicate to choose a set of colors and then specifying the number

of tokens.
• Using the all() function to specify a specific number of tokens for all

colors.

– Specifying a rate function for each instance of a colored transition. For a tran-
sition, we may define different rate functions for different transition binding
instances, and we use predicates to reach this goal.

– Supporting several extended arc types, such as inhibitor arc, read arc (often
also called test arcs), equal arc, reset arc, and modifier arc, which are popular
add-ons enhancing modeling comfort [HRR+08].

– Supporting extended transitions. Snoopy supports stochastic transitions with
freestyle rate functions and rate functions of some predefined patterns as well
as several deterministically timed transition types: immediate firing, deter-
ministic firing delay, and scheduled firing (see [HLG+09] for details).

All these functionalities and features for QPNC and SPNC facilitate the
modeling and simulation of biological systems. As a result, we not only can
obtain a more compact and readable model for a complex biological system, but
also do not lose simulation or analysis capabilities compared with low-level Petri
nets.

4 Constructing colored Petri net models

In this section, we will demonstrate how to construct a colored Petri net model
using Snoopy. We first show how to construct basic colored Petri net components,
and then present two examples to illustrate QPNC and SPNC , respectively.
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4.1 Constructing basic colored Petri net components

The key step in the design of a colored Petri net is to construct basic colored
Petri net units, through which we can obtain the whole colored Petri net model
step by step. This process is also called folding. In the following we will introduce
some folding ways to construct basic colored Petri net components, which are
illustrated in Fig. 2.

p1 p2 p2p1p CS

p1 p2

p CS

p

CS

t1 t2 t2t1t

t1 t2

t

t

  

x     

 
  

x++

(+x)

[x=1](x++

(+x))++

[x=2]x

−−>−−>

−−>

(a) 

(c) 

(b) 

Declarations:

colorset CS = int with 1,2;

variable x : CS ;

(d) 

Fig. 2. Basic colored Petri net components.

Fig. 2(a) shows the folding of two isolated subnets with the same structure.
For this simple case, we can define a color set containing two colors. For example,
we define the color set as ”CS” with two integer colors: 1 and 2 (see Fig. 2(d)).
We then assign the color set ”CS” to the place. We define the arc expression as
x, where x is a variable of the type ”CS”. Thus, we get a basic colored Petri net
component, illustrated on the right hand of Fig. 2(a).

In Fig. 2(b), the net to be folded is extended by two extra arcs from p2 (p1)
to t1 (t2), respectively. To fold it, we use the same color set, and just modify
the arc expression to x + +(+x), where the ”+” in the (+x) is the successor
operator, which returns the successor of x in an ordered finite color set. If x is
the last color, then it returns the first color. The ”++” is the multiset addition
operator.

In Fig. 2(c), the net to be folded gets one extra arc from p2 to t1. To fold
it, we use the same color set, and just modify the arc expression to [x = 1](x +
+(+x)) + +[x = 2]x, meaning: if x = 1, then there are two arcs connecting p

with t, while if x = 2, then there is only one arc connecting p with t.
In summary, the following rules apply when folding two similar nets to a

colored Petri net. If the two subnets share the same structure, we just have to
define a color set and set arc expressions without predicates. If the subnets are
similar, but not the same in structure, we may need to define arc expressions
with predicates or guards. However, in either case, if we want to continue to
add other similar nets, what we should do is usually to add new colors, and
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slightly change arc expressions or guards. Using these basic colored Petri net
components, we can construct the whole colored Petri net model step by step.

In the next two sections, we will give two simple examples to demonstrate the
application of colored Petri nets. The first example is to demonstrate QPNC ,
and the second one is to demonstrate SPNC .

4.2 Cooperative ligand binding

We consider an example of the binding of oxygen to the four subunits of a
hemoglobin heterotetramer. The hemoglobin heterotetramer in the high and low
affinity state binds to none, one, two, three or four oxygen molecules. Each of
the ten states is represented by a place and oxygen feeds into the transitions
that sequentially connect the respective places. The qualitative Petri net model
is illustrated in Fig. 3 (taken from [MWW09]).

Using the folding ways demonstrated above we obtain for Fig. 3 a QPNC

model (Fig. 4), and further a more compact QPNC model (Fig. 5). From Fig. 4,
we can see that the colored Petri net model reduces the size of the corresponding
low-level Petri net model. Moreover, comparing Fig. 4 with Fig. 5, we can also
see that we can build colored Petri net model with different level of structural
details, which is especially helpful for modeling complex biological systems. After
automatic unfolding, these two colored models yield exactly the same Petri net
model as given in Fig. 3, i.e., the colored models and the uncolored model are
equivalent. The declarations for these two QPNC models of the cooperative
ligand binding are given in Table 1.

From these two colored nets, we can also see that the folding operation does
reduce the size of the net description for the prize of more complicated inscrip-
tions. The graphic complexity is reduced, but the annotations of nodes and edges
creates a new challenge. This is not unexpected since a more concise write-up
must rely on more complex components. Therefore, it is necessary to build a
colored Petri net model at a suitable level of structural details.

Table 1. Declarations for the QPNC models of the cooperative ligand binding.

Declarations

colorset Dot = dot;

colorset HbO2 = int with 0-4;

colorset Level = enum with H,L;

colorset P = product with HbO2 × Level;

variable x: HbO2;

variable y: Level;
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Hb(O2)4Lo Hb(O2)4Hi

Hb(O2)0HiHb(O2)0Lo

O2

O2

O2

O2

O2

O2

O2O2

O2

O2

O2O2

Hb(O2)1HiHb(O2)1Lo

Hb(O2)2HiHb(O2)2Lo

Hb(O2)3Lo Hb(O2)3Hi

Fig. 3. Cooperative binding of oxygen to hemoglobin represented as a Petri net model.
For clarity, oxygen is represented in the form of multiple copies (logical places) of one
place.

O2

4

4‘dot
Dot

HbO2L

1

1‘0

HbO2

HbO2H

HbO2

t1 [x<>4] t2 [x<>4] t3 [x<>4] t4 [x<>4]

t5

t6

dot dot dot dot

x+1 x x x+1

x x

xx

x+1 x x x+1

Fig. 4. QPNC model for the cooperative binding of oxygen to hemoglobin, given as a
low-level Petri net in Fig. 3. For declarations of color sets and variables, see Table 1.
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O2

4
4‘dot Dot

HbO2
11‘(0,L) P

t1 [x<>4] t2 [x<>4]

t3t4

[y=L]dot

[y=H]dot

[y=L]dot

[y=H]dot

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=H]1‘(x+1,y)++

[y=L]1‘(x,y)

[y=L]1‘(x+1,y)++

[y=H]1‘(x,y)

[y=H]1‘(x,L)

[y=H]1‘(x,y)

[y=L]1‘(x,y)

[y=L]1‘(x,H)

Fig. 5. QPNC model for the cooperative binding of oxygen to hemoglobin, given as a
low-level Petri net in Fig. 3. For declarations of color sets and variables, see Table 1.

4.3 Repressilator

In this section, we will demonstrate the SPNC using an example of a synthetic
circuit - the repressilator, which is an engineered synthetic system encoded on
a plasmid, and designed to exhibit oscillations [EL00]. The repressilator system
is a regulatory cycle of three genes, for example, denoted by g a, g b and g c,
where each gene represses its successor, namely, g a inhibits g b, g b inhibites
g c, and g c inhibites g a. This negative regulation is realized by the repressors,
p a, p b and p c, generated by the genes g a, g b and g c respectively [LB07].

blocked_a

proteine_a

gene_a

blocked_b

proteine_b

gene_b

blocked_c
proteine_c

gene_c

block_a

block_a

degrade

unblock

generate

degrade

unblock

generate

degrade

unblock

generate
block_b

block_b

block_c

block_c

Fig. 6. Stochastic Petri net model for the repressilator. The highlighted transitions are
logical transitions.

As our purpose is to demonstrate the SPNC , we only consider a relatively
simple model of the repressilator, which was built as a stochastic π-machine in
[BCP08]. Based on that model, we build a stochastic Petri net model (Fig. 6),
and further a SPNC model for the repressilator (shown on the left hand of Fig.
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7). This colored model when unfolded yields the same uncolored Petri net model
in Fig. 6.

Table 2 gives the declarations for this SPNC model. There are three colors,
a, b, and c to distinguish three similar components in Fig. 6. The predecessor
operator ”-” in the arc expression −x returns the predecessor of x in an ordered
finite color set. If x is the first color, then it returns the last color.

As described above, the SPNC will be automatically unfolded to a stochastic
Petri net, and can be simulated with different simulation algorithms. On the right
hand of Fig. 7 a snapshot of a simulation run result is given. The rate functions
are given in Table 3 (coming from [PC07]). The SPNC model exhibits the same
behavior compared with that in [PC07].

blocked

Gene

proteine

Gene

gene

3

1‘all()

Gene

block

degrade

unblock

generate

x

x
x

x

x

x
x

x

−x

−x ��������� �������� �������� �������� �������� 	������
��������
��	��	�� ���������������������������Stochastic Result: repressilatorex.colstochpn

Time

V
al

ue

Fig. 7. SPNC model of the low-level Petri net given in Fig. 6, and one simulation run
plot for the repressilator. For rate functions, see Table 3.

Table 2. Declarations for the SPNC model of the repressilator.

Declarations

colorset Gene = enum with a,b,c;

variable x: Gene;

From Fig. 7, we can see that the SPNC model reduces the size of the original
stochastic Petri net model to one third. More importantly, when other similar
subnets have to be added, the model structure does not need to be modified and
what has to be done is only to add extra colors.

For example, we consider the generalized repressilator with an arbitrary num-
ber n of genes in the loop that is presented in [MHE+06]. To build its SPNC

model, we just need to modify the color set as n colors, and do not need to
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Table 3. Rate functions for the SPNC model of the repressilator.

Transition Rate function

generate 0.1 ∗ gene

block 1.0 ∗ proteine

unblock 0.0001 ∗ blocked

degrade 0.001 ∗ proteine

modify anything else. For example, Fig. 8 gives the conceptual graph of the gen-
eralized repressilator with n = 9 (on the left hand), and one simulation plot (on
the right hand), whose rate functions are the same as in Table 3. Please note,
the SPNC model for the generalized repressilator is the same as the one for the
three-gene repressilator, and the only difference is that we define the color set as
n colors rather than 3 colors. This demonstrates a big advantage of color Petri
nets, that is, to increase the colors means to increase the size of the net.

�� ����� ����� ����� ����� ��������������
�������������� ���� !" #$���� !" #%���� !" #&���� !" #'���� !" # ���� !" #(���� !" #)���� !" #*���� !" #!Stochastic Result: repressilatorex.colstochpn

Time

V
al

ue

Fig. 8. Conceptual graph and one simulation run plot for the repressilator with 9 genes.

5 Related work

Heiner et al. modeled metabolic pathways with high-level Petri nets using the
software packages Design/CPN [Des01]. Colors discriminate metabolites, and
thus they got a number of valuable insights by combining symbolic analysis
and simulation for colored metabolic steady state system models [HKV01]. Gen-
rich et al. discussed the steps to establish and tune high-level net models, and
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modeled metabolic pathways of the glycolysis and citric acid cycle with col-
ored Petri nets using also Design/CPN. By assigning enzymatic reaction rates
to the transitions, they implemented the simulation and quantitative study of
networks of metabolic processes [GKV01]. Bahi-Jaber et al. investigated the ap-
plication of colored stochastic Petri nets to epidemic models using a very simple
model [BP03]. Although this study had no tool support, it really demonstrated
the advantages of colored stochastic Petri nets. Runge described a systematic
semi-automatic procedure, exploiting the place/transition net’s T-invariants to
construct an equivalent bounded and live coloured net. As case study, an ex-
tended glycolysis was used [Run04]. However, he only considered modeling and
qualitative analysis of biological model based on CPN tools [JKW07]. Lee et al.
built a colored Petri net model for the signal transduction system stimulated
by epidermal growth factor (EGF) based on CPN tools, in which they use the
conservation and kinetic equations to quantitatively examine the dynamic be-
havior of the EGF signaling pathway [LYL+06]. Tubner et al. used the UML
class diagram to understand the static structure of molecules involved in the
TLR4 pathway, and then modeled and simulated the TLR4 pathway to get the
behavior of the system with colored Petri nets based on CPN tools [TMK+06].
In their model, they did not consider any time information.

In summary, the existing studies usually resort to Design/CPN or its succes-
sor CPN tools to realize the modeling and analysis of biological systems. But
CPN tools are not designed for modeling and analyzing biological systems. So
it is not suitable in many aspects, like rate function definition and simulative
analysis by stochastic simulation algorithms.

In contrast, in Snoopy we provide specific functionalities and features to
support editing, simulating, and analyzing of biological models based on colored
Petri nets, as shown in Section 3.

6 Conclusion and outlook

In this paper we have described our on-going work of a colored Petri net-based
framework to model, simulate, and analyze complex biological systems. This
framework consists of three parts: QPNC , SPNC , and CPNC , and only the
first two parts have been described in this paper. Their definitions are given,
and functionalities and features implemented in Snoopy are described, followed
by two examples to demonstrate their application. The colored Petri nets al-
low a more concise representation of biological systems, making it possible and
convenient to construct and analyze large-scale biological models.

We are working on improvements of these two paradigms: QPNC and SPNC .
In the next step, we will focus on the development of analysis tools for SPNC ,
and we will include the CPNC in our work. We are also developing a method to
automatically create colored Petri nets from non-coloured Petri nets (automatic
folding). This development will provide much stronger support to construct and
analyze large-scale biological models. Besides, we are working on a case study

Colored Petri nets for biological systems Petri Nets & Concurrency – 83



14

with a size of the underlying uncolored model of about 110,000 places and 135,000
transitions.
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Abstract. This paper is concerned with the control problem of biolog-
ical systems modeled with Timed Continuous Petri Nets under in�nite
server semantics. This work introduces two main contributions. The �rst
one is a bottom-up modeling methodology that uses TCPN to represent
cell metabolism.
The second contribution is the control wich solves the Regulation Control
Problem (RCP ) (to reach a required state and maintain it). The control
is based on a Lyapunov criterion that ensures reaching the required state.
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1 Introduction

Petri nets PN [1], [2], [3] are a formal paradigm for modelling and analysis of sys-
tems that can be seen as discrete dynamical systems. Unfortunately, due to state
explosion problem, most of the analysis techniques cannot be applied in heavy
marked Petri nets. In order to overcome this problem, the Petri net community
developed the Timed Continuous Petri Nets (TCPN) [4], [5], a relaxation of
the Petri Nets where the marking becomes continuous and the state equation is
represented by a positive, bounded set of linear di¤erential equations.
The main TCPN characteristics such as the nice pictorially representation,

the mathematical background, the synchronization of several products to start
an activity and the representation of causal relationship make TCPN amenable
to represent biochemical reactions and cell metabolism. In fact TCPN mark-
ing captures the concentration of molecular species while di¤erential equations
together with the �ring vectors represent the reaction velocity and the graph cap-
tures the metabolic pathways. The entire TCPN captures the cell metabolome.
Several works model [6], [7], analyse [8], [9] and control [10], [11] metabolic

pathways. Most of them deal with pseudo-steady states of the biochemical reac-
tion dynamic. Nowadays, the scienti�c community is exploring the use of PN and

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 87–102.
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their extensions [12], [13] to model biological systems since the former are able
to capture the compounds �ow, the reaction velocity, the enabling/inhibiting
reactions and both the transitory and steady states of reaction dynamic into a
single formalism.
This work is concerned on how to model the entire metabolome with TCPN .

It proposes a bottom-up modeling methodology where biochemical reactions are
modeled through elementary modules, and shows how these modules are merged
to form metabolic pathways, and at the end the cell metabolism. The resulting
model captures both, the transitory and steady state metabolome dynamics. It
is worth noticing that the derived TCPN model condenses several particular be-
haviors represented by the set of di¤erential equations generated by the TCPN
itself. For instance, a single transition with four input places (a reaction needing
four substrates) generates a set of four possible di¤erential equations while two
transitions with four input places each will generate a set of sixteen possible
di¤erential equations. Therefore highly complex behaviors emerging from few
compounds interacting can be captured by TCPN .
This work also presents the control problem of reaching a required state

(marking) representing a certain metabolite concentration. In order to solve this
problem, an error equation is stated and stabilized using a Lyapunov approach.
The solution is the reaction rate vector which is greater or equal to zero and
lower or equal to the maximum settled by the kinetics of Michaelis-Menten for
the current enzyme concentration. Thus, if a solution exists, it could be imple-
mented in vivo by directed genetic mutation, knock-in (or knock-out) strategies
or pharmacological e¤ects.
Present paper is organized as follows. Section 2 gives TCPN basic de�ni-

tions, controllability and cell metabolic concepts. Next section introduces the
proposed metabolome modeling methodology. Section 4 presents the problem
of reaching a required state and synthesizes Lyapunov like transition �ow for
solving this problem. Following section presents an illustrative example to show
the performance of the computed control law. In the last section the conclusions
and future work are presented.

2 Basic De�nitions

This section presents brie�y the basic concepts related with PN , Continuous
PN and TCPN . An interested reader can review [3], [14], [15] and [16] for further
information. At the end of this section a useful form of the state equation for
TCPN under in�nite server semantics is presented.

2.1 Petri Net concepts

De�nition 1. A Continuous Petri Net (ContPN) system is a pair (N;m0),
where N = (P; T; Pre; Post) is a Petri net structure (PN) and m0 2 fR+[0gjP j
is the initial marking. P = fp1; :::; png and T = ft1; :::; tkg are �nite sets of
elements named places and transitions, respectively. Pre; Post 2 fN [ 0gjP j�jT j
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are the Pre and Post incidence matrices, respectively, where Pre[i; j], Post[i; j]
represent the weights of the arcs from pi to tj and from tj to pi, respectively.
The Incidence matrix denoted by C is de�ned by C = Post� Pre:

Each place pi has a marking denoted by mi 2 fR+ [ 0g. The set �ti =
fpj j Pre[j; i] > 0g ; (t�i = fpj j Post[j; i] > 0g) is the preset (postset) of ti: Sim-
ilarly the set �pi = ftj j Post[i; j] > 0g ; (p�i = ftj j Post[i; j] > 0g) is the preset
(postset) of pi.
A transition tj 2 T is enabled at marking m i¤ 8pi 2 �tj , mi > 0. Its

enabling degree is:
enab(tj ;m) = min

pi2�tj

mi

Pre [i; j]
(1)

and it is said that mi constraints the �ring of tj . Equation (1) denotes the
maximum amount that tj can be �red at marking m; indeed tj can �re in any
real amount �; where 0 < � < enab(tj ;m) leading to a new marking m0 =
m+ �C[�; j]. If m is reachable from m0 through a �nite sequence � of enabled
transitions, then m can be computed with the equation:

m = m0 + C� (2)

named the ContPN state equation, where � 2 fR+ [ 0gjT j is the �ring count
vector, i.e., �j is the cumulative amount of �ring of tj in the sequence �. The
set of all reachable markings from m0 is called the reachability space and it is
denoted by RS (N;m0). In the case of a ContPN system, RS (N;m0) is a convex
set [17].

De�nition 2. A contPN is bounded when every place is bounded (8p 2 P;9bp 2
R with m [p] � bp at every reachable marking m). It is live when every transi-
tion is live (it can ultimately occur from every reachable marking). Liveness is
extended to lim-live when in�nitely long sequence can be �red. A transition t is
non lim-live i¤ a sequence of successively reachable markings exists which con-
verge to a marking such that none of its successors enables a transition t.

2.2 Timed continuous Petri nets

De�nition 3. A timed ContPN is the 3-tuple TCPN = (N;�;m0) ; where N
is a ContPN , � : T ! fR+gjT j is a function that associates a maximum �ring
rate to each transition, and m0 is the initial marking of the net N .

The state equation of a TCPN is

�
m(�) = Cf(�) (3)

where f(�) =
�
�(�)

And under the in�nite server semantics, the �ow of transition tj is given by

fj(�) = �jenab(tj ;m(�)) (4)
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where �j represents the maximum �ring rate of transition tj . Notice that TCPN
under in�nite server semantics is a piecewise linear system (a class of hybrid
systems) due to the minimum operator that appears in the enabling function
of the �ow de�nition.

De�nition 4. A con�guration of a TCPN at m is a set of (p; t) arcs describing
the e¤ective �ow of all transitions.

� (m) [i; j] =

� 1
Pre[i;j] if pi is constraining tj
0 otherwise

(5)

De�nition 5. The maximum �ring rate matrix is denoted by

� = diag
�
�1; : : : ; �jT j

�
: (6)

According to previous notation, the state equation and the �ow vector are
described by:

�
m = C�� (m) �m
f = �� (m) �m (7)

The only action that can be applied to a TCPN system is to slow down the
�ring �ow. The forced �ow of a controlled transition ti becomes fi � ui where
fi is the �ow of the unforced system (i.e. without control) and u is the control
action, with 0 � ui � fi. The controlled state equation is:

�
m = C [�� (m) �m� u] (8)

0 � ui � [�� (m) �m]i (9)

In order to obtain a simpli�ed version of the state equation, the input vector
u is rewritten as u = Iu�� (m) � m, where Iu = diag

�
Iu1 ; : : : ; IujT j

�
and 0 �

Iui � 1. Then the matrix Ic = I � Iu is constructed and the controlled state
equation can be rewritten as:

�
m = CIc�� (m) �m (10)

Notice that 0 � Ici � 1.

2.3 Controllability

The classical linear systems de�nition of controllability cannot be applied to
TCPN systems because the required hypothesis are not ful�lled, that is, the
input should be unbounded and the state space should be RjP j. The next de�n-
itions are taken from [18].

De�nition 6. Let N be net of a TCPN . The structural admissible states set is
de�ned as SASS (N) = fR+ [ f0ggjP j (all inital markings that can be imposed
to a net). Let B be the base of the left annuller of the incidence matrix C.
The equivalence relation � : SASS (N) ! SASS (N) is de�ned as m1�m2 i¤
BTm1 = B

Tm2, 8m1;m2 2 SASS(N). The system admissible states set is the
equivalent class of the initial marking Class (m0) under �.
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In the sequel, let us denote by int (Class (m0)) the set of relative interior of
Class (m0).

De�nition 7. Let (N;�;m0) be a TCPN system. It is fully controllable with
bounded input (BIFC) if there is an input such that for any two markings
m1;m2 2 Class (m0), it is possible to transfer the marking from m1 to m2

in �nite or in�nite time, and the input ful�lls (9) along the trajectory, and is
controllable with bounded input (BIC) over S � Class (m0) if there is an input
such that for any two markings m1;m2 2 S, it is possible to transfer the mark-
ing from m1 to m2 in �nite or in�nite time, and the input ful�lls (9) along the
trajectory.

De�nition 8. Let (N;�;m0) be a TCPN system. Let mr 2 RS (N;m0) and
0 � Icr [i; i] � 1. Then (mr; Icr ) is an equilibrium point if

�
mr = CIcr�� (mr) �

m = 0. Then, the steady state �ow for (mr; Icr ) is fss (mr; Icr ) = Icr�� (mr) �
mr.

An equilibrium point represents a state in which the system can be main-
tained using the de�ned control action. Given an initial marking m0 and a re-
quired marking mr, one control problem is to reach mr and then keep it. For
a further information about equilibrium points an interested reader can review
[19].

2.4 Cell Metabolism

For the wellbeing of an given organism, each cell of that organism must transform
the substances available in its surroundings to useful molecules. Such transforma-
tions take place as chemical reactions catalyzed by enzymes. In these reactions,
a substrate tightly binds non-covalently to its enzyme active site to build an
enzyme-substrate complex. At that moment, the enzyme chemically changes the
substrate into one or more products and then releases it. The enzyme did not
su¤er any irreversible alterations in the process, and now is free to accept a new
substrate [20].
There is no limit to the number of possible reactions occurring in nature.

Nonetheless, after exhaustive analysis certain general patterns had emerged that
became useful to describe several characteristics of biochemical reactions. In the
case where a sole substrate becomes a single product, the reaction process is
represented by the scheme:

E + S 
 ES ! EQ
 E +Q (11)

where E is the enzyme, S is the substrate, ES and EQ are the bound complexes
and Q is the product.
Typically, the rate of these reactions is settled by the kinetics of Michaelis-

Menten [21]. Under this kinetic model, the enzyme and substrate react rapidly
to form an enzyme-substrate complex while [S] and [ES] are considered to be at
concentration equilibrium (the same applies to [EQ] and [Q]), that is, the rate
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at which ES dissociates into E + S is much faster than the rate at which ES
brakes down to EQ.
Throughout the present work, we will consider a physiological cellular state

where [S] >> [E], which means that [S]
 [ES] equilibrium will always tend to
complex formation. Therefore, ES dissociation rate is irrelevant and Scheme 11
can be abbreviated as follows:

E + S ! E +Q (12)

where the association-dissociation is implicit.
In reactions with more than one substrate, binding can occur in di¤erent

sequences; for instance, the following scheme represents an enzyme system with
two substrates and all the possible sequences:

E + S1 + S2 


8>>>><>>>>:
ES1 + S2

��
ES1S2 !

��
ES2 + S1

E +Q1 + :::+Qn (13)

Frequently the product of an enzyme is the substrate of another reaction
and so on, to build a chain of reactions called metabolic pathways represented
byMP j = � j1�

j
2 � � �� jn where �

j
i is a reaction (12) or (13) of a pathway j and �

j
k

uses one or more products of �mi . Notice that j and m may represent di¤erent
pathways.
Then a (Cell) Metabolome is CM =

�
MP i

��MP i is a metabolic pathway	,
and the purpose of CM is to produce a particular set of metabolites in certain
concentrations, essential to that cell.

3 Modelling the Metabolome

In order to model the metabolome using TCPN it is necessary to identify how
the elements involved in it will be represented. The next table relates the meaning
of each element of the TCPN with respect to metabolic reactions.

TCPN term Molecular interpretation
Place Molecular Species
Marking Concentration
Transition Reaction
Firing Rate Rate of Reaction
Arc Weights Stoichiometric Coe¢ cients

The bottom-up approach herein proposed to model the metabolome consists
of: a) representing reactions, the results of this stage are the elementary modules;
b) merging elementary modules, where places of elementary modules represent-
ing the same molecular species on the same physical space in the cell will merge
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Fig. 1. Four elementary modules representing four diferent reactions.

into a single place. The results of this stage are pathway modules; and c) merg-
ing pathways modules, where places of pathways modules representing the same
molecular species on the same cellular space will merge into a single place; the
result of this stage is the metabolome model. For stages b and c, any specie being
protein-mediated transported into a di¤erent organelle shall be modeled through
the same elementary module, representing instead of substrate and product the
same molecule in di¤erent spaces.
Next section describes these stages.

3.1 Representing Reactions

In order to represent each reaction �i with TCPN elementary modules repre-
senting the Scheme (12) or (13) are constructed. There exists one place pj for
each molecular species at the same physical space msj and one transition ti to
represent the reaction �i. There exists one arc (ps; ti) if ps represents a substrate.
There exists one arc (ti; pq) if pq represents a product. Finally, there exists a self-
loop around pe and ti if pe represents an enzyme. The initial marking m0 [pj ] is
the concentration of the molecular species msj at time � = 0.
Associated to transition ti is �i representing the rate of reaction.

Example 1. Let P1 +E1! P2 +E1 be the �1 reaction. There is one place for
each molecular species (P1, P2 and E1), and one transition t1 representing �1.
Finally, arcs are �xed in the way depicted in Figure 1a.

Assuming that the substrate concentration will remain higher than the en-
zyme concentration (this is an expected behavior of the system), the con�ict
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Fig. 2. Example of a Pathway Module.

between substrate and enzyme can be ignored. Hence, if a system has 2n con�g-
urations originated by the n number of enzymes in con�ict with substrates, all
those con�gurations are eliminated because min ([E]; [S]) = [E] for all � � 0.

3.2 Merging Elementary Modules

Let N1 and N2 be two elementary modules, then the merging N is such that
N = (P; T; Pre; Post) where P = P 1 [ P 2, T = T 1 [ T 2, Pre = Pre1 [ Pre2
and Post = Post1 [ Post2. Notice that places representing the same molecular
species in the same physical space are merged into a single place.
After a merging of elementary modules is made, pathway modules are ob-

tained.

Example 2. Let N1 =
�
P 1; T 1; P re1; Post1

�
and N2 =

�
P 2; T 2; P re2; Post2

�
be

two elementary modules showed in Figure 1a and Figure 1b respectively. Then,
the merging is N = (P; T; Pre; Post) where P = P 1[P 2 = fP1; :::; P5; E1; E2g,
T = T 1 [T 2 = ft1; t2g and arcs are �xed in the way depicted in Figure 2, where
the merging is showed.

3.3 Merging Pathway Modules

Let N1 be a pathway module and N2 be a pathway or an elementary module,
then the merging N is such that N = (P; T; Pre; Post) where P = P 1 [ P 2,
T = T 1 [ T 2, Pre = Pre1 [Pre2 and Post = Post1 [Post2. Notice that places
representing the same molecular species are merged into a single place.
After a merging of pathway modules is made, a metabolic model is obtained.

Example 3. Let N1 =
�
P 1; T 1; P re1; Post1

�
be the pathway module showed in

Figure 2. Let N2 =
�
P 2; T 2; P re2; Post2

�
and N3 =

�
P 3; T 3; P re3; Post3

�
be

two elementary modules showed in Figure 1c and Figure 1d respectively. Then
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Fig. 3. Metabolic Model.

the merging is N = (P; T; Pre; Post), where P = [P i = fP1; :::; P5; E1; :::; E4g,
T = [T i = ft1; t2; t3; t4g for i = 1; :::; 4. Arcs are �xed in Figure 3, where the
merging is showed.

Although obtained metabolic models could be not live, the addition of a
virtual transition and arcs going from the last place representing �nal products to
the virtual transition and from virtual transition to the places representing initial
products with an appropriate virtual reaction velocity will make the metabolic
model live. For instance, consider the net of Figure 1a, it is a non-live net,
but if we add a virtual input transition tv to the place S and a virtual output
transition tv to the place Q the system will gain liveness, see Figure 4. Notice
that tv must to be the same transition added to the inital and �nal metabolites,
this is because it is necessary to maintain the conservativeness of the matter of
the system. This notion is based assuming that each module belongs to a bigger
system, therefore, although the real input and output transitions could be not
the same, they must have the same �ring ratio.

4 Control Law

An important control problem in the metabolic engineering area is to reach
a certain metabolome state such that the production of selected metabolites is
regulated or particular processes are limited or favored. This problem is captured
in TCPN as the reachability problem, i.e. to reach a required state mr from an
initial state m0 by means of an appropriate control action. This is formalized as
follows.

De�nition 9. Let TCPN be a metabolic model. Then the Regulation Control
Problem in (mr; Icr ) (RCP (mr; Icr ))deals with the computation of a control law
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Fig. 4. Module forced to be live with the addition of a virtual transition tv (in gray).

Ic(�); 0 � � < �f feasible in the TCPN such that m(� ss) = mr and Ic(� ss) =
Icr ; 8� ss � �f :

In order to solve this problem, some extra places are added to the TCPN
metabolic model to detect the material passing through transitions. The follow-
ing de�nition shows how these places are added to the TCPN:

De�nition 10. Let (N;m0; �) be a metabolic model TCPN; where N = (P; T; F ).
Its extension is de�ned by xTCPN = (Nx;m0x ; �), where Nx = (P [ Pa; T; F [
Fa); jPaj = jT j, m0x =

�
m0 0jT j

�T
; Fa = f(ti; pai) j8ti 2 T and 8pai 2 Pa g :

Then the incidence matrix of xTCPN is Cx =
�
C IjT j

�T
.

Since �x (mx) =
�
� (m) 0jT j�jT j

�
; then the state equation of xTCPN is:

�
mx =

" �
m
�
ma

#
=

�
CIc�� (m) �m
Ic�� (m) �m

�
(14)

m(0) = m0, ma(0) = 0 (15)

Remark 1. Notice that the extension has the same dynamic over the metabolic
model places and the extra places can only increase its marking. In fact, due
to the TCPN is live, then by construction the xTCPN is also live. Then there
exists at least one enabled transition. Hence � (m) � m > 0 (or equivalently
�
ma � 0; the zero could be forced by an appropriate control law Ic).

Example 4. An example of an extended net is presented in Figure 5.

4.1 Solution to the RCP (mr; Icr)

Theorem 1. Let (N;m0; �) be a metabolic model TCPN and let xTCPN =
(Nx;m0x ; �) be its extension. If (N;m0; �) is BIC over int (Class (m0)) (notice
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Fig. 5. Example of an extended net. The gray places are the set of added places Pa
and the intermittent arrows are the set of added arcs Fa.

that neither the initial marking nor the required marking could be zero compo-
nents) and (Icr ;mr) is an arbitrary equilibrium point, then there exists Ic(�);
0 � � � �f feasible in the TCPN such that m(� ss) = mr, Ic(� ss) = Icr ;
8� ss � �f :

Proof. If the system is BIC over int (Class (m0)), then there exists a positive
solution �r(�) feasible such that

mr = m0 + C�r (16)

This result was taken from [18]. Thus there exists f(�) such that:Z �f

0

f(�)d� =

Z �f

0

Ic�� (m) �md� = �r (17)

From (14):
ma(�f ) = �r (18)

Now, let

ex(�) =
�
e(�) ea(�)

�T
, 0 � � � �f�

e(�) ea(�)
�T
=
�
mr �m(�) �r �ma(�)

�T (19)

and
V (ex) = e

T
xPLex (20)

where

PL =

�
0 0
0 IjT j

�
(21)

and IjT j is an identity matrix of order jT j � jT j. We claim that V (ex) is a
Lyapunov function, i.e it is positive de�nite and its derivative is negative de�nite.
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Since Equation (20) is clearly non-negative de�nite, then we assume that (22) is
positive semide�nite, then there exists ex(� 0) 6= 0 such that:

V (ex(�
0)) =

�
eT eTa

� �0 0
0 IjT j

� �
e
ea

�
= 0 (22)

From (22), it is clear that ea(� 0) = 0; then from (19) ma(�
0) = �r: Thus, from

(14) and (17) and letting �f = � 0:Z �f

0

�
m(�)d� = C�r (23)

m(�f )�m(0) = C�r

Thus, from Equation 16 m(�f ) = mr; then ex = 0; a contradiction. Hence V (ex)
is positive de�nite.

Now , we prove that
�
V (ex) is negative de�nite. The di¤erentiate of V (ex) is:

�
V (ex) = 2e

T
a

�
ea = �2 [�r �ma]

T �
ma (24)

Then, choosing Ic such that:

Ici =

�
1 if ma [i] < �r [i]
0 otherwhise

(25)

we obtain:
[�r �ma]

T
Ic > 0 (26)

and
[�r �ma]

T
Ic = 0 i¤ [�r �ma]

T
= 0

thus
�
V (ex) < 0 and

�
V (0) = 0:

Since ma(0) = 0 and it only increase its value, then Ici is feasible leading
from ma(0) = 0 to ma(�f ) = �r; i.e. from m0 to mr. Moreover, assuming mr 2
int (Class (m0)) it is reached in �nite time because

�
ma [i] = m (min (�ti)) e

��

and m (min (�t)) 6= 0 8� . At �f the control law must be switched from Ic(�f ) to
Ic(� ss) = Icr and the regulation control problem is solved.
�

The solution to the RCP (mr; Icr ) include both, the transitory and steady
state control of metabolic systems. It is an improvement to current control
solutions, where the biologist and metabolic engineers use stoichiometric non-
dynamical approaches such as FBA (Flux Balance Analysis) [22], [23], [24] for
the control of metabolic systems. Those are based on a pseudo-stationary state
model, represented by the equation:

Sv = 0 (27)

where S is the matrix of stoichiometry coe¢ cients and the solution v gives the
balance of mass for a single equilibrium point at that state (v is the reaction
rates vector in a steady state).
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Fig. 6. Marking evolution of the net of Figure 3 applying RCP (mr; Icr ) .

5 Illustrative Controlling Metabolic System Example

In order to illustrate the RCP (mr; Icr ) applied to a metabolic system, suppose
the pathway module of Figure 2 together with modules c and d of Figure 1 com-
prise a cell metabolome. The initial marking used for this example is an arbitrary
but physiologically possible initial state for the alleged metabolic model.

Example 5. Let the metabolome model of the Figure 3 be the system TCPN =

(N;�;m0) with � = diag (2; 3; 4; 1) and m0 =
�
100 80 100 50 70 5 3 2 4

�T
. Let

mr =
�
95 70 60 65 110 5 3 2 4

�T
be a required marking. We make the extended

system like the procedure showed in the Figure 5. We need the solution of �r
from mr = m0+C�r. Notice that there are a lot of solutions for �r but we only
focus on the smallest solution of �r. For this example the solution is:

�r =
�
30 40 25 0

�T
Solving the RCP (mr; Icr ) and applying the control (25) to the TCPN =
(N;�;m0) ; the metabolite concentrations are depicted in Figure 6. The reac-
tion velocities (transition �ux) is depicted in Figure 7. Notice that from � = 0
to � = �f � 4:5 occurs the transitory dynamics, and for � > �f the steady state
is reached.

Example 6. In Figure 8 the evolution of marking ma is depicted. When occurs
ma[i] = �r[i] the control Ici = 0 makes fi = 0 and ma[i] is maintained until
� = �f (ma = �r). Then Ic switches to Icr for the steady state control.
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Fig. 7. Reaction velocities (transition �ows) of the controlled metabolic model of the
Example 5. Notice that Ic (�) is applied for 0 � � < �f and Icr (�) for � > �f .

Fig. 8. Marking ma of the Example 5.
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6 Conclusions

This work presented a model methodology to capture the metabolome behav-
ior. It uses a bottom-up approach where each individual biochemical reaction
is modeled by elementary TCPN modules and, afterwards, all the modules are
merged into a single one to capture the whole metabolome behavior. Such char-
acteristic of the methodology makes it simple and easy to use while the complex
cell metabolic behavior is captured. This work also presented the problem of
reaching a required metabolome state. The solution to this problem are the
instantaneous reaction velocities that are realizable in biological system.
Present results are being applied to optimize metabolome fermentation in

the production of tequila and to biofuels generation.
Future perspective involves introduction of stochastic modelling and merging

the metabolome with the signaling and genetic networks.
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Abstract. The different modeling approaches in Systems Biology create
models with different levels of detail. The transformation techniques in
Petri net theory can provide a solid framework for zooming between these
different levels of abstraction and refinement. This work presents a Petri
net based approach to Metabolic Engineering that implements model re-
duction methods to reduce the complexity of large-scale metabolic net-
works. These methods can be complemented with kinetics inference to
build dynamic models with a smaller number of parameters. The central
carbon metabolism model of E. coli is used as a test-case to illustrate
the application of these concepts. Model transformation is a promising
mechanism to facilitate pathway analysis and dynamic modeling at the
genome-scale level.

1 Introduction

Systems Biology provides a new perspective in the study of living systems and
embraces the complexity emerging of interactions among all biological compo-
nents. Combining theory and experiments, scientists build models to explain and
predict the behavior of the systems under study. Metabolic Engineering is one
of the fields where this perspective has proven useful through the optimization
of metabolic processes for industrial applications [28, 2].

Modeling in Systems Biology is an iterative process as the life-cycle of a
model is comprised of successive refinements using experimental data. Different
approaches, such as top-down, bottom-up or middle-out [18] are used depending
on the purpose of the model and the type of data available for its construction.
In Metabolic Engineering there are macroscopic kinetic models that consider
the cell as a black-box converting substrates into biomass and products, which
are typically used for bioprocess control. On the other hand, there are reaction-
network-level models, either medium-scale dynamic models with detailed kinetic

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
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information derived from literature and experimental data [3], or genome-scale
stoichiometric reconstructions derived from genome annotation complemented
with literature review [5].

Although the ultimate goal of Systems Biology is a complete understanding
of the cell as a whole, not only it is extremely difficult to collect all the kinetic
information necessary to build a fully detailed whole-cell model due to the lack
of experimental data and model identifiability concerns, but also the computa-
tional cost of simulating the dynamics of a system with such detail would be
tremendous. Therefore, there is a need to fit the level of detail of a model to
the specific problem at hand. For instance, Metabolic Pathway Analysis (MPA)
has been useful in the analysis of metabolism as a way to determine, classify
and optimize the possible pathways throughout a metabolic network. However,
due to the combinatorial explosion of pathways with increasing number of re-
actions, it is still infeasible to apply these methods in genome-scale metabolic
reconstructions without decomposing the network into connected modules [23,
24]. This zooming in and out between different levels of abstraction and connect-
ing parts with different levels of detail is a feature where formal methods and
particularly Petri nets may play an important role. Concepts such as subnet-
work abstraction, transition refinement or node fusion, among others, have been
explored in Petri net theory [8] and may provide the theoretical background for
method development.

In previous work, we reviewed different modeling formalisms used in Systems
Biology from a Metabolic Engineering perspective and concluded that Petri nets
are a promising formalism for the creation of a common framework of meth-
ods for modeling, analysis and simulation of biological networks [15]. They are
a mathematical and graphical formalism, therefore intuitive and amenable to
analysis. The different extensions available (e.g.: stochastic, continuous, hybrid)
provide the flexibility required to model and integrate the diversity of phenom-
ena occurring in the main types of biological networks (metabolic, regulatory
and signaling). Moreover, one may find biological meaning in several concepts in
Petri net theory; for instance, the incidence matrix of a Petri net is the equiv-
alent of the stoichiometric matrix, and the minimal t-invariants correspond to
the elementary flux modes (EFMs).

In this work, we explore strategies of model reduction for Petri net representa-
tions of metabolic networks, and the integration of this methodology with recent
approaches such as genome-scale dynamic modeling. This paper is organized as
follows. Section 2 explores the motivation for the work. Section 3 presents the
model reduction and kinetics inference methods, Section 4 discusses their appli-
cation to E. coli and Section 5 elaborates on conclusions and future work.

2 Background

There are different examples of model reduction in the literature. One such
method was developed in [17], based on timescale analysis for classification of
metabolite turnover time using experimental data. The fast metabolites are
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removed from the differential equations and their surrounding reactions are
lumped. In [20] the EFMs of a reaction network are calculated in order to create
a macroscopic pathway network, where each EFM is a macro-reaction connect-
ing extracellular substrates and products. A simple Michaelis–Menten rate law
is assumed for each macro-reaction and the parameters are inferred from exper-
imental data. The method is applied in a network with 18 reactions and a total
of 7 EFMs. However it does not scale well to larger networks because, in the
worst case, the number of EFMs grows exponentially with the network size.

The combinatorial pathway explosion problem is well known; there are meth-
ods for network decomposition in the literature that address this issue. In [23]
the authors perform a genome-scale pathway analysis on a network with 461
reactions. After estimating the number of extreme pathways (EPs) to be over
a million, the network is decomposed into 6 subsystems according to biological
criteria and the set of EPs is computed separately for each subsystem. A similar
idea in [24] consists on automatic decomposition based on topological analysis.
The metabolites with higher connectivity are considered as external and con-
nect the formed subnetworks. An automatic decomposition approach based on
Petri nets is the so-called maximal common transition sets (MCT-sets) [22], and
consists on decomposing a network into modules by grouping reactions by par-
ticipation in the minimal t-invariants (equivalent to EFMs). A related approach
relies on clustering of t-invariants for network modularization [9]. A very recent
network coarsening method based on so-called abstract dependent transition sets
(ADT-sets) is formulated without the requirement of pre-computation of the
t-invariants and thus may be a promising tool for larger networks [12].

Another problem in genome-scale metabolic modeling is the study of dy-
namic behavior. Genome-scale metabolic reconstructions are stoichiometric and
usually analyzed under steady-state assumption using constraint-based methods
[1]. Dynamic flux balance analysis (dFBA) allows variation of external metabo-
lite concentrations, and simulates the network dynamics assuming an internal
pseudo steady-state at each time step [16]. It is used in [19] to build a genome-
scale dynamic model of L. lactis that simulates fermentation profiles. However,
this approach gives no insight into intracellular dynamics, neither it integrates
reaction kinetics. In [26] the authors build a kinetic genome-scale model of S.
cerevisiae using linlog kinetics, where the reference steady-state is calculated
using FBA. Some of the elasticity parameters and metabolite concentrations are
derived from available kinetic models, while the majority use default values. Us-
ing the stoichiometric coefficients as elasticity values is a rough estimation of
the influence of the metabolites on the reaction rates. Moreover, no time-course
simulation is performed. Mass action stoichiometric simulation (MASS) models
are introduced in [14] as a way to incorporate kinetics into stoichiometric recon-
structions. Parameters are estimated from metabolomic data. Regulation can
be included by incorporating the mechanistic metabolite/enzyme interactions.
A limitation of these models is that mass-action kinetics do not reflect the usual
non-linearity of enzymatic reactions and the incorporation of regulation leads to
a significant increase in network size.
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3 Methods

The idea of this work is closer to the reduction concepts of [17, 20] than the
modularization concepts in [23, 24]. In the latter cases a large model is decom-
posed into subunits to ease its processing by analyzing the parts individually.
Instead, our objective is to facilitate the visualization, analysis and simulation of
a large-scale model as a whole by abstracting its components. This reduction is
to be attained by reaction lumping in a way that maintains biological meaning
and valid application of current analysis and simulation tools. The Michaelis–
Menten kinetics is a typical example of abstraction, where the small network of
mass-action reactions are lumped into one single reaction.

Fig. 1. Overall concept of model reduction and kinetics inference.

The overall idea of the model reduction method is depicted in Fig. 1. A
large-scale stoichiometric model can be structurally reduced into a simplified
version that can be more easily analyzed by methods such as MPA. Also, one
may infer a kinetic structure to build a dynamic version of the reduced model.
Due to the smaller size, a lower number of parameters has to be estimated. The
data used for estimation may be experimental data found in the literature, or
pseudo-experimental data from dynamic simulations if part of the system has
been kinetically characterized.

When abstracting a reaction subnetwork into one or more macro-reactions,
it is important to consider the assumptions created by such abstraction. As
in Michaelis–Menten kinetics, these simplifications result in a pseudo-steady-
state assumption for the intermediate species that disappear. While this may
not be a problem for flux balance models, it changes the transient behavior of
dynamic models because the buffering effect of intermediates in a pathway is
neglected. The selection of metabolites to be removed depends on the purpose
of the reduction. The network may have different levels of granularity based on
the availability of experimental data, topological properties, or simply in order
to aggregate pathways according to biological function.
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3.1 Basic definitions

The proposed method for model reduction uses several Petri net concepts from
the literature. We will use the following definition of an unmarked continuous
Petri net (adapted from [4]) for modeling a stoichiometric metabolic network:

Pn = < P, T, Pre, Post >

Pre : P × T → R+

Post : P × T → R+

where the set of places P represents the metabolites, the set of transitions T
represents the reactions and Pre, Post are, respectively, the substrate and prod-
uct stoichiometries of the reactions. Note that for the representation of a stoi-
chiometric network, a discrete Petri net usually suffices; however, because some
models may contain non-integer stoichiometric coefficients, the continuous ver-
sion was adopted. Moreover, we will assume that reversible reactions are split
into irreversible reaction pairs. We will also use the following definitions:

loc(x) ={x} ∪ •x ∪ x•

In(p) =
∑

t∈•p

Post[p, t] · v(t)

Out(p) =
∑

t∈p•
Pre[p, t] · v(t)

where •x, x• are sets representing the input and output nodes of a node x, the
set loc(x) ⊆ P ∪T is called the locality of x, function v : T → R+

0 is a given flux
distribution (or the so-called instantaneous firing rate), and In,Out : P → R+

0

are, respectively, the feeding and draining rates of the metabolites.
The method for network reduction consists of eliminating a set of selected

metabolites from the network. For each removed metabolite its surrounding reac-
tions are lumped in order to maintain the fluxes through the pathways. This re-
duction assumes a steady-state condition for the metabolite, i.e. In(p) = Out(p).

3.2 Model reduction: Conjunctive fusion

There are two options for lumping the reactions depending on the transforma-
tion method applied. The first approach is based on a transformation called
conjunctive transition fusion [8] and it results in an abstraction that replaces
the transition-bordered subnet loc(p) by a single macro-reaction. The drawback
of this method is that the flux ratios between the internal reactions are lost.
If a known steady-state flux distribution (v) is given, then the stoichiometric
coefficients can be adjusted to preserve the ratios for that distribution; how-
ever, the space of solutions of the flux balance formulation becomes restricted
to a particular solution. In the limiting case, if all the internal metabolites are
removed, the cell is represented by one single macro-reaction connecting extra-
cellular substrates and products with the stoichiometric yields inferred from the
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Fig. 2. Exemplification of limit scenarios where all the internal metabolites are re-
moved. (A) In the conjunctive reduction case the result is one single macro-reaction
converting substrates into products with the respective yields specified in the stoi-
chiometry. (B) In the disjunctive reduction method, all possible pathways connecting
substrates and products are enumerated.

network topology for one particular steady-state (Fig 2A). The transformation
method for removing metabolite p in Pn given a flux distribution v is described
as follows:

Pn′ = < P ′, T ′, P re′, Post′ >

P ′ =P \ {p}
T ′ =T \ (•p ∪ p•) ∪ {tp}

Pre′ ={(pi, tj) 7→ Pre(pi, tj) | (pi, tj) ∈ dom(Pre) \ (P × (•p ∪ p•))}
∪{(pi, tp) 7→ fin(pi) | pi ∈ •(•p ∪ p•), pi 6= p, v′(tp) 6= 0, fin(pi) 6= 0}

Post′ ={(pi, tj) 7→ Post(pi, tj) | (pi, tj) ∈ dom(Post) \ (P × (•p ∪ p•))}
∪{(pi, tp) 7→ fout(pi) | pi ∈ (•p ∪ p•)•, pi 6= p, v′(tp) 6= 0, fout(pi) 6= 0}

v′ ={t 7→ v(t) | t ∈ T \ (•p ∪ p•)} ∪ {tp 7→ In(p)}.

where

fin(pi) =

∑
t∈p•i∩(•p∪p•) Pre(pi, t) · v(t)

v′(tp)

fout(pi) =

∑
t∈•pi∩(•p∪p•) Post(pi, t) · v(t)

v′(tp)

The stoichiometric coefficients of the new reaction may be very high or low,
depending on v′(tp) and so, optionally, one may also normalize them with some
scalar λ, such that Pre′′(pi, tp) = 1

λ ·Pre′(pi, tp), Post′′(pi, tp) = 1
λ ·Post′(pi, tp)

and v′′(tp) = λ · v′(tp). This will also make the final result independent of the
order of the metabolites removed. A good choice for λ is:

λ = max ({Pre(pi, tp) | pi ∈ •tp} ∪ {Post(pi, tp) | pi ∈ tp•})
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3.3 Model reduction: Disjunctive fusion

The second approach is based on a transformation called disjunctive transition
fusion [8], where every combination of input and output reaction pairs connected
by the removed metabolite is replaced by one macro-reaction. Although this ap-
proach does not constrain the steady-state solution space of the flux distribution,
it has the drawback of increasing the number of transitions, if the metabolite
is highly connected, due to the combinatorial procedure. Note that applying
this reduction step to metabolite pi is equivalent to performing one iteration
of the t-invariant calculation algorithm to remove column i of the transposed
incidence matrix. Therefore, in the limiting case where all internal metabolites
are removed, the cell is represented by the set of all possible pathways connect-
ing extracellular substrates and products (Fig. 2B), as was done in [20]. The
definition, similar to the previous one, is as follows:

Pn′ = < P ′, T ′, P re′, Post′ >

P ′ =P \ {p}
T ′ =T \ (•p ∪ p•) ∪ {txy | (x, y) ∈ (•p× p•)}

Pre′ ={(pi, t) 7→ Pre(pi, t) | (pi, t) ∈ dom(Pre) \ (P × (•p ∪ p•)}
∪{(pi, txy) 7→ Pre0(pi, x) · Pre(p, y) + Pre0(pi, y) · Post(p, x)

| (x, y) ∈ (•p× p•), pi ∈ •{x, y}}
Post′ ={(pi, t) 7→ Post(pi, t) | (pi, t) ∈ dom(Post) \ (P × (•p ∪ p•)}

∪{(pi, txy) 7→ Post0(pi, x) · Pre(p, y) + Post0(pi, y) · Post(p, x)

| (x, y) ∈ (•p× p•), pi ∈ {x, y}•}

where

Pre0(p, t) =

{
Pre(p, t) if (p, t) ∈ dom(Pre)

0 if (p, t) /∈ dom(Pre)

Post0(p, t) =

{
Post(p, t) if (p, t) ∈ dom(Post)

0 if (p, t) /∈ dom(Post)

Whenever there are pathways with the same net stoichiometry, these can be
removed by checking the columns of the incidence (stoichiometric) matrix and
eliminating repeats. It should also be noted that in both methods, if a metabo-
lite acts both as substrate and product in a lumped reaction, it will create a
redundant cycle that is not reflected in the incidence matrix. If these cycles are
not removed, they propagate through the reduction steps; therefore, they should
be replaced by a single arc containing the overall stoichiometry. The procedure
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works as follows:

Pre′ ={(p, t) 7→ Pre(p, t) | (p, t) ∈ dom(Pre) \ dom(Post)}
∪{(p, t) 7→ Pre(p, t)− Post(p, t)
| (p, t) ∈ dom(Pre) ∩ dom(Post), P re(p, t) > Post(p, t)}

Post′ ={(p, t) 7→ Post(p, t) | (p, t) ∈ dom(Post) \ dom(Pre)}
∪{(p, t) 7→ Post(p, t)− Pre(p, t)
| (p, t) ∈ dom(Pre) ∩ dom(Post), Post(p, t) > Pre(p, t)}

The previous arc removing procedure may cause isolation of some nodes when
Pre(p, t) = Post(p, t); therefore, the isolated nodes should be removed:

P ′ = {p | p ∈ P, loc(p) 6= {p}}
T ′ = {t | t ∈ T, loc(t) 6= {t}}

3.4 Kinetics inference

Given a stoichiometric model, if metabolomic or fluxomic data are available
for parameter estimation, one may try to build a dynamic model by inferring
appropriate kinetics for the reactions. In [25] the authors propose that this is
performed by assuming linlog kinetics for all reactions using an FBA solution
as the reference state and the stoichiometries as elasticity parameters. An in-
tegration of Biochemical Systems Theory (BST) with Hybrid Functional Petri
Nets (HFPN) is presented in [29], where general mass action (GMA) kinetics is
assumed for each transition. The review of kinetic rate formulations is out of the
scope of this work and may be found elsewhere [10].

Assuming that all metabolites with unknown concentration were removed,
we will extend our definition to a marked continuous Petri net:

Pn =< P, T, Pre, Post,m0 >

where m0 : P → R+
0 denotes the initial marking (concentration) of the metabo-

lites. The kinetics inference process consists on defining a firing rate v : T → R+
0 ,

which will be dependent on the current marking (m) and the specific kinetic pa-
rameters (see [7] for an introduction on marking-dependent firing rates). As we
assumed irreversible reactions, each rate will only vary with substrate concen-
tration. The rates can be easily derived from the net topology. In case of GMA
kinetics v is given by:

v(t) = kt
∏

p∈•t

m(p)ap,t

where kt is the kinetic rate of t and ap,t is the kinetic order of metabolite p in
reaction t. A usual first approximation for ap,t is Pre(p, t).

Linlog kinetics are formulated based on a reference rate v0, and defined by:

v(t) = v0(t)

(
1 +

∑

p∈•t

ε0p,t ln

(
m(p)

m0(p)

))
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where ε0p,t is called the elasticity of metabolite p in reaction t, reflecting the
influence of the concentration change of the metabolite in the reference reaction
rate. As in the previous case, Pre(p, t) can be chosen as an initial approximation
for ε0p,t. The relative enzyme activity term (e/e0) commonly present in linlog rate
laws to account for regulatory effects at larger time scales will not be considered.

4 Results and Discussion

The proposed methods were tested using the dynamic central carbon metabolism
model of E. coli [3], where the stoichiometric part was used for the application
of the reduction methods, and the dynamic profile was used to generate pseudo-
experimental data sets for parameter estimation and validation of the kinetics
inference method. A Petri net representation of this model (Fig. 3) was built
using the Snoopy tool [21]. All reversible reactions were split into irreversible
pairs. The net contains a total of 18 places, 44 transitions and is covered by 95
semipositive t-invariants, computed with the Integrated Net Analyzer [27].

In the application of the conjunctive method (Fig 4A), the metabolites were
classified as in [17] based on their timescale (Table 1), by calculating their
turnover time (τ : P → R+

0 ) using the reference steady-state of the dynamic
model, where:

τ(p) =
m0(p)

In(p)

Metabolites with small turnover time are considered fast. In this case, all metabo-
lites except the slowest 5 (glcex, pep, g6p, pyr, g1p) were removed.

For the application of the disjunctive method (Fig 4B), the metabolites were
classified based on their topology (Table 1). We conveniently opted to remove
the metabolites with lower connectivity to avoid the combinatorial explosion
problem. All metabolites except 5 (g6p, pyr, f6p, gap, xyl5p) were removed.
This reduction assumes steady-state for the removed metabolites. However, it
makes no assumptions on the ratios between the fluxes, therefore preserving the
flux-balance solution space.

Because we are assuming that the reference steady-state is known, the con-
junctive reduced model was chosen for the application of the kinetics inference
method assuming linlog kinetics at the reference state. The elasticity parameters
were estimated using COPASI [13]. The pseudo-experimental data was gener-
ated from simulation with the original model after a 1 mM extracellular glucose
pulse with the addition of Gaussian noise (std = 0.05 mM) (Fig. 5A). The fitted
model was then validated using pseudo-experimental data from a 2 mM pulse
(Fig. 5B). It is possible to observe an instantaneous increase in pyr (from 2.67
to 3.93) and an instantaneous decrease pep (from 2.69 to 1.26) which the model
is unable to reproduce. The poor fitting in some of the intracellular metabolites
is expected given the significant reduction to the model. However, the extracel-
lular glucose consumption profile is remarkably good, both in the fitting and
validation cases.
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Fig. 3. Petri net model of the dynamic central carbon metabolism model of E. coli
with reversible reactions split into irreversible pairs.
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Fig. 4. Reduced versions of the original network. (A) Conjunctive reduction method.
(B) Disjunctive reduction method.

Fig. 5. (A) Results of parameter estimation with pseudo-experimental data with 1
mM extracellular glucose pulse. (B) Validation of the model with a 2 mM extracellular
glucose pulse. In both cases, the circles represent the experimental data and the lines
represent time-course simulations generated by the reduced model.
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Table 1. Metabolite topological properties (input reactions, output reactions, connec-
tivity) and dynamic properties (concentration, flux, turnover time) at the reference
steady-state.

Metabolite #(•p) #(p•) #(•p× p•) m0 (mM) In (mM/s) τ (s)

glcex 1 1 1 0.0558 0.0031 18.099
pep 1 6 6 2.6859 0.3031 8.8603
g6p 3 3 9 3.4882 0.2004 17.406
pyr 4 2 8 2.6710 0.2418 11.044
f6p 3 5 15 0.6014 0.1423 4.2266
g1p 1 2 2 0.6539 0.0023 278.62
pg 1 1 1 0.8092 0.1397 5.7929
fdp 2 1 2 0.2757 0.1414 1.9495

sed7p 2 2 4 0.2761 0.0454 6.0757
gap 7 6 42 0.2196 0.3661 0.5997
e4p 2 3 6 0.0986 0.0454 2.1684

xyl5p 3 3 9 0.1385 0.0839 1.6503
rib5p 2 3 6 0.3994 0.0558 7.1626
dhap 2 3 6 0.1682 0.1414 1.1892
pgp 2 2 4 0.0080 0.3207 0.0251
pg3 2 3 6 2.1437 0.3207 6.6851
pg2 2 2 4 0.4014 0.3031 1.3241

ribu5p 3 2 6 0.1114 0.1397 0.7974

Although both reducing methods can be combined with kinetics inference,
the conjunctive version seems more suitable if a steady-state distribution is
known, because it generates smaller models, hence less parameters. The dis-
junctive version is appropriate for analyzing all elementary pathways between
a set of metabolites without the burden of calculating the set of EFMs of the
whole model. For instance, the macro-reactions M4 (ALDO + G3PDH ) and M5
(ALDO + TIS ), with net stoichiometries of, respectively, [fdp → gap] and [fdp
→ 2 gap], are two unique pathways between these two metabolites.

5 Conclusions

This work presents strategies for model reduction of metabolic networks based on
a Petri net framework. Two approaches, conjunctive and disjunctive reduction
are presented. The conjunctive approach allows the abstraction of a subnetwork
into one lumped macro-reaction, however limited to one particular flux distri-
bution of the subnetwork. The disjunctive approach on the other hand, makes
no assumptions on the flux distribution by replacing the removed subnetwork
with macro-reactions for all possible pathways through the subnetwork, there-
fore not constraining the steady-state solution space. In both cases, the reduced
model may be transformed into a dynamic model using kinetics inference and
parameter estimation if experimental data is available. Using the reduced model,

114 Petri Nets & Concurrency Machado et al.



instead of the original, facilitates this process because it significantly decreases
the number of parameters to be estimated.

In future work, we intend to build a dynamic genome-scale model of E. coli
by using the already available central carbon dynamic model [3], complemented
with lumped versions of the surrounding pathways in the genome-scale network
[5]. Note that some of the reactions on the central carbon model already rep-
resent lumped versions of some biosynthetic pathways (e.g. mursynth, trpsynth,
methsynth, sersynth). However they were not deduced from the genome-scale
network and may not be accurate abstractions of these pathways.

Among the extensions available to Petri nets are the addition of different
types of arcs, such as read-arcs and inhibitor-arcs, which could be use to repre-
sent activation and inhibition in biochemical reactions. They could also be used
to integrate metabolic and regulatory networks. Optimization in metabolic pro-
cesses is usually based on knockout simulations in metabolic networks. However,
these simulations do not take into consideration the possible regulatory effects
caused by the knockouts. In our transformation methods we removed the arcs
with the same stoichiometry in both directions, because these are not reflected
in the stoichiometric matrix. In the Michaelis–Menten example this results in
removing the enzyme from the network. The proposed methods can be extended
to consider read-arcs for these situations, which should be preserved during the
reduction steps, therefore establishing connection places to the integration of a
regulatory network (Fig 6).

Fig. 6. Reduction step conserving the read-arcs associated with the enzymes of the
original reactions.

An alternative to the reduction of the models would be to consider their repre-
sentation using hierarchical Petri nets. In this case, each macro-reaction would be
connected to its detailed subnetwork. Although this would not reduce the num-
ber of kinetic parameters in the case of kinetics inference, it would be extremely
useful for facilitated modeling and visualization of large-scale networks without
compromising detail. It could also be the solution for genome-scale pathway anal-
ysis, if it is performed independently at each hierarchical level. The hierarchical
model composition proposed for SBML [6] may facilitate the implementation of
this alternative. See [11] for an automatic network coarsening algorithm based
on hierarchical petri nets applied to different kinds of biological networks.
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Abstract. Petri nets are a useful framework for the analysis of biologi-
cal systems in various complementary ways, integrating both qualitative
and quantitative studies. We apply this formalism to the Glutathione
Ascorbate Redox cycle (GSH-ASC) in chloroplasts case study, consider-
ing structural Petri net techniques from standard Petri nets to validate
the model and to infer new properties, as well as continuous Petri nets
in order to have a behavior prediction. In this way, from the continu-
ous Petri net representation we can analyze its behavior under oxidative
stress conditions, and from the standard Petri net we can identify some
state-conserving or mass-conserving properties.

1 Introduction

Petri nets [8, 10] are a well-known mathematical formalism for the modeling and
analysis of concurrent systems. They were introduced by Carl A. Petri [11] in the
early 60’s. Since this time, they have been extended and applied to several areas
[4] such as manufacturing systems, workflow management, telecommunications,
communication protocols, etc. Some reasons for using Petri nets are the follow-
ing: it is easy to describe concurrency and they have a rigorous formal semantics,
i.e., their behavior is defined in a precise and unambiguous manner. Addition-
ally, one of the main features of Petri nets is that they have a graphical nature,
i.e., you can early get a good knowledge of the system by simple inspection of
the Petri net model that represents the system. But, most importantly, there
are many tools [21] supporting the model, not only to provide the capability to

? Supported by the Spanish government (cofinanced by FEDER founds) with the
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create or edit Petri net models, but also to simulate the system evolution and
even to analyze some properties of interest. Then, there has been an intensive
research in the area of Petri nets in the last 40 years to extend the basic model
by including some additional features that are of special interest in some specific
application domains. Thus, timed and probabilistic extensions of the basic model
have been defined [20, 7], as well as continuous and hybrid Petri nets [1]. The
application of Petri nets to the description of chemical processes was already
proposed by Carl A. Petri in the 70’s [12]. In the 90’s Reddy et al. [14] were the
first who applied Petri nets to the modeling and analysis of metabolic pathways.
Nowadays, there are several different extensions of Petri nets for modeling and
simulating biological systems, depending on the specifics of the particular chem-
ical processes described (see [9]). A rich framework for modeling and analyzing
biochemical pathways which unifies the qualitative, stochastic and continuous
paradigms using Petri nets can be found in [3].

In this paper we consider the GSH-ASC cycle in chloroplasts, which is de-
scribed and analyzed by using continuous and standard Petri nets. Thus, the
main goals of this paper can be summarized as follows:

(i) The application of continuous Petri nets to this specific biological process,
which provides us with a graphical representation of this chemical process,
which becomes easier to modify and analyze than the corresponding (equiv-
alent) ODE, which can be found in [17].

(ii) The application of the classical theory and tools of Petri nets (in the discrete
Petri net), and specifically in this paper the structural theory in order to get
a better understanding of the biological model and conclude the relationship
between the structural elements (invariants) of the underlying discrete Petri
net with the chemical properties of this biological process.

There are two models of the GSH-ASC cycle in the literature: Polle’s model
[13] and the ours one [17]. Polle’s model has some shortcomings that were dis-
cussed and improved in our paper. The PN model here described for the GSH-
ASC cycle in the continuous case was validated by checking that the same results
were obtained with the ODE case [17], as indicated in the (i) goal of the present
paper.

The outline of the paper is as follows. Section 2 contains a brief description of
the GSH-ASC cycle in chloroplasts. In Section 3 we study the dynamic behavior
of this biological model by using continuous Petri nets. Then, the structural
qualitative study is presented in Section 4, and finally, the conclusions and hints
for future research are presented in section 5.

2 The Biological Model

The glutathione-ascorbate redox (GSH-ASC) pathway in chloroplasts is a com-
plex network of spontaneous, photochemical, and enzymatic reactions for detox-
ifying hydrogen peroxide. In brief, superoxide dismutase (SOD) acts as the first
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line of defense, dismutating superoxide radical (O−
2 ) to H2O2 and O2. In chloro-

plasts, H2O2 thus generated is reduced to water by ascorbate (ASC ) catalyzed
with L-ascorbate peroxidase (APX ). This is the first step of the GSH-ASC cycle,
producing monodehydroascorbate radicals (MDA), which spontaneously dispro-
portionate to ASC and dehydroascorbate (DHA). The next step in the cycle is
the regeneration of ASC by glutathione (GSH ) either enzymatically catalyzed
by glutathione dehydrogenase (DHAR) or chemically but a too slow rate to ac-
count for the observed photoreduction of DHA in chloroplasts. Lastly, the redox
cycle is closed by the regeneration of GSH catalyzed by glutathione reductase
(GR) at the expense of photoproduced NADPH . These steps are captured by
the continuous Petri net model depicted in Figure 1, which provides us with a
graphical representation of this biological process.

Tables 1-5 provide mathematical expressions for rate equations as well as the
conditions (rate constants and initial concentrations) used for the mathematical
modeling of the pathway. Due to the lack of space we omit a detailed descrip-
tion of this metabolic pathway, which can be found in [17], which contains a
supplementary material section devoted to this description.

It is very difficult to validate numerical data here shown against real biological
data. The metabolic pathway under study includes four enzymatic steps and a
complex set of photochemical and spontaneous chemical reactions, which is not
possible to implement under ”in vitro” conditions so that data from Figures 2
and 3 can be tested in an experimental way in the laboratory. However, the values
of the kinetic constants and initial conditions used to run the model (Tables 4
and 5) have been taken, when possible, from data reported in the scientific
literature, obtained with real systems. APX does not appear on Table 2 because
of it has not been considered under steady-state conditions, since it is the most
hydrogen peroxide sensitive enzyme in the pathway. Instead, we have introduced
its catalytic mechanism including a stage of inactivation by excess of hydrogen
peroxide and a stage of de novo synthesis of the protein, which gives the cell the
opportunity to recover the amount of APX inactivated, which represents one of
the main defense mechanisms of plants to mitigate oxidative stress.

Table 1. Chemical reactions involved in the cycle which have been introduced in the
model and notation used for their respective apparent bimolecular rate constants

Reaction Notation Reaction

MDA + MDA→ ASC + DHA k1

DHA + 2 GSH → ASC + GSSG k4

2 O−
2 + 2 H+ → O2 + H2O2 k5

O−
2 + ASC → H2O2 + MDA k6

O−
2 + 2 GSH → H2O2 + GSSG k7

H2O2 + 2 ASC → 2 H2O + 2 MDA k8

Analysis of the GSH-ASC cycle Petri Nets & Concurrency – 121



Table 2. Chemical reactions involved in the APX mechanism

Reaction Notation Reaction

APX + H2O2 → CoI + H2O kAPX
1

CoI + ASC → CoII + MDA kAPX
2

CoII + ASC → APX + MDA kAPX
3

CoI + H2O2 → APXi kAPX
4

synthesis de novo of APX kAPX
5

Table 3. Steady-state rate equations used for the enzymes involved in the model

Enzyme Rate equation

SOD kSOD[SOD]0[O−
2 ]

DHAR
kDHAR
cat [DHAR]0[DHA][GSH]

KDHA
i KGSH1

M + KDHA
M [GSH] + (KGSH1

M + KGSH2
M )[DHA] + [DHA][GSH]

GR
kGR
cat [GR]0[NADPH][GSSG]

KNADPH
M [GSSG] + KGSSG

M [NADPH] + [NADPH][GSSG]

Table 4. List of kinetic constants values used to simulate the model under ”standard”
conditions.

F 640 kGR
cat 595 kDHAR

cat 142 kSOD 200 kAPX
1 12 kAPX

2 50

kAPX
3 2.1 kAPX

4 0.7 kAPX
5 0.01 k1 0.5 k4 0.1 k5 0.2

k6 0.2 k7 0.7 k8 2E − 6 k12 1.3 k13 42.5 kN 0.5

KNADPH
M 3 KGSSG

M 200 KGSH
M 2500 K 5E5

Table 5. List of (non-zero) initial concentrations used to simulate the model under
“standard” conditions.

Enzymes Initial concentration (µM) Species Initial concentration (µM)

GR 1.4 APX 70

DHAR 1.7 NADPH 150

SOD 50 GSH 4000

ASC 10000

3 Continuous Petri Nets

We use continuous Petri nets [1], for which places no longer contain integer val-
ues, but positive real numbers, and transitions fire in a continuous way. Semantics
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Fig. 1. Continuous Petri net model for the GSH-ASC cycle (orange arcs have weight 2)

of continuous Petri Nets is then defined by means of a system of Ordinary Dif-
ferential Equations [2]. The continuous Petri net model for the GSH-ASC cycle
is that shown in Figure 1 (obtained using the Snoopy tool [16]). This model has
been obtained by adapting the biological process described in [17], according to
the following considerations:

1. [CO2] is considered constant, so that the flux of NADPH consumption by
the Calvin cycle (and other electron-consuming reactions) is kN = k′N [CO2].
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2. The synthesis de novo of APX in [17] is considered as kAPX
5 ([APX]0 −

[APX]− [CoI]− [CoII]). Then, read arcs are used for CoI and CoII places,
since even if kAPX

5 does not appear in their corresponding equations, it is
included in the APX equation. We have then considered four new transitions
in the continuous Petri net model, with the following associated kinetic con-
stants: k51APX with kAPX

5 [APX0], and k5APX2, k5APX3 and k5APX4
with kAPX

5 .

3. There is a constant electron source in the model, F , whose flux is divided
among three competitive routes: the photoproduction of O−

2 (transition k5),
the photoreduction of NADP+ (transition k12) and the photoreduction of
MDA (transition k13).

The corresponding ODEs for this continuous Petri net model are those shown in
Table 6, which consist of 13 molecular species and 21 reactions defining the equa-
tions. These are the same ODEs that we obtained in [17] (supplementary material).

Table 6. Differential equations system

d[NADPH]
dt

= −vGR − k′
N [CO2][NADPH] + k12[NADP+] (1)

d[NADP+]
dt

= vGR + k′
N [CO2][NADPH] − k12[NADP+] (2)

d[GSH]
dt

= 2 ( vGR − vDHAR − k7[O2−][GSH] − k4[DHA][GSH] ) (3)

d[GSSG]
dt

= −vGR + vDHAR + k7[O2−][GSH] + k4[DHA][GSH] (4)

d[ASC]
dt

= vDHAR + k1[MDA]2 + k4[DHA][GSH] + k13[MDA]
− kAPX

2 [ASC][CoI] − kAPX
3 [ASC][CoII] − k6[O2−][ASC]

− 2 k8[H2O2][ASC] (5)

d[DHA]
dt

= −vDHAR + k1[MDA]2 − k4[DHA][GSH] (6)

d[MDA]
dt

= kAPX
2 [ASC][CoI] + kAPX

3 [ASC][CoII] − 2 k1[MDA]2

+ k6[O−
2 ][ASC] + 2 k8[H2O2][ASC] − k13[MDA] (7)

d[H2O2]
dt

= vSOD − kAPX
1 [H2O2][APX] − kAPX

4 [H2O2][CoI] + k5[O−
2 ]2

+ k6[O−
2 ][ASC] + k7[O2−][GSH] − k8[H2O2][ASC] (8)

d[APX]
dt

= −kAPX
1 [H2O2][APX] + kAPX

3 [ASC][CoII]
+ kAPX

5 ([APX]0 − [APX]− [CoI]− [CoII]) (9)

d[CoI]
dt

= kAPX
1 [H2O2][APX] − kAPX

2 [ASC][CoI] − kAPX
4 [H2O2][CoI] (10)

d[CoII]
dt

= kAPX
2 [ASC][CoI] − kAPX

3 [ASC][CoII] (11)

d[APXi]
dt

= kAPX
4 [H2O2][CoI] (12)

d[O−
2 ]

dt
= − 2 vSOD + F − 2 k12[NADP+] − 2 k5[O−

2 ]2

− k6[O−
2 ][ASC] − k7[O2−][GSH] − k13[MDA] (13)
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As a consequence of the photoreduction explained above, the recovery of the
reducing power is variable and dependent on the NADP+ and MDA concentra-
tions present in chloroplasts. This provides a great flexibility to the model and a
greater ability to study stress conditions. The next values have been used for F:

(i) Unstressed chloroplasts, F = 640, giving a production rate of of 222.2 Ms−1,
which is within the range previously mentioned in chloroplasts (Figure 2);
under these conditions, a steady state was rapidly achieved by the system,
in which metabolite concentrations and fluxes remained constant.

(ii) Stressed chloroplasts, F = 2400 (intense light exposure), which gives rise to
APX photoinactivation (Figure 3); under these conditions, the antioxidant
concentration in the chloroplast gradually decreased, in the order NADPH,
GSH and ASC, so that their respective oxidized species concentrations in-
creased. The disappearance of ASC was followed by the rapid inactivation
of APX, reflecting what occurs in reality, accompanied by a sharp increase
in APXi and H2O2.

 

0 2 4

C
o
n
c
e
n
tr

a
ti
o
n
 (

µ
M

)

0

50

100

150

0 2 4
C

o
n
c
e
n
tr

a
ti
o
n
 (

µ
M

)

0

5

10

3980

4000

0 2 4

C
o
n
c
e
n
tr

a
ti
o
n
 (

µ
M

)

0

10000

0 2 4

C
o

n
c
e

n
tr

a
ti
o

n
 (

µ
M

)

0

4

8

NADPH

NADP
+

GSH

GSSG

ASC

DHA

MDA

Time (s)
0 2 4

C
o

n
c
e
n

tr
a

ti
o

n
 (

µ
M

)

0.00

0.02

O2

-

0 2 4

C
o
n
c
e
n
tr

a
ti
o
n
 (

µ
M

)

0.0

0.2

0.4

H2O2

0 2 4

C
o
n

c
e

n
tr

a
ti
o

n
 (

µ
M

)

0.0000

APX

APXi

F

 

Fig. 2. Simulated progress curves corresponding to the species involved in the mecha-
nism with F = 640

4 Structural Analysis

In this section we apply the classical structural techniques on Petri nets [10] in
order to verify and analyze the metabolic pathway. For that purpose we build a
discrete Petri net model (see Figure 4) from the description of the cycle following
the steps described in [2]. We can remove the read arcs (also called test arcs)
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Fig. 3. Simulated progress curves corresponding to the species involved in the mecha-
nism with F = 2400

from the continuous Petri net of Figure 1, since they are irrelevant in the corre-
sponding incidence matrix, and therefore in the structural analysis. We then join
the transitions k52APX , k53APX and k54APX into a single output transition
from APX , named k5APXo, and we also rename the input transition k51APX
by k5APXi . On the other hand, in order to identify the I/O behavior we add
a new place that represents the water generated by the reactions (transitions)
k4APX and k1APX , and a new transition (outwater) that models the water self
control of chloroplasts.

The obtained Petri net has been analyzed by using a well known Petri net
tool, Charlie [15], which allows us to obtain the corresponding invariants for this
Petri net.

4.1 P-invariants

A P-invariant defines a mass conservation law and has associated its correspond-
ing biological interpretation. In this case we have obtained three P-invariants
(Table 7).

Table 7. P-invariants

P − inv1 = { NADPH, NADP+ }
P − inv2 = { 2 GSSG, GSH }
P − inv3 = { ASC, DHA, MDA }

This means that the pathway under study consists of three moiety-conserved
cycles coupled in series to attain a very high amplification capacity [18] against an
increase in hydrogen peroxide concentration. In its evolution, since the appear-
ance of oxygen in the atmosphere, the cell has developed a very efficient defense
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Fig. 4. Petri net model for the GSH-ASC cycle (orange arcs are of weight 2)

tool against oxygen toxicity, although it needs a continuous supply of NADPH.
Observe that for each P-invariant there must be a non-zero initial concentration
spread along its places, otherwise these places would remain unmarked forever.

(i) P − inv1 captures the consumption of NADPH by the Calvin cycle and GR,
and its corresponding recovery in daylight.

(ii) P − inv2 corresponds to the glutahione pool in chloroplasts involving the
enzymes GR and DHAR. Spontaneous oxidation of GSH in the presence of
DHA and O−

2 is also included.
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(iii) P − inv3 is related to the interconversion of ASC both spontaneously and
catalyzed by DHAR and APX .

4.2 T-invariants

A T-invariant defines a state-conserving subnetwork and has associated its corre-
sponding biological interpretation. In our case (Table 8), using again the Charlie
tool, there are 26 minimal semipositive transition invariants.

NADPH NADPplus

kN

k12

Fig. 5. T − inv2

Let us see a brief description of some of them:

(i) T − inv2 (Fig. 5) is a trivial T-invariant. These transitions capture a re-
versible reaction, each one modeling a direction in this reaction. Biologically
speaking, it corresponds to the consumption and regeneration of NADPH
in the two stages of the photosynthesis.

(ii) T − inv6 (Fig. 6) represents in a very clear way the removal of O−
2 and

H2O2 (reactive oxygen species) by reaction with the reducing agents GSH
and ASC , at the expense of the reducing power of NADPH .

(iii) T − inv7 (Fig. 6) refers to the catalytic cycle of APX.

(iv) T − inv15 (Fig. 7) represents the removal of O−
2 by its spontaneous reduc-

tion to H2O2 in the presence of ASC , the subsequent removal of H2O2 by
the catalytic cycle of APX , and the recovery of ASC through the substrate
cyclying of GSH and NADPH .

(v) T − inv24 (Fig. 7) is a reflection of the enzymatic steps involved in the
pathway: SOD , GR, DHAR and APX .

Another advantage of the Petri net representation is that it can be easily
modified for modeling different situations. For instance, in order to consider
the same cycle in dark conditions, we only have to remove in Figure 4 the
transition F . Then, if we now apply structural analysis we obtain the same
three P-invariants, but we only obtain the two first T-invariants, T − inv1 and
T − inv2, which are the input (synthesis de novo) and output (inactive enzyme)
of APX , and the two stages of photosynthesis.
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Table 8. T-invariants

T-invariant Transitions/Reactions (number of fires)

T − inv1 k5APXo (1), k5APXi (1)

T − inv2 kN (1), k12 (1)

T − inv3 k13 (3),k6 (1), k8 (1), F (1)

T − inv4 k13 (2), k8 (1), SOD (1), F (2)

T − inv5 k13 (2), k8 (1), k5 (1), F (2)

T − inv6 GR (1), k12 (1), k7 (1), k13 (2), k8 (1), F (1)

T − inv7
k13 (3), k2APX (1), k3APX (1), k6(1),

k1APX (1), F (1), outwater (1)

T − inv8
k13 (2), k2APX (1), k3APX (1), SOD (1),

k1APX (1), F (2), outwater (1)

T − inv9
k13 (2), k2APX (1), k3APX (1),k5 (1),

k1APX (1),F (2), outwater (1)

T − inv10
GR (1), k12 (1), k7 (1), k13 (2), k2APX (1), k3APX(1),

k1APX (1), F (1), outwater (1)

T − inv11 GR (3), k12 (3), k4 (3), k1 (3), k6 (2), k8 (2), F (2)

T − inv12 GR (1), k12 (1), k4 (1), k1 (1), k8 (1), SOD (1), F (2)

T − inv13 GR (1), k12 (1), k4 (1), k1 (1), k8 (1), k5 (1), F (2)

T − inv14 GR (2), k12 (2), k4 (1), k7 (1), k1 (1), k8 (1), F (1)

T − inv15
GR (3), k12 (3), k4 (3), k1 (3), k2APX (2),

k3APX (2), k6 (2), k1APX (2), F (2), outwater (2)

T − inv16
GR (1), k12 (1), k4 (1), k1 (1), k2APX (1),

k3APX (1), SOD (1), k1APX (1), F (2), outwater (1)

T − inv17
GR (1), k12 (1), k4 (1), k1 (1), k2APX (1),

k3APX (1), k5 (1), k1APX (1), F (2), outwater (1)

T − inv18
GR (2), k12 (2), k4 (1), k7 (1), k1 (1),

k2APX (1), k3APX (1), k1APX (1), F (1), outwater (1)

T − inv19 GR (3), k12 (3), DHAR (3), k1 (3), k6 (2), k8 (2), F (2)

T − inv20 GR (1), k12 (1), DHAR (1), k1 (1), k8 (1), SOD (1), F (2)

T − inv21 GR (1), k12 (1), DHAR (1), k1 (1), k8 (1), k5 (1), F (2)

T − inv22 GR (2), k12 (2), k7 (1), DHAR (1), k1 (1), k8 (1), F (1)

T − inv23
GR (3), k12 (3), DHAR (3), k1 (3), k2APX (2),

k3APX (2), k6 (2), k1APX (2), F (2), outwater (2)

T − inv24
GR (1), k12 (1), DHAR (1), k1 (1), k2APX (1),

k3APX (1), SOD (1), k1APX (1), F (2), outwater (1)

T − inv25
GR (1), k12 (1), DHAR (1), k1 (1), k2APX (1),

k3APX (1), k5 (1), k1APX (1), F (2), outwater (1)

T − inv26
GR (2), k12 (2), k7 (1), DHAR (1), k1 (1),

k2APX (1), k3APX (1), k1APX (1), F (1), outwater (1)
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4.3 Core network

We now apply the procedure proposed in [5] in order to identify the core net
that represents the network’s dynamics. Transition k4APX does not belong to
any T-invariant, therefore, it can be removed at the steady-state, together with
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the place APXi , which becomes isolated upon the removal of k4APX. Further-
more, T − inv2 is a trivial T-invariant, so that we can use a macro transition for
these transitions. Next, we compute the maximal Abstract Dependent Transition
(ADT) sets, considering that two transitions depend on each other if they occur
always together in the set of T-invariants. In this case we obtain an only con-
nected ADT set {k1APX, k2APX, k3APX}, which can also be collapsed in a
single macro-transition (together with T − inv1). This coarse network (Figure 8)
gives us a reduced vision of the chemical process behavior, so it contributes to
attain a better understanding of this process, also allowing us to test the robust-
ness and the identification of the fragile nodes.

NADPH NADPplus

GSHGSSG

ASC DHA

MDA

H2O2

O2n

GR

k4

k7

DHAR

k1

k13
k6

k8SOD
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F

k12/kN

k1APX/k2APX/k3APX

Fig. 8. Coarse Petri net structure of the GSH-ASC cycle

Robustness is defined as the ability of the system to maintain its function
against internal and external perturbations [6]. In the pathway under study,
robustness is directly related to APX activity [17]. To maintain APX activ-
ity, the cell has developed a very efficient defense tool against oxygen toxicity,
based on two coupled substrate cycles: GSH-GSSG (P − inv2 ) and ASC-MDA-
DHA (P − inv3 ), although it needs a continuous supply of NADPH (P − inv1 ).
Substrate cycles are powerful metabolic tools involving two enzymes acting in
opposite directions, whereby a target metabolite is reversibly interconverted into
another chemical species without being consumed [19]. The physiological expla-
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nation proposed for this wasteful cycling is that is mainly a way of amplifying
a metabolic response to a change in a metabolic concentration, thus greatly im-
proving the sensitivity of metabolic regulation. The waste of NADPH can the
be understood as the cost that chloroplasts must pay to swiftly detoxify H2O2

and O−
2 .

It is also very important to analyze the redundancy of a pathway. It is the
hallmark of biological networks where the very same function is carried out by
different pathways, which provides robustness against perturbations like mu-
tation. In the GSH-ASC cycle, if a mutation block SOD, there is a parallel
spontaneous step for O2

− dismutation (k5), as can been seen in Figure 8. The
same holds for DHAR (k4), in such a way that chloroplasts can recover the re-
ducing power necessary to detoxify reactive oxygen species in the absence of
these enzymes. Redundancy of the pathway under study is clearly revealed by
comparison of T − inv15 and T − inv24 , which represent the chemical and the
enzymatic pathways, respectively, to eliminate H2O2.

Another information that is teased out from the coarse network is that
NADPH is the shared node for two pathways: the Calvin cycle and the GSH-
ASC cycle. If the recovery of NADPH is silenced, it results in a complete loss
of function of both pathways in the core network indicating that it is indeed
the fragile node in the network. The pathway under study is very interesting,
since the same day-light that gives rise to O−

2 radicals also generates NADPH
and ASC to detoxify H2O2 arising from O−

2 dismutation. Therefore it is very
important to know the relative weight of each route in the growth conditions of
plants.

5 Conclusions and Future Work

The GSH-ASC cycle in chloroplasts has been modelled using continuous and
discrete Petri nets. For that purpose, we have defined the specific continuous
Petri net model that corresponds to the network of chemical and enzymatic steps
involved in the cycle, and we have studied it in two ways: the quantitative one,
which helps us to make a prediction behavior; and the qualitative one, applying
structural techniques, considering the core structure. We have obtained their
corresponding biological interpretation that help us to understand this biological
system.

As future work we intend to add some additional steps into the pathway,
which would be helpful to have a better understanding of the biological behavior
considering some new features, such as dark-light interactions. We also intend
to apply other known formal techniques to the study of the GSH-ASC cycle in
chloroplasts, for instance, we may apply model checking techniques in order to
conclude whether a certain property is fulfilled or not by the chemical system.
Finally, it can also be of interest to derive probabilistic informations from a
chemical system, i.e., we can use a probabilistic framework, like stochastic Petri
nets (SPNs), for the modeling of the GSH-ASC cycle in chloroplasts, and derive
the relevant stochastic information of the system.
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Abstract. We describe signal transduction of nociceptive mechanisms
involved in chronic pain by a qualitative Petri net model. More pre-
cisely, we investigate signaling in the peripheral terminals of dorsal root
ganglion (DRG) neurons. It is a first approach to integrate the current
neurobiological and clinical knowledge about nociception on the molecu-
lar level from literature in a model describing all the interactions between
the involved molecules.
Due to the large expected total size of the model under development,
we employed a hierarchical and modular approach. In our entire noci-
ceptive network, each biological entity like a receptor, enzyme, macro-
molecular complex etc. is represented by a self-contained and functional
autonomous Petri net, a module.
Analysis of the Petri net modules and simulation studies ensure the ful-
fillment of criteria important for biological Petri nets and the ability to
represent the modeled biological function.

Key words: Petri net, qualititative approach, module, pain, nocicep-
tion, G-protein-coupled receptor, large biological systems

1 Introduction

Clinical pain is a very complex phenomenon with behavioural, peripheral and
central nervous system components. Often, pain can not be successfully treated
due to the lack of knowledge about the molecular basis on which pain killers
take effect. A mechanism-based pain therapy is largely missing, rendering un-
dertreated pain a serious public health issue (see [7] and references therein).
At the molecular level, many extracellular stimuli and substances in the pe-
ripheral tissue are known that provoke nociceptive signaling in DRG neurons
and subsequent pain (a complex sensation resulting from integration of periph-
eral and central messages). A variety of membrane components and intracellular
signaling molecules have been identified that play key roles in pain sensation.
Examples are G-protein-coupled receptors (GPCR), ion channels, receptor tyro-
sine kinases, cytokine and hormone receptors, which in turn activate a plethora
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(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 135–146.



GPCR

AC
Gs

Gs

PKA

PD

PKC

CaMK

TRPV1

Ca(2+)-channels
Ca2+

DAG Hieat, pH

GPCR GPCR

Ca(2+)-pumps

Enzymatic reaction

Inhibition

Stimulation

Ca(2+)-transport

SiteA2_cAMPSiteA1_cAMP

C_free

cAMP

SiteB1_cAMP SiteB2_cAMP

SiteA1 SiteA2

Dissociation_of_C

SiteB1 SiteB2

2

PKCPKA CalcineurinCaMK

Ca2+(IN)Ca2+(EX)

AEA(IN)

TRPV1(C)

CPS

R1: P-Sites

R2: Heat R3: pH R4: CPS R5: AEA

10

H+Heat

Petri net, see Fig. 3

4

PLC

CPS

AMP

cAMPATP

DAG

 IP3  IP3

PIP2 Gq
Gi

Fig. 1: Left: Signaling components in nociceptors. Nociception is triggered by a large
number of extracellular signals acting through several receptor classes and initiating
a plethora of intracellular signaling cascades. Right: Molecular entities like receptors,
enzymes (and other biomolecules or macro-molecular complexes) are represented as
functional units in the form of self-contained and functionally autonomous Petri nets.
The subnets can be coupled by shared places representing identical, common compo-
nents.

of signaling cascades like the cAMP pathway and calcium signaling [6, 7] (see
Fig. 1). However, the quantitative and qualitative relationships between the dif-
ferent intracellular signaling mechanisms acting downstream of the receptor to
which those substances bind are still poorly understood [7].
It seems straightforward to apply the Petri net framework to study pain signal-
ing ’in silico’, because Petri nets are designed for concurrent systems and also
were shown to be ideally suited to model biological systems [9].
For the description of the nociceptive network we choose qualitative model-
ing as the preceding step for simulation studies which can be performed either
stochastically or continuously. It has been shown that a continuous Petri net is
equivalent to a structured description of ODEs [9]. However, it is known that
many of the involved processes are inherently stochastic. Due to this reason, we
prefer stochastic simulations studies to validate our model. The extension of the
entire qualitative Petri net to a stochastic one with parameters from experimen-
tal data is not possible at the moment because kinetic information of nociceptive
mechanisms is hitherto largely missing.
In our modular approach, a module represents a biological functional entity like
a receptor, a channel, an enzyme or a macro-molecular complex in form of a
self-contained and functional autonomous Petri net graph. The places of a mod-
ule correspond to functional domains (binding domains, phosphorylation sites,
autoinhibitoy domains etc.). These functional domains are regulated by other
biological entities and second messengers or are responsible for the effector func-
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tion. Thus, transitions stand for actions (dissociation, binding, phosphorylation
etc.) occurring within a biological entity. There exist no input or output tran-
sitions (sources or sinks of a certain molecule). Due to mass conservation and
the fact that a molecular entity is not used up by signaling, the corresponding
Petri net graph must be covered with P-invariants [9]. Likewise, the Petri net
graph of a module should be bounded to ensure that biological entities, second
messengers, precursors, degradation products and energy equivalents do not ac-
cumulate. The coverage of T-Invariants of the whole module is not necessary due
to the limitation of components which take part in the regulation of the module
or which are substrates for the effector function. Therefore, the fulfillment of
properties like liveness, reversibility and no dead states it is not mandatory. In
contrast, substructures of the modules where reversible changes occur should
be covered with T-invariants to assure that the initial state of the involved do-
mains can be restored. Ideally, the computed T-invariants have to be covered by
P-invariants [9]. Both, T- and P-invariants, correspond to important biological
functions. The up and down regulation of molecular entities by others and sec-
ond messengers should be reflected in the token flow of the module especially in
the increase or decrease of its effector function.

2 Goal

Our goal is to represent nociceptive mechanisms in DRG neurons in a single,
coherent Petri net and to establish relationships between signaling components.
With the help of simulations we aim at reproducing effects of known nociceptive
stimuli correctly and attempt to predict effects of specific perturbations (drugs
for therapeutic interventions).
We also aim to establish a module repository. A major advantage is that the
modules can be variably combined and reused in other systems according to the
requirements of specific ’wet lab’ or ’in silico’ experiments.

3 Method

We collected literature about nociceptive signaling in DRG neurons, the most
investigated cell type in pain-related studies at the molecular level. We extracted
those nociceptive signaling components from the literature, whose molecular in-
teraction with other pain-related components is well described and proven by
experiments. Further, we searched in detail for the regulatory and effector func-
tions of each of those molecules.
Subsequently, we translated each biological functional unit into a Petri net using
the qualitative approach, see e.g. [1, 2, 9, 8]. We used time-free transitions and
obtained a time-free Petri net accordingly [9]. Our nets were constructed with
Snoopy, a tool to design and animate hierarchical graphs [13].
Each qualitative Petri net is finally subjected to a comprehensive analysis. Here,
we apply all validation criteria for biochemical pathway models given in [9].
Therefore, we determine behavioural properties like liveness, reversibility and
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boundness, as well as P- and T-invariants. The analyses have been performed
using the software Charlie, a software tool to analyse place/transition nets [11].
Having successfully validated the qualitative model, we perform stochastic sim-
ulations by assigning stochastic rate functions to all reactions in the network to
study the dynamic behaviour of the systems in terms of the flow of token in our
model. In particular, we used the stochastic biomass action function, which is
available in Snoopy, together with a simple test parameter sets. In these sets,
the firing rates of transitions inactivating the effector function of a molecule
are assumed to be lower compared to those of transitions activating the effector
function (also see section 5).

4 Nociceptive Network

The entire nociceptive network is build by connection of the constructed mod-
ules. Here, places sharing the same molecules/molecular complexes (logical places)
constitute the natural connections between the modules.
Currently, we have constructed approximately 40 modules on the basis of 251
scientific articles [8]. We expect that at least twice as many modules are required
for a comprehensive description of the entire nociceptive network on the basis
of the current knowledge.
This expected total size of the model under development precludes a flat rep-
resentation. Thus, a modeling approach is applied, which yields immediately a
hierarchically structured model. So far, the latest version of the entire network
consists of 22 connected modules, the representation is distributed over 67 pages
with a nesting depth up to 4, compare Fig. A.1 in the appendix. The model
consists of about 300 places and 350 transitions.

5 Example for a Module : G-Protein-coupled Receptor

In this section, we representatively describe the construction and structural anal-
ysis of one functional unit of our entire net, the G-protein-coupled receptor
(GPCR), a typical seven-helix-transmembrane receptor.
GPCRs relay external signals by activating heterotrimeric guanine-nucleotide-
binding proteins (G-protein). Seven-helix receptors form the largest family of
transmembrane receptors and are therefore crucial components in many signal
cascades including nociceptive pathways. There are several GPCRs in nocicep-
tion interacting specifically with endogenous and exogenous opioids, cannabi-
noids or substances released as a result of inflammation (e.g. bradykinin), thus
having substantial modulating effects on pain sensation. A heterotrimeric G-
protein consists of α1, β and γ subunits (see also [3–5]). Fig. 2 shows the inter-
action of GPCR with coupled G-protein.

1 The Gα subunit occurs in three main isoforms with distinct functions: Gαs (stimula-
tion of adenylyl cyclases), Gαi (inhibition of adenylyl cyclases)and Gαq (stimulation
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Fig. 2: Regulation of GPCR and its coupled G-protein (see also [3–5]): The activation
of a GPCR occurs by binding of a specific ligand at the extracellular side (step 1)
causing a conformational change (step 2), which activates the recruited resting G-
protein in its GDP-bound form. This causes the exchange of GDP by GTP in the
specific binding pocket of the Gα subunit. (step 3). Gα subunits with GTP bound
dissociate from the G-protein complex (step 4) and act on further downstream signal
molecules like adenylyl cyclase or phospholipase C β (step 5). The remaining Gβ/γ
subunit in addition causes multiple regulatory effects mostly on ion channels and on
isoforms of adenylyl cyclases (also step 5). The effector function of the Gα subunit
is terminated by the binding of a GTPase activating protein (GAP) stimulating the
intrinsic GTPase function of the Gα subunit. GTP is hydrolysed to GDP (step 6).
The GDP bound form of the Gα subunit then reassociates with the Gβ/γ subunit to
assume its initial pre-stimulus state (step 7).

The regulatory mechanisms and effector functions of GPCRs and the associated
G-proteins are translated into a place/transition Petri net (see Fig. 3).
Places may either represent individual molecules or functional states of more
complex molecules. Places that are connected by two opposite edges (in this ex-
ample replaceable by read arcs) with a transition represent molecules or states,
which are necessary for a signaling event to occur without being consumed by
the reaction. Transitions describe biochemical reactions and molecular interac-
tions.
To provide a neat arrangement of the Petri net, we used coarse transitions (dou-
ble squares), integrated at the top level. The entire (flattened) place/transition
Petri net of this submodel consists of 27 places and 17 transitions connected by
72 edges.
Computation of the invariants shows the coverage of the net by P- and partly by
T-invariants (see Fig. 4). Furthermore, there are no invariants without biological

of phospholipase d β). GPCR are mostly associated with one particular G-protein
isoform.
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Fig. 3: Petri net module representing GPCR and G-protein regulation: The top level
in the center represents all functional sites of GPCR and G-protein which take part
in the regulation and effector function. The surroundig Petri nets show the respective
coarse transitions in detail.
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of a stochastic simulation run with test firing rates.

meaning (see Tab. A.1 and Tab. A.2 in the appendix). Thus, essential validation
criteria for a Petri net model of a signal transduction network are fulfilled.
Stochastic simulations with test rates show the expected effector function of the
module. The dissociation of the ligand from GPCR (t2) and the dissociation
of the targets from the substrate binding sites of both G-protein subunits (t16,
t18) are assumed to proceed slower (BioMassAction(0.01)) than all other reac-
tions (BioMassAction(0.1)). Upon ligand binding to the receptor (decrease of
free ligand), we first observe an increase in the activated GPCR GEF function,
followed by an increase of the dissociated G-protein subunits, which can subse-
quently trigger downstream signaling events.

6 Conclusion

Models allow to perform experiments ’in silico’, to study the systems properties
and behaviour, to make predictions and thus to contribute to a further under-
standing of the involved processes. As the body of biological data is steadily
increasing, it becomes more and more important to find a way to integrate
huge amounts of available information in the form of a model. We are currently
working on a method consisting of a modular design principle that allows to
check and validate each functional subunit thorougly due to its managable size.
Step by step connection and combination of subunits (in the form of submod-
els) and validation of the connected parts ensures that the resulting composed
net is coherent as well. Depending on specific ’wet lab’ experiments, which are
performed to validate the model in turn, different modules can be combined in
order to study the behaviour of subsystems or of the entire system that has been
modeled. As many biological functional units (like enzymes, receptors) play a
role in different signaling pathways, the respective modules can be reused and
recombined in different ways. The modules can be applied to other Petri net
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classes; they can be easily converted into a colored Petri net [12], or a stochas-
tic Petri net, see intoduction. In a next step we intend to color our low-level
Petri net [12] in cooperation with the group of Prof. Heiner. This more compact
description will enable us to depict and study the behavior of populations of
nociceptive DRG neurons as well as multiple copies of biological entities.
As far as pain and the contribution of nociceptors is concerned, we hope to con-
tribute with our net to a mechanism-based pain therapy by identifying possible
targets for the development of new therapeutic intervention strategies.
The modular design together with the Petri net framework seems to be a promis-
ing tool to handle large biological systems even when exact quantitative param-
eter values are missing.
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Tab. 1: List of P-invariants and their interpretation

Number Place Interpretation

1 GPCR-BS1(ex) Extracellular binding site of the GPCR is
unbound or bound to the ligand.GPCR-BS1(ex)-L

2 GPCR-BS1(ex)-L The ligand is free in the extracellular
space or bound to the GPCR.L

3 GPCR-GEF(active) GEF part of the GPCR can be inactive or
active or active and bound to the
G-protein.

GPCR-GEF(inactive)
Gα-BS1(b)-GPCR-GEF(active)

4 GAP GAP is free in cytoplasma or bound to
the G-Protein.Gα-BS1(f)-GAP

5 Gα-SBD(f)-Target1-BS The target for the Gα subunit is free or
bound to Gα substrate binding domain.Target1-BS

6 Gβ/γ-SBD-Target2-BS2 The target for the Gβ/γ subunit is free or
bound to Gβ/γ substrate binding domain.Target2-BS

7 Gα-GTPase(b) The confromation of the GTPase domain
corresponds to that of the whole Gα
subunit .

Gα-GTPase(f)

8 Gα-BS2-GDP(b)
The same as above goes for binding site 2
of the Gα subunit. In both cases GTP or
GDP is bound.

Gα-BS2-GDP(f)
Gα-BS2-GTP(b)
Gα-BS2-GTP(f)

9 Gα-BS1(b) The same as above goes for binding site 1
of the Gα subunit. In both cases it can be
unbound or bound to GAP respectively
the GEF part of the GPCR.

Gα-BS1(b)-GPCR-GEF(active)
Gα-BS1(f)
Gα-BS1(f)-GAP

10 Gβ/γ-SBD(b) The Gβ/γ subunit can be associated to
the G-protein complex (no substrate
binding) or free (substrate binding
possible).

Gβ/γ-SBD(f)
Gβ/γ-SBD(f)-Target2-BS2

11 Gα-BS1(b) If one domain is in the conformation
where the Gα subunit is associated to the
G-protein complex another domain can
not be in the comformation where the Gα
subunit is free (vice versa).

Gα-BS1(b)-GPCR-GEF(active)
Gα-SBD(f)
Gα-SBD(f)-Target1-BS

12 Gα-BS1(f)

see no. 11
Gα-BS1(f)-GAP
Gα-BS2-GDP(b)
Gα-BS2-GTP(b)

13 Gα-BS2-GDP(b)

see no. 11
Gα-BS2-GTP(b)
Gα-SBD(f)
Gα-SBD(f)-Target1-BS

14 Gα-SBD(b)
see no. 11

Gα-GTPase(f)

15 Gα-BS1(f)
see no. 11Gα-BS1(f)-GAP
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Gα-SBD(b)

16 Gα-BS2-GDP(f)
see no. 11Gα-BS2-GTP(f)

Gα-SBD(b)

17 Gα-SBD(b)
see no. 11Gα-SBD(f)

Gα-SBD(f)-Target1-BS

18 Gα-BS1(f)
see no. 11Gα-BS1(f)-GAP

Gα-GTPase(b)

19 Gα-BS2-GDP(f)
see no. 11Gα-BS2-GTP(f)

Gα-GTPase(b)

20 Gα-SBD(f)
see no. 11Gα-SBD(f)-Target1-BS

Gα-GTPase(b)

21 Gα-BS1(b)
see no. 11Gα-BS1(b)-GPCR-GEF(active)

Gα-GTPase(f)

22 Gα-BS2-GDP(b)
see no. 11Gα-BS2-GTP(b)

Gα-GTPase(f)

23 Gα-BS1(b)

see no. 11
Gα-BS1(b)-GPCR-GEF(active)
Gα-BS2-GDP(f)
Gα-BS2-GTP(f)

24 Gα-BS1(b) If the substrate binding domain is in the
conformation where the Gβ/γ subunit is
associated to the G-protein complex,
another domain can not be in the
comformation where Gα subunit is free
(vice versa).

Gα-BS1(b)-GPCR-GEF(active)
Gβ/γ-SBD(f)
Gβ/γ-SBD-Target2-BS2

25 Gα-SBD(f)
see no. 24Gα-SBD(f)-Target1-BS

Gβ/γ-SBD(b)

26 Gα-BS1(f)
see no. 24Gα-BS1(f)-GAP

Gβ/γ-SBD(b)

27 Gα-BS2-GDP(f)
see no. 24Gα-BS2-GTP(f)

Gβ/γ-SBD(b)

28 Gα-BS2-GDP(b)

see no. 24
Gα-BS2-GTP(b)
Gβ/γ-SBD(f)
Gβ/γ-SBD-Target2-BS2

29 Gα-GTPase(f)
see no. 24

Gβ/γ-SBD(b)

30 Gα-GTPase(b)
see no. 24Gβ/γ-SBD(f)
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Gβ/γ-SBD(f)-Target2-BS2

31 Gα-SBD(b)
see no. 24Gβ/γ-SBD(f)

Gβ/γ-SBD-Target2-BS2

32 GDP Free GTP can just be in a high or low
engergy stateGTP

33 GTP The high energy state of GTP can just be
free, bound at the free Gα subunit or at
Gα subunit in the G Protein complex. If
GTP is in one of those states there
cannot be free Pi (vice versa)

Gα-BS2-GTP(b)
Gα-BS2-GTP(f)
Pi
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Fig. 5: Hierarchy graph of the entire nociceptive network.
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Introduction

Regions have been defined about 20 years ago by Andrzej Ehrenfeucht and Grzegorz
Rozenberg as sets of nodes of a finite transition system that correspond to potential
conditions that enable or disable transition occurrences in a corresponding elementary
net system. Thus, regions have been the essential concept for synthesis of elementary
net systems from its “anonymous” state graph (states are unknown but transitions
between states are known). Since that time, many generalizations and variants of
the synthesis problem of Petri nets from behavioural descriptions have been stud-
ied, including synthesis of more general Petri net classes, synthesis from languages,
synthesis from partially ordered runs and synthesis from incomplete behavioural de-
scriptions. All this work has in common that the transition names are given more or
less directly by the behavioural description. The places of the net to be synthesized
always correspond to regions which are defined in many different ways, depending on
the form of the behavioural description. A major issue in this research is the study
of regions, whence we call the entire research direction Region Theory.

Region Theory was applied in many different areas such as:

• hardware synthesis from precise specifications (synthesis from transition sys-
tems)

• visualization of concurrent hardware behaviour (synthesis from logic circuit
models, transition systems and partial orders)

• GALS synthesis and desynchronisation based on synthesis (synthesis from step
transition systems and re-synthesis from Petri nets)

• synthesis of control and policies for discrete event systems (synthesis from both
languages and transition systems)

• modelling biological (membrane) systems with localities (synthesis from step
transition systems)

• generation of specifications from incomplete specifications (mining from transi-
tion systems)

• model generation from examples (specification from (partial) languages)

• mining of process descriptions (mining from languages)

The aim of the ART workshop series was to bring together people working in these or
other application areas of region theory, to exchange ideas and concepts and to work
on common workshop results.

This chapter contains reviewed contributions submitted to and presented at the 1st
ART workshop in Braga, Portugal.

Jörg Desel (Hagen, Germany)
Alex Yakovlev (Newcastle University, UK)
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Abstract. This short paper first presents a modeling language for collaborative
learnflows. This language is based on ideas from the area of business process
modeling. Second, it is shown how to automatically generate respective learnflow
models from log files of learning systems.

1 Introduction

Business processes have been established in the research and application field of busi-
ness process resp. workflow engineering with matured methods, representations and
computer support with tools. In contrast, the closely related learning and teaching pro-
cesses only recently gained attention in research and practice and have not yet cre-
ated shared terms, methods, and representations. This is especially true for the field
of Computer-supported Collaborative Learning (CSCL), a discipline that investigates
in the affordances and effects of computer applications supporting groups of students
in knowledge construction and skill development. Thus, while we will call the formal
representation of learning / teaching processes learnflow engineering in this paper, this
term is neither firmly established nor fully deserves the engineering character, but is
approaching this currently with the work of our colleagues and our own contributions.
To reach this goal we compared in earlier work [1] commonalities, specifics, and po-
tential methodological transfer between workflow and learnflow engineering. We also
introduced first approaches for formal modeling of collaborative learning processes by
means of Petri nets and the synthesis of nets from protocols and log files via process
mining algorithms.

Of particular interest are the explicit representation of collaborative learning and
of roles and learning groups. In comparison to business processes [2] the following
specifics of learning processes have to be taken into account:

– For business processes the ultimate goal of performing / enacting a process with its
associated activities is the achievement of a product with guaranteed quality crite-
ria, while the participation of individual actors is only a minor concern. However,
for learning processes the priority is that the learners involved in the activities get
the opportunity to gain knowledge and experience: an objectively measurable re-
sult of the process is - besides the use of formative evaluations / exams - much
less important than the completion of the learning experience for each participant
and its implicit result of constructed knowledge in the student’s mind. This requires
that in the modeling of learning processes the individual actors have to be modeled
thoroughly and explicitly.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
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– The concept of role in workflow engineering is mainly based on responsibility and
ability for a set of activities, which is static after an initial assignment of roles to
actors. Dynamic constraints on the activities (e.g. the same actor that created a pro-
posal should also fix the contract) and special rules for allocation of actors to activ-
ities (e.g. the actor of a given role that has a minimum number of other roles should
be chosen to distribute the workload) have been formulated in respective work by
means of additional model constructs and notations. In contrary to this rigid role
concept, the usage of roles in learning processes is frequently guided by exercis-
ing specific skills where roles are changed and acquired during a learning process.
Therefore, an extension of static role concepts to dynamic ones that are capable of
taking into account the learning history are needed for learnflow processes.

– Each activity, potentially even the whole learning process, may require group work
and discussion and especially these group activities can have a high importance
for the learning experience. Thus, the flexible and explicit representation of groups
with required roles and - if needed - the dynamic re-arrangement of groups is one
more requirement for learnflow engineering methods.

In this paper we will present a modeling language for learning processes that takes
specifically into account the requirements identified above. To make use of expertise
and experience from workflow engineering we will build the proposal upon sound ex-
isting approaches from this field [2]. Besides the intended applicability for learning and
teaching processes we also consider our approach useful for business processes with
dynamic roles, cooperative and collaborative activities such as in adaptive workflows
where a static process structure is not satisfactory.

A first modeling approach in this direction has been proposed in [1]. There, we rep-
resented learning processes as Petri nets as is usual in the field of workflow management
[2]. The allocation of actors was made by assignment of the required roles to activities
and the usage of a global pool of actors that have the possible roles they can take asso-
ciated to them. The established workflow concepts were extended by a mechanism to
allow the change of actor roles while performing an activity.

Because of the significance of role changes in the modeling of learning processes
in this paper we propose a refinement of that approach. We explicitly model dynamic
role assignments and changes in a state diagram: actors can change their assigned roles
when performing activities, which means that the role changes in the state diagram are
synchronized with the activities in the process model (Petri net). Learning groups are
taking into account by collaborative activities performed by several roles jointly.

We will discuss the potential and methods for the automated synthesis of these mod-
els from real protocol instances as an approach for collaboration flow mining. For this
we extend our first proposal of a learnflow mining approach presented in [1]. This previ-
ous work focused on the discovery of the structures for the control flow using methods
from the area of workflow mining [3, 4], but in this paper we will address additionally
the challenge how to gain information about dynamic roles and collaboration situations
from the protocol instances. Related work to this is organizational mining [5] that is
limited to static roles and organizational units.
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In Section 2 we will present our new modeling language by an example learning
process. By means of this example we also illustrate the core ideas of collaboration
flow mining in Section 3.

2 Modeling Language

As an example we consider the following computer supported learning scenario. Groups
of three students use the tool Freestyler (www.collide.info) to learn the effect of dif-
ferent factors such as lightning conditions and CO2-concentration on the growth of
plants. For this purpose, Freestyler provides several tabs with different functionali-
ties. There are for instance tabs to formulate questions, to create simple models or
to import data from a simulation tool. In this example, the set of tabs corresponds to
the set of supported learning activities. Namely we consider the following activities:
In = Introduction, Qu = Elaboration of the Research Question, Pl = Planning, Mo =
Modeling of the Relations of the Different Factors, Hy = Hypothesize, E1 & E2 =
Experiment One resp. Two for Hypothesis Testing, Da = Study of Existing Experi-
mental Data for Hypothesis Testing, An = Analysis of Experimental Results Including
Comprehensive Hypothesis Testing, Pr = Presentation of the Research Results. Some
of these learning activities require collaboration (In, Hy, An require all three learners
and Pl, Mo, Pr each require two learners).

In this context a learnflow model first describes the order in which the tabs have
to be processed by the learners. Second, it determines who is allowed to work on a
tab. This depends on the dynamic roles of the learners within the learning group. The
learners may have the role Student, Modeler, ExModeler, Recorder and ExRecorder.
Student is the default role. The other roles encode the learning history of the learners,
e.g. Recorder and ExRecorder store the information that the learner has performed the
activity Question.

Figure 1 together with Figure 2 show a possible learnflow model for the example
scenario. Figure 1 illustrates the process aspect in the form of a Petri net with transition
annotations. The annotations refer to the numbers of roles required for an activity. The
state chart of Figure 2 complements the Petri net model. It represents a consistent role
diagram, which models the dynamic roles of the three learners in the pool of actors.
Each learner corresponds to one instance of the state chart. Instead of state charts, it
would also be possible to consider state machine Petri nets to model the roles of learn-
ers, but state charts are in our opinion the more natural modelling approach.

The dynamic of the learnflow model is as follows. An activity of the net can only
be accomplished, if the pool of actors contains learners having the roles annotated at
the transition. For instance, the collaborative activity Pl requires two actors with the
role Student. The occurrence of a transition can change the roles of the involved actors.
Such change is modeled in the role diagram by a state transition with the activity name
as the input symbol. Therefore, in our example the activity Pl causes the two students
to switch over to the role Modeler. This role is later on required to perform the activity
Mo. For simplicity of the role diagrams, we use the following convention. If an actor
performs an activity, which does not explicitly cause a change of his role in the state
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chart, he preserves his role. For instance, the activity Mo does not change the role of an
actor with the role Modeler and therefore can be neglected in the state chart.

PrHy An

E1

In

Pl

Mo

Qu

E2

Da

3 Students

2 Students

2 Modelers

Student

2 Modelers AND Recorder

Modeler OR Recorder

2 ExModelers
AND ExRecorder

ExModeler
AND ExRecorder

Modeler OR Recorder

Modeler OR Recorder

Fig. 1. Petri net model with role annotations

Student

Recorder

Modeler

Qu

Pl
ExModeler

E1,E2,Da

ExRecorder
E1,E2,Da

Fig. 2. State chart represent-
ing a role diagram

The example shows, that the presented modeling
language allows to comprehensibly represent collabo-
rative activities as well as dynamic roles and the learn-
ing progress of learners within a learning process. Still
the language is simple and intuitive. It naturally extends
well established modeling approaches from the domain
of business process management. The approach sup-
ports a clear separation of the process perspective and
the role perspective of a learn flow.

For a formal definition of the occurrence rule of the
new modeling language, we consider a translation of
respective learn flow models into a special class of col-
ored Petri nets [6]. All the standard Petri net compo-

nents are kept in the high-level Petri net model. The annotations of the transitions and
the state diagrams (we require that a role occurs only once in a state diagram) are trans-
lated into one high-level place modelling the pool of ressources resp. actors. The color
set of this place is given by the possible roles of learners. The initial marking contains
for each state diagram one token of the kind given by the initial state of the state di-
agram. The place has an outgoing and an ingoing arc connected with each transition
of the net. A transition consumes tokens from the place as given by its annotation. For
each consumed token, there are two cases. Either the state corresponding to the token
type in the state diagram allows a state transfer labeled with the name of the considered
transition or it does not allow such transfer. In the first case, the transition produces a
token of the kind given by the follower state of the state diagram in the ressource pool.
In the second case, it produces a token of the same kind as the consumed token. Note
that for classical business process models with static roles, an analogous translation is
possible. But in this situation the first case neven occurs, i.e. each transition produces
the same tokens in the ressource pool, that the transition consumes from the pool. This
shows, that our new concept is more general than the classical approach.
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Figure 3 illustrates the described translation for our example model (for the sake of
clearness, the single ressource pool place is splitted in the illustration). The resulting
high-level model on the one hand does not any more show explicitely the dynamic
roles and the behavior of the learners. On the other hand it is quite difficult to read
and understand. Therefore, for modeling purposes, the original representation should
be prefered. The high-level view should only be used for formal considerations.

PrHy An

E1

In

Pl

Mo

Qu

E2

Da

3`“Student“3`“Student“

3`“Student“

1`“Student“

1`“Recorder“

2`“Modeler“++
1`“Recorder“

2`“Modeler“++
1`“Recorder“

y

x
2`“ExModeler“++
1`“ExRecorder“

2`“ExModeler“++
1`“ExRecorder“

1`“ExModeler“++
1`“ExRecorder“

1`“ExModeler“++
1`“ExRecorder“

Ressource 
Pool

3`“Student“

Ressource 
Pool

x

y

x

y

2`“Modeler“

2`“Modeler“

2`“Student“

2`“Modeler“

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

[(x=“Modeler“ andalso y=“ExModeler“) orelse
(x=“Recorder“andalso y=“ExRecorder“)]

Fig. 3. High-level Petri net

There is the following important observation for our new modeling approach. The
learning progress and the learning history of the actors are encoded in the role diagram.
For instance, the activity E1 initiates a learning progress of the involved learner. This
is represented by a change of the role of the learner. The new role then does not allow
an execution of E2 and Da by this learner anymore. Thus, the three activities E1, E2
and Da have to be divided among the three learners. As an outlook, we also work on a
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further similar modeling language which avoids such progress-dependend role changes
by applying a nets-in-nets concept.

Lastly, our modeling approach regards learning groups implicitly by means of col-
laborative activities. In view of an explicit modeling of groups, there are two natural and
useful possibilities. First of all, different groups can simply be represented by different
process instances. However, in this case an extension of the modeling language which
allows to model dependencies of process instances would be helpful to regard dynamic
group structures. Second, groups can also be modeled analogously as roles, i.e. the role
diagrams of the actors can also capture information about group membership of actors.
However, in contrast to roles it is important to represent the overall dynamic of the
groups. This dynamic can only implicitly be regarded by group-memberships of single
actors. Therefore, an extension of the modeling approach which at any time explicitly
represents the learning groups would be interesting. This can for instance be achieved
by a respective grouping of the state charts in the pool of actors.

3 Collaboration Flow Mining

In this section we introduce an approach to mine a learnflow model given a log file
containing recorded learning activities. We construct a learnflow model which reflects
a learning process performed by the students (maybe unknown to the teacher) or if the
log file is filtered by the teacher even a desired learning process.

If an information system supports an actor while performing a learning activity this
event can be recorded and gathered in protocol instances. Each recorded event contains
information about the respective process instance, the name of the activity, the time of
its occurrence and the involved actors. First, the events are ordered by their respective
process and process instance. Second, they are ordered by the time of their occurrence
within each process instance. Thus, each process instance yields a sequence of activities
together with the respective actors. In the following we use these sequences as an input
to a mining algorithm creating a process model. This process model can be used for
verification and analysis issues or even as an input for information systems controlling
the learnflow.

The tool Freestyler records the activities of the students. Figure 4 shows a part
of a Freestyler log file of the considered learning process. It also shows a sequence of
activities together with the corresponding actors resulting from that log file. The teacher
may filter the log file by adding additional learning sequences or by removing unwanted
learning sequences according to certain criteria such as subsequently measured learning
achievements. In this case the mining yields a model of the desired learning process,
while without filtering a model of the actual behaviour of the students is generated.

In the following we assume the log file to be complete for the given learning process,
i.e. each possible learning sequence of the learning process is recorded in the log, where
we distinguish learning sequences in the form shown in the last table of Figure 4. After
abstracting from the set of actors in the learning sequences well know process mining
algorithms [1, 3, 4] can be used to automatically construct a model of the control flow
of the learning process. Since we consider a complete log file, we highly recommend
to use a precise mining algorithm. Such algorithms exactly reproduce the sequences
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Log file
Process Process instance Action Student Time

Photosynthesis Group A Introduction Andi, Basti, Robin 10:03:12
Photosynthesis Group A Question Robin 10:06:43
Photosynthesis Group B Introduction Bert, Caro, Hans 10:07:33

... ... ... ... ...

Learning sequences
Group A (Introduction; Andi,Basti,Robin), (Question; Robin), (Planning; Andi,Basti), (Modeling; Andi,Basti),

(Hypothesis; Andi,Basti,Robin), (Experiment1; Andi), (Experiment2; Robin), (Data; Basti),
(Analysis; Andi,Basti,Robin), (Presentation; Andi,Robin)

...

Projection of learning sequences onto single students
Introduction, Planning, Modeling, Hypothesis, Experiment1, Analysis, Presentation
Introduction, Planning, Modeling, Hypothesis, Data, Analysis
Introduction, Question, Hypothesis, Experiment2, Analysis, Presentation
...

Learning sequences for role annotations
Group A (Introduction; -,-,-), (Question; In), (Planning; In,In), (Modeling; InPl,InPl),

(Hypothesis; InPlMo,InPlMo,InQu), (Experiment1; InPlMoHy), (Experiment2; InQuHy), (Data; InPlMoHy),
(Analysis; InPlMoHyE1,InPlMoHyDa,InQuHyE2), (Presentation; InPlMoHyE1An,InQuHyE2An)

...

Fig. 4. Example log file

of a log file if this is possible. Precise mining algorithms for Petri nets are base on
the so called theory of regions. In [4] we propose to apply regions of languages for
mining, since the sequences of a log file in a natural way determine a language. We have
also implemented a respective algorithm. From the log file in Figure 3 this algorithm
generates the Petri net model shown in Figure 1 yet without role annotations. In order
to generate these role annotations and the state chart describing the dynamic roles of
the students we introduce an additional mining method.

For every learning sequence and each occurring student within the learning se-
quence we consider the sequence of activities the student performs. Figure 4 shows
this projection of the learning sequences onto the students for the considered example.
All these sequences are integrated into a deterministic state chart in the form of a tree.
Its states are determined by the history of previously performed activities (also regard-
ing the order of the activities) and are named accordingly. In our example the resulting
state chart is given in Figure 5 yielding a first model of roles for our learning process.
In order to consistently use these roles as annotations in the Petri net model, in every
learning sequence each actor must be renamed by the role describing the activities per-
formed by the actor in the history of this learning sequence (see Figure 4 lower part).
The role annotation of an activity in the Petri net is determined by all roles or combina-
tions of roles in the case of a collaborative activity that occur together with this activity
in any such learning sequence.

Although we have not formally proven this yet, it can be shown that using this
approach and given a complete log file, i.e. a complete set of learning sequences, a
model is calculated which has the same behaviour as show in the log file (if such a model
exists). That means, the mined model and the log define the same learning sequences in
the form depicted in the last table of Figure 4. In our example the generated model has
equivalent behaviour to the learning process model shown in Figure 1. Yet the model
has a much lager set of roles. The reason for this is that the role model encodes the
complete history of each actor.
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Fig. 5. Role diagram with finest granularity

In the following our goal is to simplify the model of roles by combining roles.
Therefore, we developed the following rules. Remark that the annotations in the Petri
net model have to be renamed consistently.

– Role transitions triggered by actions performed collaboratively by all actors be-
longing to one process instance can be neglected.

– Roles having the same postset of roles (respectively an empty postset) and the same
outgoing activities can be fused, if for each outgoing activity the roles occur to-
gether with the same roles over all learning sequences. Thereby, outgoing activities
between the roles to be fused can be neglected.

– Only as a last step roles having an empty postset can be neglected.

It can be proven, that given a complete log file, applying these rules to the previ-
ously mined role diagram again yields a behaviour equivalent learnflow model. In our
example with these three rules we get a model of roles which is isomorphic to the model
shown in Figure 2. Apart from the role names that are not present in the log files any-
way we were in this case able to recreate the original learning process model from a
complete log file. The role names have to be assigned by the teacher afterwards.

Finally, in practical settings typically we have to assume that not all possible learn-
ing sequences have been recorded in a log file. For such log files the presented approach
has to be adapted. Heuristics can help to infer the missing sequences and to integrate
them into the process model. For the control flow perspective existing methods from the
area of process mining can be used in this context [3]. For the role diagrams we plan
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to use methods from the theories of structural equivalence and generalized block mod-
elling [7] where missing information is penalized and a solution with minimal penalties
can be used for the generalized role model.
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Abstract. There is a growing need to introduce and develop computa-
tional models capable of faithfully modelling systems whose behaviour
combines synchrony with asynchrony in a variety of complicated ways.
Examples of such real-life systems can be found from VLSI hardware
GALS systems to systems of cells within which biochemical reactions
happen in synchronised pulses. One way of capturing the resulting intri-
cate behaviours is to use Petri nets with localities where transitions are
partitioned into disjoint groups within which execution is synchronous
and maximally concurrent. In this paper, we generalise this type of nets
by allowing each transition to belong to several localities. Moreover, we
define this extension in a generic way for all classes of nets defined by
net-types. We show that Petri nets with overlapping localities are an in-
stance of the general model of nets with policies. Thanks to this fact, it is
possible to automatically construct nets with localities from behavioural
specifications given in terms of finite step transition systems. After that
we outline our initial ideas concerning net synthesis when the association
of transition to localities is not given and has to be determined by the
synthesis algorithm.
Keywords: theory of concurrency, Petri nets, localities, analysis and
synthesis, step sequence semantics, conflict, theory of regions, transition
systems.

1 Introduction

In the formal modelling of computational systems there is a growing need to
faithfully capture real-life systems exhibiting behaviour which can be described
as ‘globally asynchronous locally (maximally) synchronous’ (GALS). Examples
can be found in hardware design, where a VLSI chip may contain multiple clocks
responsible for synchronising different subsets of gates [6], and in biologically
inspired membrane systems representing cells within which biochemical reac-
tions happen in synchronised pulses [15]. To capture such systems in a formal
manner, [9] introduced Place/Transition-nets with localities (PTL-nets), where
each locality identifies a distinct set of transitions which must be executed syn-
chronously, i.e., in a maximally concurrent manner (akin to local maximal con-
currency). The expressiveness of PTL-nets (even after enhancing them with
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inhibitor and activator arcs in [8]) was constrained by the fact that each transi-
tion belonged to a unique locality, and so the localities were all non-overlapping.
In this paper, we drop this restriction aiming at a net model which we believe
should provide a greater scope for faithful (or direct) modelling features im-
plied by the complex nature of, for example, modern VLSI systems or biological
systems.

To explain the basic idea behind nets with overlapping localities, let us
consider an array of n transitions ti (0 ≤ i ≤ n − 1) which are arranged
in a circular manner, i.e., ti is adjacent to t(i+n−1)modn and t(i+1)modn

which form its ‘neighbourhood’. Each of the transitions belongs to some
subsystem which is left unspecified. What is important from our point of
view is that to be executed, ti needs, in addition to being enabled by its
subsystem, to receive an external stimulus (e.g., an electric charge when
transitions represent biological cells) which then spreads to its neigh-
bourhood forcing the execution of transition t(i+n−1)modn and t(i+1)modn

provided they are enabled by their subsystems. Thus, stimulating a
transition amounts to stimulating its neighbourhood, and neighbour-
hoods can overlap which means that a given transition can be triggered
in possibly many ways. To model such a scenario in a direct way we
can use a Petri net augmented with a locality mapping ℓ such that
ℓ(ti) = {(i + n − 1)modn, i, (i + 1)modn}, where each integer repre-
sents a distinct locality, and assuming that a transition may be executed
only if it belongs to some stimulated neighbourhood. For example, if all
the transitions ti are enabled by their subsystems, then the following are
examples of legal steps of the Petri net:

{t2, t3, t4} t3 stimulated
{t2, t3, t4, t5} t3 and t4 stimulated
{t2, t3, t4, t5, t8, t9, t10} t3, t4 and t9 stimulated

and two examples of illegal steps are {t2, t3} and {t2, t3, t4, t6}.
In the abstract capture of the underlying mechanisms like that above, we
will demand that an executed transition belongs to at least one saturated
locality, i.e., it is not possible to additionally execute any more transitions
associated with that locality.

Rather than introducing nets with overlapping localities for PT-nets or their
extensions, we will move straight to the general case of τ -nets [2] which encap-
sulate a majority of Petri net classes for which the synthesis problem has been
investigated. In fact, the task of defining τ -nets with (potentially) overlapping
localities is straightforward, as the resulting model of τ-nets with localities turns
out to be an instance of the general framework of τ -nets with policies introduced
in [4].

After introducing the new model of nets, we turn our attention to their auto-
matic synthesis from behavioural specifications given in terms of step transition
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systems. Since τ -nets with localities are an instance of a more general scheme
treated in [4], we directly import synthesis results presented there which are
based on the regions of a transition system studied in other contexts, in partic-
ular, in [1–3, 7, 13, 14, 16, 10, 11].

The results in [4] assume that policies are given which, in our case, means
that we know exactly the localities associated with all the net transitions. This
may be difficult to guarantee in practice, and so in the second part of the paper
we outline our initial ideas concerning net synthesis when this is not the case,
extending our previous work on non-overlapping localities reported in [12].

2 Preliminaries

In this section, we recall some basic notions concerning τ -nets, policies and the
synthesis problem as presented in [4].

An abelian monoid is a set S with a commutative and associative binary
(composition) operation + on S, and a neutral element 0. The monoid element
resulting from composing n copies of s ∈ S will be denoted by n · s, and so
0 = 0 · s and s = 1 · s.

A specific abelian monoid, 〈T 〉, is the free abelian monoid generated by a set
(of transitions) T . It can be seen as the set of all the multisets over T . We will
use α, β, γ, . . . to range over the elements of 〈T 〉. Moreover, for all t ∈ T and
α ∈ 〈T 〉, we will use α(t) to denote the multiplicity of t in α. We will write t ∈ α
whenever α(t) > 0, and denote by supp(α) the set of all t ∈ α. The size of α is
given by |α| =

∑
t∈T α(t).

We denote α ≤ β whenever α(t) ≤ β(t) for all t ∈ T (and α < β if α ≤ β and
α 6= β). For X ⊆ 〈T 〉, we denote by max≤(X) the set of all ≤-maximal elements
of X , and by min≤(X) the set of all non-empty ≤-minimal elements of X .

If T ′ ⊆ T then α|T ′ is a multiset α′ such that α′(t) = α(t) if t ∈ T ′ and
otherwise α′(t) = 0. The sum of two multisets, α and β, will be denoted by
α + β, and a singleton multiset {t} simply by t.

A transition system over an abelian monoid S is a triple (Q, S, δ) such that
Q is a set of states, and δ : Q × S → Q a partial transition function1 satisfy-

ing δ(q,0) = q for all q ∈ Q. An initialised transition system T df
= (Q, S, δ, q0)

has in addition an initial state q0 ∈ Q from which every other state is reach-
able. For every state q of a (non-initialised or initialised) transition system TS ,

enbldTS (q)
df
= {s ∈ S | δ(q, s) is defined}.

Initialised transition systems T over free abelian monoids — called step
transition systems — will represent concurrent behaviours of Petri nets. Non-
initialised transition systems τ over arbitrary abelian monoids — called net-types
— will provide ways to define various classes of nets. Throughout the paper, we
will assume that:

– T is a fixed finite set (of net transitions);
– Loc is a fixed finite set (of net transitions’ localities);

1 Transition functions and net transitions are unrelated notions.
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– T = (Q, S, δ, q0) is a fixed step transition system over S = 〈T 〉.
– τ = (Q, S, ∆) is a fixed net-type over an abelian monoid S. In this paper, we

will assume that τ is substep closed which means that, for every state q ∈ Q,
if α+β ∈ enbld τ (q) then also α ∈ enbldτ (q). This will imply that substeps of
resource enabled steps are also resource enabled which is a condition usually
satisfied in practice.

The net-type defines a class of nets, by specifying the values (markings) that
can be stored in net places (Q), the operations and tests (inscriptions on the
arcs) that a net transition may perform on these values (S), and the enabling
condition and the newly generated values for steps of transitions (∆).

Definition 1 (τ-net). A τ -net system is a tuple N df
= (P, T, F, M0), where P

and T are disjoint sets of places and transitions, respectively; F : (P × T ) → S
is a flow mapping; and M0 : P → Q is an initial marking.

In general, any mapping M : P → Q is a marking. For each place p ∈ P and

step α ∈ 〈T 〉, F (p, α)
df
=

∑
t∈T α(t) · F (p, t).

Definition 2 (step semantics). Given a τ-net system N = (P, T, F, M0), a
step α ∈ 〈T 〉 is (resource) enabled at a marking M if, for every place p ∈ P :

F (p, α) ∈ enbldτ (M(p)) .

We denote this by α ∈ enbldN (M). The firing of such a step produces the mark-
ing M ′ such that, for every p ∈ P :

M ′(p)
df
= ∆(M(p), F (p, α)) .

Step firing policies are means of controlling and constraining the huge num-
ber of execution paths resulting from the concurrent nature of a majority of
computing systems.

Let Xτ be the family of all sets of steps enabled at some reachable marking
M of some τ -net N with the set of transitions T .

Definition 3 (bounded step firing policy). A bounded step firing policy for
τ-nets over 〈T 〉 is given by a control disabled steps mapping cds : 2〈T 〉 → 2〈T 〉\{0}

such that, for all X ⊆ 〈T 〉, the following hold:

1. If X is infinite then cds(X) = ∅.
2. If X is finite then, for every Y ⊆ X:

(a) cds(X) ⊆ X;
(b) cds(Y ) ⊆ cds(X); and
(c) X ∈ Xτ and X \ cds(X) ⊆ Y imply cds(X) ∩ Y ⊆ cds(Y ).

We will now discuss further step firing policies and their effect on net be-
haviour.
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Definition 4 (τ-net with policy). Let cds be a bounded step firing policy for

τ-nets over 〈T 〉. A tuple NP df
= (P, T, F, M0, cds) is a τ -net system with policy if

N = (P, T, F, M0) is a τ-net and the (control) enabled steps of NP at a marking
M are:

EnbldNP (M)
df
= enbldN (M) \ cds(enbldN (M)).

Moreover, let enbldNP(M)
df
= enbldN (M) be the set of resource enabled steps of

NP at marking M . The effect of executions of enabled steps in NP is the same
as in N .

We will denote by CRG(NP) the step transition system with the initial state
M0 formed by firing inductively from M0 all possible control enabled steps of
NP, and call it concurrent reachability graph of NP.

In this paper our concern will be to find a general solution to the synthesis
problem for τ -nets with localities. Since they are special kinds of τ -nets with
policies we will be able to use the theory developed for those nets in [4]. By
solving a synthesis problem we mean finding a procedure for building a net of
a certain class with the desired behaviour (in our case, concurrent reachability
graph). In our case the problem can be defined as follows.

synthesis problem
Let T be a given finite step transition system. Provide necessary and
sufficient conditions for T to be realised by some τ -net system with policy
NP (i.e., T ∼= CRG(NP) where ∼= is transition system isomorphism
preserving the initial states and transition labels).

The solution of the synthesis problem is based on the idea of a region of a
transition system.

Definition 5 (τ-region). A τ -region of T is a pair of mappings

(σ : Q → Q , η : 〈T 〉 → S)

such that η is a morphism of monoids and, for all q ∈ Q and α ∈ enbldT (q):

η(α) ∈ enbldτ (σ(q)) and ∆(σ(q), η(α)) = σ(δ(q, α)) .

For every state q of Q, we denote by enbldT ,τ (q) the set of all steps α such that
η(α) ∈ enbldτ (σ(q)), for all τ-regions (σ, η) of T .

We then have the following general result from [4].

Theorem 1. T can be realised by a τ-net system with a (bounded step firing)
policy cds iff the following two regional axioms are satisfied:

axiom i: state separation
For any pair of states q 6= r of T , there is a τ-region (σ, η) of T such
that σ(q) 6= σ(r).

axiom ii: forward closure with policies
For every state q of T , enbldT (q) = enbldT ,τ (q) \ cds(enbldT ,τ (q)). ⊓⊔
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A solution to the synthesis problem is obtained if one can compute a finite
set WR of τ -regions of T witnessing the satisfaction of all instances of axioms i
and ii [5]. A suitable τ -net system with policy cds , NPWR = (P, T, F, M0, cds),
can be then constructed with P = WR and, for any place p = (σ, η) in P and
every t ∈ T , F (p, t) = η(t) and M0(p) = σ(q0) (recall that q0 is the initial state
of T , and T ⊆ 〈T 〉).

3 τ -nets with localities

We will now introduce a general class of Petri nets with localities, based on a
specific class of control disabled steps mappings.

A locality mapping for the transition set T is any ℓ : T → 2Loc such that
ℓ(t) 6= ∅ for all t ∈ T . (Below we will denote l ∈ ℓ(α), for every step α and a
locality l ∈ Loc, whenever there is a transition t ∈ α such that l ∈ ℓ(t).) Then
the induced control disabled steps mapping is

cdsℓ : 2〈T 〉 → 2〈T 〉\{0}

such that, for all X ⊆ 〈T 〉:

cdsℓ(X)
df
=

{
{α ∈ X | ∃t ∈ α ∀l ∈ ℓ(t) ∃α + β ∈ X : l ∈ ℓ(β)} if X is finite
∅ otherwise .

Proposition 1. cdsℓ is a bounded step firing policy.

Proof. All we need to prove is that if X ∈ Xτ is finite and Y ⊆ X and X \
cdsℓ(X) ⊆ Y and α ∈ cdsℓ(X) ∩ Y , then α ∈ cdsℓ(Y ).

We first observe that max≤(X) ∩ cdsℓ(X) = ∅ and so max≤(X) ⊆ X \
cdsℓ(X) ⊆ Y . Then we observe that since X is finite and α ∈ cdsℓ(X), there is
t ∈ α such that for all l ∈ ℓ(t) there exists α + β ∈ max≤(X) ⊆ Y satisfying
l ∈ ℓ(β). This and the fact that Y is finite (as Y ⊆ X) means that α ∈ cdsℓ(Y ).

⊓⊔

We will call a τ -net system with a policy cdsℓ a τ/ℓ-net system (or τ -net
with localities). Moreover, we will call T a τ/ℓ-transition system if axiom i and
axiom ii are satisfied for T with policy cds = cdsℓ.

Proposition 2. Let M be a marking of a τ/ℓ-net system NP such that the set
enbldNP(M) is finite. A step α ∈ enbldNP(M) belongs to EnbldNP(M) iff for
every t ∈ α there is l ∈ ℓ(t) such that:

l ∈ ℓ(t′) =⇒ α + t′ /∈ enbldNP(M) ,

for every transition t′.

Proof. Follows from max≤(enbldNP (M)) ⊆ EnbldNP(M), and the fact that
γ ≤ δ and δ ∈ enbldNP(M) together imply γ ∈ enbldNP(M). ⊓⊔
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We obtain an immediate solution to the synthesis problem for τ/ℓ-nets.

Theorem 2. A finite step transition system T can be realised by a τ/ℓ-net sys-
tem iff T is a τ/ℓ-transition system.

Proof. Follows from Theorem 1 and Proposition 1. ⊓⊔

The synthesis problem for PT-nets and EN-systems with localities (and with
or without inhibitor and read arcs) have been investigated in [10–12]. For such
nets, the locality mapping ℓ has the property that |ℓ(t)| = 1, for all t ∈ T . Such
an ℓ defines localities which are mutually disjoint or non-overlapping. In this
paper, we allow fully general, i.e., possibly overlapping localities.

As to the effective construction of synthesised net, it has been demonstrated
in [10–12] that this can be easily done for net classes with non-overlapping locali-
ties mentioned above. Similar argument can be applied also in the general setting
of overlapping localities and τ -nets corresponding to PT-nets and EN-systems
with localities. We omit details.

Finally, it is interesting to observe that in the (previously considered) case
of non-overlapping localities, cdsℓ can be defined through a pre-order on steps.
This is no longer the case for the general locality mappings.

4 Towards synthesis with unknown localities

The synthesis result presented in the previous section was obtained assuming
that the locality mapping was given. However, in practice such a mapping might
be unknown (or partially known), and part of the outcome of a successful syn-
thesis procedure would be a suitable (or good) locality mapping. Clearly, what
really matters in a locality mapping is the identification of (possibly overlap-
ping) clusters of transitions, each cluster containing all transitions sharing a
locality. Since there are only finitely many clusters, there are also finitely many
non-equivalent locality mappings, and the synthesis procedure could simply enu-
merate them and then check one-by-one using Theorem 2. This, however, would
be highly impractical as the number of clusters is exponential in the number of
transitions. We will now present some initial ideas and results aimed at reducing
the number of checks.

From now on we will assume that T is finite. We will also assume that we
have checked that, for every state q of T , the set of steps enbldT ,τ (q) is finite;
otherwise T could not be isomorphic to the concurrent reachability graph of any
τ -net with localities (see axiom ii and Theorem 2).

In the rest of this section, for every state q of T and locality mappings ℓ, ℓ′:

– allStepsq is the set of all steps labelling arcs outgoing from q.
– minStepsq is the set of all non-empty steps α ∈ allStepsq for which there is

no non-empty β ∈ allStepsq such that β < α.
– Tq is the set of all net transitions occurring in the steps of allStepsq.

– clustersℓ
q is the set of all sets {t ∈ Tq | l ∈ ℓ(t)}, for every l ∈ ℓ(Tq).

Synthesis of PNs with localities Petri Nets & Concurrency – 167



– ℓ and ℓ′ are node-consistent if clustersℓ
r = clustersℓ′

r , for every state r of T .

A general result concerning locality mappings is that they are equally suitable
for being good locality mapping whenever they induce the same clusters of co-
located transitions in each individual node of the step transition system.

Proposition 3. Let ℓ and ℓ′ be two node-consistent locality mappings. Then T
is τ/ℓ-transition system iff T is τ/ℓ′-transition system.

Proof. Suppose that T is τ/ℓ-transition system. First we notice that axiom i
does not depend on the locality mapping. For axiom ii and ℓ′ it suffices to show
that, for each state q of T :

cdsℓ(enbldT ,τ (q)) = cdsℓ′(enbldT ,τ (q)) . (1)

We observe that the steps from enbldT ,τ (q) have transitions belonging to Tq (as
the maximal steps in enbldT ,τ (q) never belong to cdsℓ(enbldT ,τ (q)) and axiom ii
holds for ℓ), and thus according to the definition of cdsℓ(X) the influence of each
locality l ∈ ℓ(Tq) and l′ ∈ ℓ′(Tq) can be accurately represented by the clusters
{t ∈ Tq | l ∈ ℓ(t)} and {t′ ∈ Tq | l′ ∈ ℓ′(t′)}, respectively. Hence, since ℓ and ℓ′

are node-consistent, (1) holds. ⊓⊔
As a consequence, a good locality mapping can be arbitrarily modified to

yield another good locality mapping as long as the two mappings are node-
consistent (there is no need to re-check the two axioms involved in Theorem 2).
This should allow one to search for an optimal good locality mapping starting
from some initial choice (for example, one might prefer to have as few localities
per transition as possible).

The construction of a good locality mapping could be seen as modular pro-
cess, in the following way. First, separately for each state q, we produce a list of
possible cluster-sets of transitions in Tq induced by hypothetical good locality

mappings. Each such cluster-set clSet
df
= {C1, . . . , Ck} is composed of non-empty

subsets of Tq so that C1 ∪ . . . ∪ Ck = Tq and:

enbldT (q) = enbldT ,τ (q) \ cdsclSet (enbldT ,τ (q))

where

cdsclSet(X)
df
= {α ∈ X | ∃t ∈ α ∀i ≤ k : (t ∈ Ci ⇒ ∃t′ ∈ Ci : α + t′ ∈ X)} .

Similarly, one may produce, for each state q, a characterisation of inadmissible
clustering of transitions. We can then select different cluster-sets (one per each
state of the step transition system) and check whether combining them together
yields a good locality mapping. Such a procedure was used in [12] to construct
‘canonical’ locality mappings for the case of non-overlapping localities (and the
combining of cluster-sets was based on the operation of transitive closure).

The search for a good locality mapping outlined above can be improved if
one looks for solutions in a specific class of nets, or if the locality mapping is
partially known or constrained (for example, that two specific transitions cannot
share a locality).
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4.1 Localised conflicts

Intuitively, localities and conflicts may have opposite effects on step enabled-
ness. Whereas joining two localities may reduce the number of control enabled
steps, adding a conflict between transitions with shared localities may turn a
non-enabled step into a control enabled one. It is therefore interesting what sim-
plifications, if any, one might obtain if conflicts were constrained to exist between
transitions sharing localities.

In the paper [12] we looked at this issue in the context of PTL-nets and ENL-
nets, coming up with the notion of nets with localised conflicts. For the synthesis
problem for such nets, it turned out that for each state q there was at most
one cluster-set to be considered, providing particularly pleasant simplification of
the original problem. In the rest of this section, we provide some initial results
towards extending this to the case of nets with overlapping localities. Below, for

a step α and locality l we denote α|l df
= α|{t∈T |l∈ℓ(t)} assuming that ℓ is given.

Moreover, Enbldmin
NP (M)

df
= min≤{α ∈ EnbldNP(M) | α 6= ∅}.

To start with, the set of saturated localities of a step α which is resource
enabled at some marking M of a τ/ℓ-net NP is defined as:

satlocalitiesM (α)
df
= {l ∈ ℓ(α) | ¬ ∃ α + β ∈ enbldNP(M) : l ∈ ℓ(β)} .

Intuitively, saturated localities are those which have been ‘active’ during the
execution of a step α. It is immediate to see that if α ∈ EnbldNP(M) then, for
all t ∈ α:

satlocalitiesM (α) ∩ ℓ(t) 6= ∅ .

Moreover, the above intersection may contain more than one active localities
which are ‘responsible’ for the execution of transition t. At the level of potential
clusters of a step transition system (i.e., groups of transitions which share a
locality), we can define saturated clusters in a state q as:

satclustersq(α)
df
= {C ⊆ Tq | α|C 6= ∅ ∧ ∀ α + β ∈ allStepsq : β|C = ∅} .

Note that if T is the concurrent reachability graph of a τ/ℓ-net NP , and M is
a reachable marking of NP , then:

{ {t ∈ TM | l ∈ ℓ(t)} | l ∈ satlocalitiesM (α) } ⊆ satclustersM (α) .

The following definition is our first attempt to generalise the notion of nets
with localised conflicts investigated in [12].

Definition 6 (localised conflicts). A τ/ℓ-net system NP has partially lo-
calised conflicts if for all reachable markings M and non-empty steps α belonging
to enbldNP(M),

t ∈ enbldNP(M) and α + t /∈ enbldNP(M)

implies satlocalitiesM (α) 6= ∅ and

∀ l ∈ ℓ(t) ∩ satlocalitiesM (α) : α|l + t /∈ enbldNP(M) .
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Intuitively, if there is a (global) conflict between a transition and a step, then
this conflict can also be witnessed locally. We will now be concerned with the
synthesis problem aimed at constructing τ/ℓ-net systems with partially localised
conflicts.

Proposition 4. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking.
If α ∈ EnbldNP(M) then α|l ∈ EnbldNP(M), for all l ∈ satlocalitiesM (α).

Proof. Suppose that l̃ ∈ satlocalitiesM (α) and α|l̃ /∈ EnbldNP(M).
Since α|l̃ ≤ α ∈ EnbldNP(M), we have α|l̃ ∈ enbldNP (M). Hence there

is t̃ ∈ α|l̃ such that, for all l ∈ ℓ(t̃), there is α|l̃ + t′ ∈ enbldNP(M) with

l ∈ ℓ(t′). In particular, since l̃ ∈ ℓ(t̃), there is α|l̃ + t̂ ∈ enbldNP(M) such that

l̃ ∈ ℓ(t̂). Hence t̂ ∈ enbldNP(M), and so we can use Definition 6 to infer that

α + t̂ ∈ enbldNP(M), producing a contradiction with l̃ ∈ satlocalitiesM (α). ⊓⊔

Thus in terms of selecting clusters in the construction outlined in the previous
section, if C has been selected at a state q then, for every α such that C ∈
satclustersq(α), it must be the case that α|C ∈ allStepsq.

Proposition 5. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking.
If α ∈ Enbldmin

NP (M) then α = α|l, for all l ∈ satlocalitiesM (α).

Proof. By Proposition 4, we have α|l ∈ EnbldNP (M), and by definition of α|l,
we have that α|l ≤ α. Moreover, α|l ≤ α and α|l 6= ∅ (as l ∈ ℓ(α)). Hence, as α
is a minimal non-empty step in EnbldNP(M), we have α = α|l. ⊓⊔

Thus in terms of selecting clusters in the construction outlined in the previous
section, if C has been selected at a state q then, for every α ∈ minStepsq such
that C ∈ satclustersq(α), it must be the case that α|C = α.

We will now present a series of results which can all be useful in the selection
of clusters in the construction outlined in the previous section.

Proposition 6. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking. Then, for all α ∈ Enbldmin

NP (M):

satlocalitiesM (α) ⊆
⋂

{ℓ(t) | t ∈ α} .

Proof. Let l ∈ satlocalitiesM (α). By Proposition 5, we have α = α|l. Hence
l ∈ ℓ(t), for all t ∈ α. ⊓⊔

Corollary 1. Let NP be a τ/ℓ-net system with partially localised conflicts and
M be its reachable marking. Then, for all α ∈ Enbldmin

NP (M):

⋂
{ℓ(t) | t ∈ α} 6= ∅ .
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Proof. By α ∈ EnbldNP(M), satlocalitiesM (α)∩ℓ(t) 6= ∅, for every t ∈ α. Hence
satlocalitiesM (α) 6= ∅ and the result follows from Proposition 6. ⊓⊔

We will now need the following auxiliary fact.

Proposition 7. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking. If α, β ∈ EnbldNP(M) and α ≤ β then
satlocalitiesM (α) ⊆ satlocalitiesM (β).

Proof. Suppose l ∈ satlocalitiesM (α) \ satlocalitiesM (β).
From l ∈ satlocalitiesM (α) we have that l ∈ ℓ(α) and:

∀ t : l ∈ ℓ(t) =⇒ α + t /∈ enbldNP(M) . (2)

From l /∈ satlocalitiesM (β) we have that either l /∈ ℓ(β), or l ∈ ℓ(β) and there is
t̃ such that:

l ∈ ℓ(t̃) ∧ β + t̃ ∈ enbldNP(M) . (3)

Only the latter is possible, because l ∈ ℓ(α) and α ≤ β. From (2) and (3) we
have that α + t̃ /∈ enbldNP(M) and β + t̃ ∈ enbldNP(M), which produces a
contradiction with α + t̃ ≤ β + t̃. ⊓⊔

Proposition 8. Let NP be a τ/ℓ-net system with partially localised conflicts

and M be its reachable marking. Moreover, let α ∈ EnbldNP(M) and l̃ ∈
satlocalitiesM (α) be such that α|l 6< α|l̃, for all l ∈ satlocalitiesM (α) \ {l̃}.
Then α|l̃ ∈ Enbldmin

NP (M).

Proof. From Proposition 4 we have that α|l̃ ∈ EnbldNP(M). Suppose there is a
non-empty step β ∈ EnbldNP(M) such that β < α|l̃. From Proposition 7 and
α|l̃ ≤ α, it follows that

satlocalitiesM (β) ⊆ satlocalitiesM (α|l̃) ⊆ satlocalitiesM (α) .

As β 6= ∅ and β ∈ EnbldNP(M) we obtain

satlocalitiesM (β) 6= ∅ .

We have that l̃ /∈ satlocalitiesM (β) as β < α|l̃. Let l̂ ∈ satlocalitiesM (β). Since

satlocalitiesM (β) ⊆ satlocalitiesM (α), we have l̂ ∈ satlocalitiesM (α). Hence, by
Proposition 4, α|l̂ ∈ EnbldNP(M). By the assumption we made, α|l̂ 6< α|l̃ as

l̂ 6= l̃. So, there is t̂ such that α|l̂(t̂) ≥ α|l̃(t̂) > β(t̂), producing a contradiction

with l̂ ∈ satlocalitiesM (β). ⊓⊔

Let NP be a τ/ℓ-net system with partially localised conflicts and M be its
reachable marking. Then:

maxindM
t

df
= max{α(t) | α ∈ EnbldNP (M)} ,

for every net transition t which is resource enabled at M .
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Proposition 9. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking. Moreover, let t and u be distinct transitions
which are resource enabled at M and share a locality l̃. Then exactly one of the
following holds:

– There is no step α ∈ EnbldNP(M) such that l̃ ∈ satlocalitiesM (α) and

maxindM
t + maxindM

u = α(t) + α(u) (4)

and, for all l ∈ satlocalitiesM (α) \ {l̃}, we have α|l 6< α|l̃.
– There is α ∈ Enbldmin

NP (M) such that t, u ∈ α.

Proof. We have l̃ ∈ ℓ(t) ∩ ℓ(u). Suppose that there is α ∈ EnbldNP (M) such

that (4) holds and l̃ ∈ satlocalitiesM (α) and for all l ∈ satlocalitiesM (α) \ {l̃},
α|l 6< α|l̃. Since t and u are resource enabled at M and (4) holds, we have

α(t) ≥ 1 and α(u) ≥ 1. On the other hand, l̃ ∈ ℓ(t) ∩ ℓ(u). Then, t, u ∈ α|l̃. We

can see that all the conditions of Proposition 8 are satisfied for α and l̃, and so
we obtain that α|l̃ ∈ Enbldmin

NP (M). ⊓⊔

Unique and minimal step covers It is not possible to reverse the inclusion
in Proposition 6, i.e., there can be α ∈ Enbldmin

NP (M) such that:

⋂
{ℓ(t) | t ∈ α} ⊆ satlocalitiesM (α)

does no hold. As an example, we can take a PT-net with two concurrent tran-
sitions, a and b, each having one pre-place marked with a single token and no
post-places, satisfying ℓ(a) = {l, l′} and ℓ(b) = {l}. Then the step α = {a}
belongs to Enbldmin

NP (M0) yet:

⋂
{ℓ(t) | t ∈ α} = {l, l′} 6⊆ {l′} = satlocalitiesM0(α) .

Looking at the last example, one can make a comment about the advantages
of allowing a single transition to have more than one locality. In such a situation,
different localities can define different modes of engagement/co-operation. For
transition a, the locality l could be interpreted as defining a ‘co-operative mode’,
while l′ a ‘self-sufficient’ mode. In this way, some localities may force big sets of
transitions to work in synchrony, while other localities may allow smaller sets to
be synchronised, or even single transitions to be executed alone. Intuitively, we
can model different ‘circles of co-operations’ for net transitions.

If we take again the last two transitions, and this time consider the step {a, b},
then one may observe that there is certain ambiguity as to which localities have
been active during its execution, as both L = {l} and L′ = {l, l′} could be taken.
We will now investigate the role of such sets of localities.

Definition 7 (step covers). A (locality) cover of a step α is a set of localities L
such that:

supp(α) =
⋃

{supp(α|l) | l ∈ L} ,
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and it is minimal if no proper subset of L is a locality cover of α. Moreover, a
minimal locality cover L is unique if there is no other minimal locality cover L′

for α such that {α|l | l ∈ L} = {α|l′ | l′ ∈ L′}.

Example 1. Let ℓ(a) = {l, l′} and ℓ(b) = {l}. Then L = {l, l′} is not a minimal
cover for α = {a} as L′ = {l′} is also a cover.

Example 2. Let ℓ(a) = ℓ(b) = {l, l′}. Then there are two minimal covers for
α = {a, b}, L = {l} and L′ = {l′}, which are not unique.

Example 3. Let ℓ(a) = {l, l′}, ℓ(b) = {l} and ℓ(c) = {l′}. Then L = {l, l′} is a
unique cover for α = {a, b, c}.

Example 4. Let ℓ(a) = {l1, l3}, ℓ(b) = {l1, l4}, ℓ(c) = {l2, l3} and ℓ(d) = {l2, l4}.
Then α = {a, b, c, d} has two unique minimal covers: L = {l1, l2} and L′ =
{l3, l4}.

Equipped with the concept of a unique minimal cover, we can reverse the
inclusion in Proposition 6.

Proposition 10. Let NP be a τ/ℓ-net system with partially localised conflicts
and M be its reachable marking. If α ∈ Enbldmin

NP (M) and all its minimal covers
are unique, then:

satlocalitiesM (α) =
⋂

{ℓ(t) | t ∈ α} .

Proof. We need to show the (⊇) inclusion as the opposite one follows from

Proposition 6. Suppose that l̃ ∈ ⋂{ℓ(t) | t ∈ α} \ satlocalitiesM (α).

From l̃ ∈ ⋂{ℓ(t) | t ∈ α} we have α = α|l̃. Since α ∈ Enbldmin
NP (M), we have

satlocalitiesM (α) ∩ ℓ(t) 6= ∅, for all t ∈ α. Suppose l̂ ∈ satlocalitiesM (α) ∩ ℓ(t̃),

for some t̃ ∈ α. Notice that l̂ 6= l̃ as l̃ /∈ satlocalitiesM (α). From Proposition 4,
α|l̂ ∈ EnbldNP(M).

We have α|l̂ ≤ α = α|l̃. We cannot have α|l̂ = α|l̃, because then both {l̃}
and {l̂} would be two different minimal covers for α, and so neither of them be
unique. Hence α|l̂ < α, producing a contradiction with the minimality of α. ⊓⊔

Thus in terms of selecting clusters in the construction outlined earlier on, if
C has been selected at a state q then, for every α ∈ minStepsq, we must have
C ∈ satclustersq(α) iff α|C = α.

5 Concluding remarks

In this paper, we only initiated the investigation of intricate relationships be-
tween localities, conflicts and step covers. In the future research we plan to
develop stronger results on this topic, aiming at an efficient synthesis procedure
of τ -nets with localities with unknown locality mappings.
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Abstract. The problem of synthesis of Petri nets from transition sys-
tems or languages has many applications, ranging from CAD for VLSI
to medical applications, among others. The most common algorithms to
accomplish this task are based on the theory of regions. However, one of
the problems of such algorithms is its space requirements: for real-life or
industrial instances, some of the region-based algorithms cannot handle
in memory the internal representation of the input or the exploration
lattice required. In this paper, the incremental derivation of a basis of
regions and the later partitioned basis exploration is presented, which
allows the splitting of large inputs.

1 Introduction

The introduction of the theory of regions [1] in the early nineties enabled a
new area of research that strives for transforming language or state-based repre-
sentations into event-based ones. This transformation, known as synthesis, was
initially devoted to derive a Petri net whose reachability graph was bisimilar or
isomorphic to the input transition system. A variant of this problem, known as
mining, has weaker requirements: the language of the derived Petri net must be
a superset (maybe proper) of the language of the input transition system [2].
The theory of this paper provides algorithms for mining.

Many research has been carried out since the introduction of regions, specially
of theoretical nature, which has brought a better understanding of the theory [3–
6], and has provided meaningful extensions to make it more general [7–10].

As a consequence of the aforementioned theoretical work, tools based on
the theory of regions started to be available by the end of the nineties [11, 12]
and still new ones are developed nowadays [9, 10]. These tools are the outcome
of bridging the gap between the theory and practice, and many of them are
used extensively in the academic domain, whereas few are used in industry. The
reasons for the limited success of these tools in industry might be:

1. The algorithms involved are complex, i.e. in general polynomial with the size
of the input [3], that might be prohibitive for large inputs, and the use of
efficient data structures like BDDs or heuristics only alleviates the problem.

2. No high-level techniques are provided to cope with the inherent complexity
of the problem.
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Fig. 1. Incremental Process Mining.

In this work we provide the theoretical basis for deriving high-level strate-
gies that may allow to handle large specifications. More concretely, as space
requirements are typically the bottleneck for some of the tools listed above, in
this paper we present an incremental technique that allows splitting the input
into several smaller parts. Moreover, we show how the theory of regions can be
extended algorithmically to combine the regions of each part in order to derive
the regions of the whole input.

The theory presented will be oriented for the problem of mining: given
a set of objects describing behaviors (like a Petri net, a transition systems
or an event log) O1, O2, . . . , On, we want to obtain a Petri net N such that
L(N) ⊇

⋃n
i=1 L(Oi). The traditional way to solve this problem is to generate

a transition system Ai for each Oi, join all these Ai to create a single transi-
tion system, and then apply a synthesis technique to derive a Petri net from a
transition system [12, 13].

In this paper we explore a different approach. Instead of working with a
monolithic transition system, we use the fact that a transition system can be
represented by a basis of regions, such that any other region is a linear combina-
tion of the regions in the basis (a recent publication shows an efficient technique
to accomplish this task [14]). Then, bases can be combined to obtain a region
basis for the whole system, from which we can derive the Petri net N .

The general picture of the approach of this paper is outlined on Fig. 1(a).
Some arcs are labeled with an indication of the section or the reference where the
conversion/operation is explained. Basically the first step is to convert inputs
that are not transition systems into a transition system, and then compute a
region basis from which a PN can be generated. Another possible application
is also shown in Fig. 1(b), where a large TS is split into smaller subsystems of
manageable size, with the only restriction that all the subsystems must include
the initial state and be connected.
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1.1 Related work

In [16] an incremental approach was suggested based on the observation that
any region of the union of two transition systems can be expressed as the union
of regions of those systems. As in the approach presented in this paper, the
approach in [16] trades space for time, since it must first compute all the re-
gions and then obtain the minimal ones, a slower process than finding directly
the minimal regions if the whole transition system fits into memory. The main
drawback of this method is that the complete set of regions of each component
transition system must be stored (either in memory or disk) in order to compute
the set of regions of the union. In this work we propose a faster methodology
based on the fact that the complete set of regions can be succintly represented
by a basis of regions.

1.2 Organization

We start by giving the necessary background in Sect. 2. The process of combining
a set of bases to produce a unique basis for the whole system is explained in
Sect. 3. A description of the generation of a PN from a region basis is given in
Sect. 4 and, finally, Sect. 5 concludes this paper.

2 Background

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple 〈S,Σ, T, s0〉,
where S is a set of states, Σ is an alphabet of actions, T ⊆ S ×Σ × S is a set
of (labelled) transitions, and s0 ∈ S is the initial state.

We use s
e−→s′ as a shortcut for (s, e, s′) ∈ T , and we denote its transitive

closure as
∗−→. A state s′ is said to be reachable from state s if s

∗−→s′. We

extend the notation to transition sequences, i.e., s1
σ−→sn+1 if σ = e1 . . . en and

(si, ei, si+1) ∈ T . We denote #(σ, e) the number of times that event e occurs in
σ. Let A = 〈S,Σ, T, s0〉 be a TS. We consider connected TSs that satisfy the
following axioms: i) S and Σ are finite sets, ii) every event has an occurrence
and iii) every state is reachable from the initial state. The language of a TS A,
L(A), is the set of transition sequences feasible from the initial state.

For two TSs A1 and A2, when L(A1) ⊆ L(A2), we will say that A2 is an
over-approximation of A1.

Definition 2 (Union of TSs). Given two TSs A1 = 〈S1, Σ1, T1, s0〉 and A1 =
〈S2, Σ2, T2, s0〉, the union of A1 and A2 is the TS A1 ∪ A2 = 〈S1 ∪ S2, Σ1 ∪
Σ2, T1 ∪ T2, s0〉.

Clearly, the TS A1 ∪A2 is an over-approximation of the TSs A1 and A2, i.e.
L(A1) ∪ L(A2) ⊆ L(A1 ∪A2).
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Definition 3 (Petri net [17]). A Petri net (PN) is a tuple (P, T,W,M0) where
the sets P and T represent disjoint finite sets of places and transitions, respec-
tively, and W : (P × T ) ∪ (T × P )→ N is the weighted flow relation. The initial
marking M0 ∈ NP defines the initial state of the system.

A transition t ∈ T is enabled in a marking M if ∀p ∈ P : M(p) ≥W (p, t).
Firing an enabled transition t in a marking M leads to the marking M ′ defined by

M ′(p) = M(p)−W (p, t) +W (t, p), for p ∈ P , and is denoted by M
t→M ′. The

set of all markings reachable from the initial markingM0 is called its Reachability
Set. The Reachability Graph of N , denoted RG(N), is a transition system in
which the set of states is the Reachability Set, the events are the transitions of

the net and a transition (M1, t,M2) exists if and only if M1
t→M2. We use L(N)

as a shortcut for L(RG(N)).

2.2 Generalized Regions

The theory of regions [1, 5] provides a way to derive a Petri net from a transition
system. Intuitively, a region corresponds to a place in the derived Petri net. In
the initial definition, a region was defined as a subset of states of the transition
system satisfying a homogeneous relation with respect to the set of events. Later
extensions [7, 18, 10] generalize this definition to multisets, which is the notion
used in this paper.

Definition 4 (Multiset, k-bounded Multiset, Subset). Given a set S, a
multiset r of S is a mapping r : S → Z. The number r(s) is called the multiplicity
of s in r. Multiset r is k-bounded if all its multiplicities are less or equal than k.
Multiset r1 is a subset of r2 (r1 ⊆ r2) if ∀s ∈ S : r1(s) ≤ r2(s).

We define the following operations on multisets:

Definition 5 (Multiset operations).

Maximum power pow(r) = maxs∈S r(s)
Minimum power minp(r) = mins∈S r(s)
Scalar product (k · r)(s) = k · r(s), for k ∈ Z
Scalar sum (r + k)(s) = r(s) + k, for k ∈ Z
Union (r1 ∪ r2)(s) = max(r1(s), r2(s))
Sum (r1 + r2)(s) = r1(s) + r2(s)
Subtraction (r1 − r2)(s) = r1(s)− r2(s)

The operations described above have algebraic properties, e.g., r+ r = 2 · r and
r1 − k · r2 = r1 + (−k) · r2.

Definition 6 (Gradient). Let 〈S,Σ, T, s0〉 be a TS. Given a multiset r and a

transition s
e−→s′ ∈ T , its gradient is defined as δr(s

e−→s′) = r(s′) − r(s). If all
the transitions of an event e ∈ Σ have the same gradient, we say that the event
e has constant gradient, whose value is denoted as δr(e).

178 Petri Nets & Concurrency Solé and Carmona
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6
s0

4 s1

2 s2

0 s3

3
s4

1 s5 0 s6

a b

a

a

b

a b

(a)

a

2

b

3

(b)

Fig. 2. (a) Region in a TS: r(s0) = 6, r(s1) = 4, . . . , r(s6) = 0, (b) corresponding place
in the Petri net.

Definition 7 (Region). A region r is a multiset defined in a TS, in which all
the events have constant gradient.

Example 1. Fig. 2(a) shows a TS. The numbers within the states correspond to
the multiplicity of the multiset r shown. Multiset r is a region because both
events a and b have constant gradient, i.e. δr(a) = −2 and δr(b) = −3. There is
a direct correspondence between regions and places of a PN. The gradient of the
region describes the flow relation of the corresponding place, and the multiplicity
of the initial state indicates the number of initial tokens [10]. Fig. 2(b) shows
the place corresponding to the region shown in Fig. 2(a).

We say that region r is normalized if minp(r) = 0. Similarly, it is non-
negative if minp(r) ≥ 0. Any region r can become normalized by subtracting
minp(r) from the multiplicity of all the states.

Definition 8 (Normalization). We denote by ↓r the normalization of a region
r, so that ↓r = r −minp(r).

It is useful to define a normalized version of the sum operation between
regions, since it is closed in the class of normalized regions.

Definition 9 (Normalized sum). Let r1 and r2 be normalized regions, we
denote by r1 ⊕ r2 their normalized sum, so that r1 ⊕ r2 =↓(r1 + r2).

Definition 10 (Gradient vector). Let r be a region of a TS whose set of
events is Σ = {e1, e2, . . . , en}. The gradient vector of r, denoted as ∆(r), is the
vector of the event gradients, i.e. ∆(r) = (δr(e1), δr(e2), . . . , δr(en)).

Proposition 1. Gradient vectors have the following properties:

∆(r1 + r2) = ∆(r1) +∆(r2) ∆(k · r) = k ·∆(r)

∆(r + k) = ∆(r) ∆(r1 − r2) = ∆(r1)−∆(r2)

∆(r1 ⊕ r2) = ∆(r1) +∆(r2)

Incremental process mining Petri Nets & Concurrency – 179



6

s0

s1

s2 s3
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=

s0

s1

s2

a

b

TS A1

∪
s0

s2 s3

c

a

d

TS A2

Fig. 3. TS A is split into two subsystems A1 and A2.

Regions can be partitioned into classes using their gradient vectors.

Definition 11 (Canonical region). Two regions r1 and r2 are said to be
equivalent if their gradient is the same, i.e. r1 ≡ r2 ⇔ ∆(r1) = ∆(r2). Given a
region r, the equivalence class of r, is defined as [r] = {ri| ri ≡ r}. A canonical
region is the normalized region of an equivalence class, i.e. ↓r.

Example of canonical regions are provided in Fig. 4, where two TSs are shown
in which some regions have been shadowed. For instance, the canonical region
r0 = {s1, s2} has gradient vector ∆(r0) = (1, 0). A PN built from the set of
minimal canonical regions has the same language as a PN built using all the
regions [5], thus it yields the smallest overapproximation with respect to the
language of the TS [10].

Definition 12 (Subregion, Empty region, Minimal canonical region).
r1 is a subregion of r2, denoted as r1 v r2, if, for any state s, ↓r1(s) ≤ ↓r2(s).
We denote by ∅ the region in which all states have zero multiplicity. A minimal
canonical region r satisfies that for any other region r′, if r′ v r then r′ ≡ ∅.

3 Combining region bases

In this section we detail how region bases of different TSs can be joined, yielding
a region basis of their union. We will illustrate the theory with the running
example shown in Fig. 3. In this case, we assume A is a very large TS that
cannot be easily handled, hence it is split into two smaller subsystems, namely
A1 and A2, so that A = A1 ∪A2.

3.1 Basis of regions

Definition 13 (Region basis). Given a TS, a region basis B = {r1, r2, . . . , rn}
is a minimal subset of the canonical regions of TS such that any region r can be
expressed as a linear combination of B ( i.e. r =

∑n
i=1 ci·ri, with ci ∈ Q, ri ∈ B).
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r0 region
r1 region q0 region q1 region

s0

s1

s2

a

b

s0

s1

s2

a

b

Event ∆(r0) ∆(r1)

a 1 0
b 0 1

s0

s2 s3

c

a

d

s0

s2 s3

c

a

d
Event ∆(q0) ∆(q1)

a -1 -1
c 1 0
d 0 1

Fig. 4. Region bases for A1 and A2.

The set of canonical regions of a TS, together with the normalized sum op-
eration, forms a free Abelian group [18]. Consequently, there exists a basis (i.e.
subset of the group) such that every element in the group can be rewritten as a
unique linear combination of the basis elements.

Region bases are interesting because, as the following theorem states, their
size is usually small.

Theorem 1 ([18]). Let 〈S,Σ, T, s0〉 be a TS. The size of the region basis is less
or equal to min(|Σ|, |S| − 1).

3.2 Region compatibility

Given two systems described by their region basis, we want to obtain the region
basis of their union TS. The work more closely related is [16], in which it is
described how the set of regions in the joined system can be obtained from the
regions of the component systems. This is achieved by introducing the concept
of compatible (standard) regions. In this section we first review and extend this
concept of compatibility to generalized regions.

Definition 14 (Compatible TSs). Two TSs A1 and A2 are compatible if they
have the same initial state.

Def. 14 is more general than the one in [16], where the number of shared
states is restricted to one (the initial state). For instance, systems A1 and A2 of
Fig. 3 are compatible according to this definition, but not using the definition
in [16], since they share states s0 and s2.

Definition 15 (Compatible regions, offset). Two regions r1 and r2 from
two compatible TSs A1 = 〈S1, Σ1, T1, s0〉 and A2 = 〈S2, Σ2, T2, s0〉 are said to be
compatible if:

– ∀e ∈ Σ1∩Σ2, δr1(e) = δr2(e), i.e. they have the same gradient for all common
events, and,
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– ∃k ∈ Z : ∀s ∈ S1 ∩ S2, r2(s) − r1(s) = k, i.e. the difference in multiplicity
of each shared state is equal to a constant, that we call the offset between r1
and r2, denoted as off(r1, r2).

Two compatible regions are said to be directly compatible if off(r1, r2) = 0, a
fact that we denote as r1 ↔ r2. Conversely, if off(r1, r2) 6= 0, we say that the
regions are indirectly compatible and we use the following notation r1 ! r2.

An immediate consequence of Def. 15 is that, if there is only a single shared
state, then any two regions with the same gradient for all common events are
compatible. This is, for instance, the case when TSs represent execution trees
and only the initial state is shared among them.

Two compatible regions can be made directly compatible by adding the offset
to one of them.

Definition 16 (Directly compatible region). Given two compatible regions
r1 and r2 with off(r1, r2) > 0, the directly compatible region of r1 with respect to
r2 is r1↑r2= r1 + off(r1, r2).

Definition 17 (Union of compatible regions). Given two compatible regions
r1 and r2, defined over sets of states S1 and S2, respectively, with off(r1, r2) > 0,
their union, denoted r1 t r2, is

(r1 t r2)(s) =

{
(r1↑r2)(s) if s ∈ S1

r2(s) otherwise

Proposition 2 (Union of compatible regions is a region of union sys-
tem). Given two compatible regions r1 and r2 of two compatible TSs A1 and
A2, r1 t r2 is a region of A1 ∪ A2. For each shared event, its gradient is equal
to the gradient in r1 or r2, which are equal. For non-shared events of A1 (A2),
their gradient is the gradient in A1 (A2).

Proof. Assume off(r1, r2) ≥ 0. Region r = r1 t r2, where r1↑r2= r1 + off(r1, r2).
The latter entails that, in a shared state s, the multiplicity is the same for
r1↑r2 and r2, which is the multiplicity assigned to r. For non-shared states, on
the other hand, the multiplicity assigned in r is the multiplicity of the region
whose TS contains the state. Thus any arc (either going from a shared to non-
shared state or any other combination) has a constant gradient, equal to the
gradient of that event in the corresponding region. Result transfers to r1 because
∆(r1) = ∆(r1↑r2). ut

Example 2. In Fig. 5 we show one region of each subsystem of our running
example. They are compatible, since the gradient of the single shared event a is
the same in both regions. More specifically, they are indirectly compatible, since
their offset is different than 0.
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r q r q↑r

s0

s1

s2

a

b

s0

s2 s3

c

a

d

Indirectly compatible
regions (r ! q)

s0

s1

s2

a

b

s0

s2 s3

c

a

d

Directly compatible
regions (r ↔ q↑r)

Fig. 5. Region r of A1 and q of A2, are indirectly compatible.

Property 1. Given two compatible non-negative regions r1 and r2. If they are
directly compatible then r1 t r2 is a normalized region, if and only if, one of
them is normalized. If they are not directly compatible, but both of them are
normalized, then again r1 t r2 is a normalized region.

Proof. If one of them is normalized and they are directly compatible no modifi-
cation of multiplicities is performed, so the state with 0 multiplicity will remain
untouched and since regions are non-negative, then minp(r1 t r2) = 0. Con-
versely, if r1 t r2 is a normalized region and r1 ↔ r2, then all multiplicities of
either r1 or r2 are greater or equal to 0, and since there is at least one 0 multi-
plicity, at least one of them must be normalized. If both are normalized but are
not directly compatible, only one of them modifies its multiplicities and we end
up in the same situation. ut

3.3 Incremental algorithm for obtaining a basis

Given two TSs, A1 and A2. Let {r1, . . . , rn} be the region basis of A1 and
{q1, . . . , qm} the basis of A2. The set of all regions of the union system A1 ∪A2

whose language satisfies L(A1 ∪A2) ⊇ L(A1) ∪ L(A2) is obtained by finding all
non-trivial solutions for xi variables that satisfy:

∀ei ∈ Σ1 ∩Σ2 :
∑

1≤j≤n

δrj (ei) · xj =
∑

1≤k≤m

δqk(ei) · xn+k

i.e. for all common events their gradient must be the same on both systems.
This system of equations can be rewritten in matrix form as M ·x = 0, where

x is the column vector of variables xi and M is the following matrix:

M =


δr1(e1) . . . δrn(e1) −δq1(e1) . . . −δqm(e1)
δr1(e2) . . . δrn(e2) −δq1(e2) . . . −δqm(e2)

...
...

δr1(ec) . . . δrn(ec) −δq1(ec) . . . −δqm(ec)
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where c is the number of common events in the system, i.e. c = |Σ1 ∩Σ2|. We
call this matrix the gradient compatibility matrix between A1 and A2.

Compatibility of regions demands not only the gradients of common events to
be the same, but also that the offset is the same for all shared states. To enforce
such condition, assume that we shift all the regions in the bases {r1, . . . , rn} and
{q1, . . . , qm} so that for all ri and qj we have that ri(s0) = qj(s0) = 0. Now any
region obtained by combining the regions in the bases will have a 0 multiplicity
in the initial state. Thus, if the offset is the same in all shared states, their
multiplicity must coincide in all remaining shared states.

If there is a path between s0 and shared state s in which the same events
(and the same number of times but no matter in which order) are fired in both
TSs A1 and A2, then the condition is automatically satisfied. Only in the case
where all paths are different, we say that shared state s is in conflict, and then
we must explicitly enforce the equality of the multiplicity of s in both systems.

This condition can be expressed in matrix form using a row for each shared
state in conflict (different than s0 since this state is never in conflict). For a shared
state s in conflict, its corresponding row will be of the form (r1(s) . . . rn(s) −
q1(s) . . . qm(s)), where all regions ri and qj have been shifted, as said before, so
that ri(s0) = qj(s0) = 0. Let us name as C the matrix containing such rows, we
will call it the shared state conflict matrix between A1 and A2. Now since the
multiplicity of all these states must be the same, their subtraction must be 0.
Thus, C · x = 0.

Theorem 2. Let A1 and A2 be two compatible TSs with region bases {r1, . . . , rn}
and {q1, . . . , qm} respectively. Let M be their gradient compatibility matrix, C be
the shared state conflict matrix, and x the column vector of variables x1 to xn+m.
Consider an assignment to the variables in x such that

(
M
C

)
· x = 0 and some

xi 6= 0. This assignment identifies a region rtq =
∑

1≤i≤n rixit
∑

1≤j≤m qjxn+j
in A1 ∪A2.

Proof. A non-trivial solution x defines two compatible regions, namely r =∑
1≤i≤n rixi and q =

∑
1≤j≤m qjxn+j , in A1 and A2 respectively. These two

regions are compatible according to Definition 15 if M ·x = 0, because for com-
mon events the gradient is the same and the offset is the same in all shared
states if C · x = 0. By Proposition 2, r t q is a region of A1 ∪A2. ut

So the problem reduces to finding the solutions to a homogeneous linear
system. Note that the system does not require to have solutions in the integer
domain. In fact all the solutions are in Q, since all the gradients are integers.
Homogeneous linear systems have one trivial solution (i.e. 0) and infinite non-
trivial solutions. Let yi be all the non-redundant solution vectors, then any
possible solution of the system can be obtained by linear combination of these
solution vectors, since adding or subtracting 0 from 0 does not change its value.
These yi are a basis of the nullspace of

(
M
C

)
, and any solution x can be written

as a unique linear combination x =
∑
i λiyi, with λi ∈ Q.

There are several well-known methods to obtain a basis for the nullspace [19],
one of the easiest is to put the matrix in reduced row echelon form, determine the
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Fig. 6. Region basis {b0, b1} (and their coregions {−b0,−b1}) for system A1 ∪ A2.
Regions are partitioned so that b0 = b10 ∪ b20, where bi0 is the part of b0 in Ai.

free variables, and then, for each free variable xi, derive a vector of the basis by
assigning 1 to xi and 0 to the rest of free variables. The yi columns correspond
to the combination of regions of both system that have the same gradient, and
the resulting combined region is a region basis for the union TS.

Example 3. We will compute the region basis of the union of TSs A1 and A2

shown in Fig. 3. Two possible region basis for these systems are {r0, r1} and
{q0, q1}, show in Fig. 4. The matrix M in this case is

M =
(
1 0 1 1

)
where columns (from left to right) correspond to regions r0, r1, q0, q1 and there
is only a single row that corresponds to the only shared event between A1 and
A2, namely event a.

The set of shared states is {s0, s2}, thus the shared state conflict matrix C
has only one row because only state s2 is reachable from s0 by firing a differ-
ent multiset of events. Consequently C =

(
r0(s2) r1(s2) −q0(s2) −q1(s2)

)
. With

matrices M and C we can now build(
M

C

)
=

(
1 0 1 1
1 1 −1 0

)
reduced row−−−−−−−−→
echelon form

(
1 0 1 1
0 1 −2 −1

)
which is an indeterminate system with 2 degrees of freedom. We can write x1 =
2x2 + x3 and x0 = −x2 − x3, so by changing the values of variables x2 and x3
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Comb. (1,−1):
b10 + (−b11)

Comb. (−1, 1):
−b10 + b11

(0,0)
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(1,1) (1,-1)
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(-1,1) (-1,-1)

(0,1) (0,-1)
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s1

s2
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s0

s1

s2

a

b

Fig. 7. Exploration of the region space. Each node represents a combination of the
basis {b0, b1} that will be explored. The combinations shaded in blue are the ones for
which A1 yields a non-normalized region (shown on right), thus only these combinations
would be checked in A2.

we can generate all the possible solutions. Given these parameters the region
solution will be ((−x2 − x3) · r0 + (2x2 + x3) · r1) t (x2 · q0 + x3 · q1). Using the
parameter values (1, 0), and (0, 1) for vector (x2, x3) we do obtain the following
regions in the joined system: b0 = (−r0 + 2r1)t q0 and b1 = (−r0 + r1)t q1. The
set {b0, b1} forms a region basis for the A1 ∪A2 system (see Fig. 6).

4 Generating a PN from a basis

In [14] an algorithm was presented that allows finding minimal regions by careful
exploration of the region space defined by the region basis. The fundamental idea
is that the regions in the basis are initially assumed to be minimal, and then
combinations of these regions can only yield a minimal region if the resulting
region is non-normalized, since otherwise the region is a superregion of any of
its component regions.

However this approach cannot be directly used if the number of states in the
monolithic TS is too high to easily perform region operations in memory. The
alternative we propose in this paper is to partition the region operations into
the different component TSs, so that each time only the information of one of
the systems is accessed.

To achieve this partitioning, consider the region basis {b0, . . . , bn}, we denote
by bji the part of region bi that belongs to subsystem j. All the regions in the

basis are assumed to be normalized, but the different bji could be non-normalized,

since they are defined so that, given i, all bji are directly compatible (cf. Def. 15).
For instance region b0 in Fig. 6 is normalized, however b20 it is not.

Consequently a combination of the basis
∑
i ci · bi yields a non-normalized

region only if, for all subsystem j,
∑
i ci · b

j
i is a non-normalized region (by
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(0,0)

(1, -1) (0, -1)

(0, 1) (-1, 1)

(1, 0) (-1, 0)

Partial order ⊆ in A1

(0,0)

(-1, 1) (0, -1)

(0, 1) (1, -1)

(-1, 0)

(1, 0)

Partial order ⊆ in A2

Fig. 8. Partial orders between combinations of regions in each subsystem, according
to the subset relation on multisets (⊆).

Property 1)3. Thus, the strategy would be to test the basis combinations in
the first subsystem, keeping only the combinations producing non-normalized
regions. Then only these combinations will be tested in the second subsystem,
discarding the ones that yield a normalized region, and the process will continue
until all subsystems have been checked.

Finally, with only the surviving combinations, the subregion test will be
performed to guarantee that only the minimal regions are found. Again this test
can be distributed among the subsystems, since

∑
i ci · bi ⊆

∑
i c
′
i · bi if, and only

if, for all subsystem j,
∑
i ci · b

j
i ⊆

∑
i c
′
i · b

j
i .

We will illustrate all this process using our running example. In Fig. 7 we
can see a tree of combinations of the {b0, b1} basis. Each node is a tuple (c0, c1)
describing the coefficients used to obtain a region r as c0 · b0 + c1 · b1. The second
level of the tree corresponds to the regions in the basis and their coregions (as
shown in Fig. 6). To bound the search space, assume we arbitrarily fix that the
coefficients are only allowed to take values in the set {−1, 0, 1}.

From the four possible combinations in the third level, two of them yield
already normalized regions in A1, namely combinations (1, 1) and (−1,−1). On
the other hand, combinations (1,−1) and (−1, 1) correspond to non-normalized
regions in A1, as shown in the figure. Consequently only these two combinations
will be checked in subsystem A2. In this case, both regions, namely, b20 + (−b21)
and −b20+b21, are also non-normalized in A2. Thus these combinations correspond
to non-normalized regions in A1 ∪A2, which means that they might be minimal
regions (once normalized).

3 Since Property 1 only holds for non-negative regions, negative ci coefficients are
treated as markers for summing the normalized coregions of bi. For instance 2b1−3b2
will be actually computed as 2 · b1 + 3 · ↓(−b2). This way all regions are always non-
negative and Property 1 can be safely used.
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a b d c

Fig. 9. Mined PN.

At this point we must check for minimal regions. The list of candidates
includes all the regions in the basis (and their coregions), that is all the combi-
nations in the second level, as well as combinations (1,−1) and (−1, 1) that have
been found during the exploration. To check for minimality, we create a partial
order among all these combinations in each subsystem (see Fig. 8). A region is
not minimal if there is a combination, different than (0, 0), that appears before
it in all the partial orders. In our example, combinations (1, 0) and (−1, 0) are
not minimal. Conversely, for instance (−1, 1) is minimal because, although com-
bination (0,−1) precedes it in A1 (i.e. −b11 ⊆ −b10 + b11), it is not longer true in
A2 (i.e. −b21 6⊆ −b20 + b21).

With the minimal regions found we build the mined PN of Fig. 9.
For a set of subsystems A1, . . . , An the algorithm can be summarized as

follows:

– Take the first subsystem (A1) and explore region space until either combina-
tions are exhausted (according to the user defined bounds on the coefficients)
or the border of non-normalized regions is found.

– Pass to next subsystem the set of combinations of non-normalized regions
and check for normality in this other subsystem.
• If region is normalized, then discard, but mark sibling combinations to

be explored in the current subsystem (since all sibling combinations in
the first subsystem will remain to be non-normalized).

• On the other hand, if region is non-normalized and we are not in the last
subsystem, then add it to the list of regions that conform the border of
non-normalized regions that will be passed to next subsystem. If we are
already in the last subsystem, then add the combination to the list of
candidate minimal regions, normalize it, and then check the normaliza-
tion status in all subsystems. Sibling combinations are scheduled to be
explored in the first subsystem whose subpart of the region is normalized.

5 Conclusions

In this paper we have extended the theory developed in [14] to devise an incre-
mental algorithm for process mining. Given that space requirements are often the
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15

real bottleneck of some of the region-based techniques in the literature, methods
like the one presented in this paper might represent a crucial step into making
the theory applicable in industrial scenarios.
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Abstract. The paper presents an architecture of a Petri net based
framework for modelling and control of workflow processes. It focuses on
the PNEditor module and briefly discusses workflow engine based on the
models designed using the PNEditor. Then the paper describes method
of synthesis Separating feasible places and an algorithm for reducing the
number of places in the resulting Petri net.
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1 Introduction

There are many different Petri net tools and Petri net based tools for modelling
workflow processes, such as CPN ([1]), Viptool ([2], [3]), Yasper ([4]) or ProM
([5]), to mention just some of them. The question arises why to implement an-
other one. Most of them are determined to create models and some of them to
analyze the models. However, models are only the first step in a business pro-
cess management systems (BPMS). The main advantage of BPMS is that the
models can be used to control the workflow process according to the designed
model using a workflow engine.

The problem of the most existing editors (let us just mention Viptool as a
prominent example), is that they were implemented with different aims, mostly
to analyze the model, but they do not provide all the information needed for the
generation of a deployable application, such as resource management.

Another problem is with the case generation. Usually, a model obtained via
a Petri net modelling tool can be understood as a general definition of a model
of a process, while the single cases can be understood as instances of the process.
Using an analogy with object-oriented programming, a model can be understood
as a class, while single cases can be understood as objects of that class. In Petri
net based modelling tools, the realization of cases is often done using coloured
Petri nets ([6]). But in such tools, colours are used both for distinguishing cases
from each other as well as for modelling the data of the cases.

Another important feature for a successful application of models is a hierar-
chy, which enables not only to model on different level of abstraction but also to
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deploy reusable components. This is important for a practical use, as the busi-
ness consultants, which design the models often do not offer them of sufficient
level of details. Many tools offer different kinds of hierarchical nets, but because
they also mostly implement a semantical framework with aim to preserve some
properties, they are mostly too complex and/or too restrictive to generate a
deployable code.

2 PetriFlow: A Brief Introduction

For the above mentioned reason, we develop a new framework for modelling and
control of workflow processes based on Petri nets. Presently, it consists of two
modules, PNEditor and PNEngine.

PNEditor enables to design a model, which is basically a place/transition nets
enriched with the feature for distinguishing between static and dynamic places
([7]), where the static places correspond to static variables (they exists once for
a process), while the dynamic places are constructed for each case. Moreover
PNEditor enables modelling with subnets, where the subnets represents only
a visual tool for designer, i.e. on semantical level, PNEditor works with a flat
place/transition nets. Another important feature of PNEditor is that it provides
a resource management on a very simple and intuitive way. It enables to create
roles, where a role is basically a subset of the set of transitions, determining which
transitions (which tasks) can be performed by users having the role. Further is
PNEditor able to synthesize Petri nets from process logs.

The development version of the PetriFlow PNEditor can be downloaded via:
http://pneditor.matmas.net/

PNEngine is a light version of a workflow engine based on the models provided
by PNEditor. User registered in PNEngine is able to upload processes and thus
becoming their owner. The owner of the process can then assign other users
to roles defined in the process. Only user assigned to a given role is able to
fire transitions contained in the role. Further, PNEngine enables to create new
cases for a given process and to control the cases processing according to the
business logic given by the Petri net modelling the process. The business logic
layer is implemented in J2EE, the connection with the database and persistence
of the cases is realized using Hibernate. The user interface is realized via Java
Server Pages. The PNEngine is running on a Tomcat server. It enables the users
to perform an activity from the task list for actually processed cases, i.e. to fire
enabled transitions of the correspondent copy of the net, via a web browser. After
a user performs an activity from the task list for a given case, the corresponding
transition is fired, the new marking is computed and the task list is updated.
Different cases of the same process are able to communicate over static places.

3 PetriFlow PNEditor

PNEditor offers usual features of a graphical editor for designing place/transition
nets. It enables to draw place/transition nets, i.e. labeled places, transitions,
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weighted arcs and markings with multiple tokens per place. The further func-
tionality is saving the net to a file, the definition of roles, subnets (nested nets),
saving of predefined subnets to files and their reuse as reusable components, re-
placement of subnets, definition of static places, which exists once per process,
and other standard features, such as unlimited undo-redo actions.

Fig. 1. Illustration of the key features of the PetriFlow PNEditor.

For a better illustration, Fig. 1 gives an overview of the functionality of the
PetriFlow PNEditor module:

1. Drawing tool selection: from left: object selection tool, inserting places, in-
serting transitions, arc drawing, adding/removing tokens/transition firing

2. Square with double border represents a subnet
3. Place with shadow represents a static place
4. Panel with roles: buttons from left: add a role, edit role properties, delete a

role.

– role A contains set of transitions: begin, task A, finish (total of 3)
– role B contains set of transitions: begin and all nested transitions in

subnet task B (total of 6)

5. Buttons for adding or removing transitions from the currently selected roles
6. Both roles are selected so the information icons are displayed on top of the

transitions in the diagram: black person icon on the transition describes the
situation in which all the selected roles contain this transition

7. White person icon on the transition describes the situation in which only
some selected roles contain this transition
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4 Subnets in PetriFlow PNEditor

Usually, business modeller models a task as atomic transitions. On a more de-
tailed level, typically a task can be started, finished, paused, continued or can-
celled. Each of such tasks can be illustrated with a part of Petri net given in
Fig. 2, which can be understood as a subnet on a more detailed level and should
be used as a reusable component.

not started started finished

paused

start

cancel

finish

pause

continue

Fig. 2.

The place “not started” in Fig. 2 describes a state, in which the task has
not yet been started and “finished” describes the state reached after the task is
finished.

It would be very practical to model workflow processes using such reusable
components and in general to give modeller an option to design and use his own
reusable components possibly without any semantical restriction.

Another situation in which reusable components represents a desirable fea-
ture is in case of complex processes assembled from a relatively independent
units with exactly defined inputs and outputs. The PNEditor supports subnets
allowing each subnet to have more nested subnets so that the whole hierarchy
can be build up in a place/transition net.

In case the user creates a workflow model where the tasks will be repre-
sented by transitions, PNEditor gives a choice of replacing a transition with a
subnet. The subnets can be replaced by existing stored subnets. In this way,
individual transitions can be converted to custom subnets representing reusable
components.

In order to explain the concept of subnets, we have to recall some ba-
sic definitions of place/transition nets (for more details see e.g. [8]). Given a
place/transition net N = (P, T, F,W ), where P is a finite set of places, T is a
finite number of transitions, F ⊆ (P ×T )∪(T ×P ) is the set of arcs (i.e. the flow
relation) and W : F → N0 is the weight function (N0 denoting nonnegative inte-
gers). We say that a subnet of N is any net N ′ = (P ′, T ′, F ′,W ′) where P ′ ⊆ P ,
T ⊆ T , the flow relation F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)) and W ′ = W |F ′.
Moreover, we consider only proper subnets, i.e. subnets satisfying the following
condition for each p ∈ P and each t ∈ T ′: ((p, t) ∈ F ∨ (t, p) ∈ F ) ⇒ p ∈ P ′.
For clarity of the text let us define the interface of a proper subnet as the set of
places p ∈ P ′ which are connected with a transition which does not belong to
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T ′. In the PNEditor, the interface places are graphically expressed using dashed
places. On one abstraction level, a subnet is visualized via interface places con-
nected with a square with double border via reference edges. These edges can
have one of two appearances:

1. dotted edge - the interface place is not connected with any transition in the
subnet.

2. dashed edge - the interface place is connected in the subnet with one or more
transitions

In case the interface place is connected in the subnet with exactly one transition,
the reference edge takes the direction of the arc. Otherwise the reference edge is
undirected, i.e. it is displayed without an arrow.

Neighbourhood of a place p ∈ P w.r.t. the net N is a subnet Np = ({p}, Tp,
Fp,Wp) of N with the set of places formed by the place itself and the set of
transitions Tp = {t ∈ T |(t, p) ∈ F ∨ (p, t) ∈ F} formed by the the union of the
preset and the postset of the place p in the net N , i.e. by surrounding transitions
of p in net N .

Recall that two place/transition nets are isomorphic, when there exists a
bijective mapping between the sets of places and a bijective mapping between
the sets of transitions, which preserves arcs and their weights. We say that a
place p in a place/transition net is said unique place of the net, if there is no
place p′ in the net with the isomorphic neighbourhood.

In the PNEditor, identities of the interface places are not saved when storing
a subnet to make it a reusable component, i.e. a subnet is stored just as an
ordinary net with an additional information which places form its interface.
When replacing one subnet by another stored subnet, the interface places of the
replaced subnet are identified with the interface places of the stored replacing
net according to the following rules:

2

21

33

Fig. 3. Interface places labelled with the same number have isomorphic neighbourhood.
Only the interface place labelled with number 1 is unique.

1. In the first place, only unique interface places are identified: A unique in-
terface place p of the replaced subnet is considered to be equal to a unique
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interface place p′ of the stored replacing subnet, if the neighbourhood of p
w.r.t. the replaced subnet is isomorphic to the neighbourhood of p′ w.r.t. the
replacing stored net.

2. In the second step, if there exists exactly one unique interface place of the
replaced subnet and exactly one unique interface place of the replacing stored
net satisfying that their neighbourhoods w.r.t. the respective subnets are
not isomorphic, then these interface places are considered to be equal. This
correspond to a predicate, that if it is unambiguously possible, then the
interface places should be identified.

3. Remaining interface places of replacing subnet replacing stored net are chan-
ged to ordinary places and remaining interface places of replaced net become
interface places of the replacing net. It means that it is left to the user to
identify manually by further editing which remaining interface places of the
replaced subnet equal to the remaining interface places of the replacing net.

An example of the use of the subnet concept in the PNEditor is illustrated in
Fig. 4:

1. The transition is created and converted to subnet
2. Visualization of the inside of the subnet
3. The subnet is modified and saved to a file
4. New subnet is created, selected command for replacing subnet
5. The result of 2 identical subnets

Thus, behind the visualization of a hierarchical process model in the PNEd-
itor using the subnet concept is a single flat place/transition net.

5 Synthesis in PetriFlow PNEditor

We could design process models manually – which can be tedious and error-
prone. There is also the possibility to collect logs from real-time processes and
let an algorithm do the work for us. Workflow management systems such as the
PNEngine can also be used to collect the logs. We just need simple p/t net with
all transitions always enabled that will represent expecting activities.

There are multiple methods of Petri net synthesis already invented [9]. In the
PNEditor we implemented a region based method Separating feasible places as
described in [10].

5.1 Preliminaries

As usual we use the following notations. For details see [10].
An alphabet is a finite set A. The set of all strings (words) over an alphabet

A is denoted by A∗. The empty word is denoted by λ. A subset L ⊆ A∗ is called
language over A. For a word w ∈ A∗, |w| denotes the length of w and |w|a
denotes the number of occurrences of a ∈ A in w. Given two words v, w, we
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Fig. 4. Illustration of the subnet concept in PetriFlow PNEditor
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call v prefix of w if there exists a word u such that vu = w. A language L is
prefix-closed, if for every w ∈ L each prefix of w also belongs to L.

Let T be a finite set of activities and C be a finite set of cases. And event is
an element of T × C. And event log is an element of (T × C)∗.

Given a case c ∈ C we define the function pc : T × C → T by pc(t, c
′) = t if

c = c′ and pc(t, c
′) = λ else. Given an event log σ = e1 . . . en ∈ (T×C)∗ we define

the process language L(σ) of σ by L(σ) = {pc(e1) . . . pc(ei)|i ≤ n, c ∈ C} ⊆ T ∗.
A net is a triple N = (P, T, F ), where P is a set of places, T is a finite set of

transitions satisfying P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a flow relation.
Let x ∈ P ∪ T be an element. The preset •x is the set {y ∈ P ∪ T |(y, x) ∈ F},
and the post-set x• is the set {t ∈ P ∪ T |(x, y) ∈ F}.

A marking of a p/t net N = (P, T, F,W ) is a function m : P → N0 assigning
m(p) tokens to a place p ∈ P . A marked p/t net is a pair (N,m0), where N is a
p/t net, and m0 is a marking of N , called initial marking.

A transition t ∈ T is enabled to occur in a marking m of a p/t net N
if m(p) ≥ W (p, t) for every place p ∈ •t. If transition t is enabled to occur
in a marking m, then its occurrence leads to the new marking m′ defined by
m′(p) = m(p)−W (p, t) +W (t, p) for every place p ∈ P . That means t consumes

W (p, t) tokens from p and produces W (t, p) tokens in p. We write m
t−→ m′ to

denote that t is enabled to occur in m and that its occurrence leads to m′. A
finite sequence of transitions w = t1 . . . tn, n ∈ N is called an occurrence sequence
enabled in m and leading to mn if there exists a sequence of markings m1, . . . ,mn

such that m
t1−→ m1

t2−→ . . .
tn−→ mn. The set of all occurrence sequences enabled

in the initial marking m0 of a marked p/t net (N,m0) forms a language over T
and is denoted by L(N,m0).

Let (N,mp), N = ({p}, T, Fp,Wp) be a marked p/t net with only one place
p (Fp, Wp, mp are defined according to the definition of p). The place p is called
feasible (w.r.t. L(σ)), if L(σ) ⊆ L(N,mp), otherwise non-feasible.

Denoting T = {t1, . . . , tn}, a region of L(σ) is a tuple r = (r0, . . . , r2n) ∈
N2n+1 satisfying for every ct ∈ L(σ) (c ∈ L(σ), t ∈ T ):

r0 +
n∑

i=1

(|c|ti · ri − |ct|ti · rn+i) ≥ 0. (1)

Every region r of L(σ) defines a place pr via m0(pr) := r0, W (ti, pr) := ri
and W (pr, ti) := rn+i for 1 6 i 6 n. The place pr is called corresponding place
to r.

Given language L over T , WC(L) = {w ∈ L, t ∈ T : wt /∈ L} is called a set
of wrong continuations of L over T .

Let r be a region of L(σ) and let WC ⊆WC(L(σ)) is a set of wrong contin-
uations. The region r is a separating region (w.r.t. WC) if for every wt ∈WC:

r0 +

n∑

i=1

(|w|ti · ri − |wt|ti · rn+i) < 0. (2)
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A separating region r w.r.t. a set of wrong continuations WC ⊆ WC(L(σ))
can be calculated (if it exists) as a non-negative integer solution of a homoge-
neous linear inequation system with integer coefficients of the form

AL(σ) · r ≥ 0

BWC · r < 0.

The matrix AL(σ) consists of rows act = (act,0, . . . , act,2n) for all ct ∈ L(σ),
satisfying act · r ≥ 0⇔ (1). This is achieved by setting for each ct ∈ L(σ):

act,i =





1 for i = 0,
|c|ti for i = 1, . . . , n,
−|ct|ti−n for i = n+ 1, . . . , 2n.

The matrix BWC consists of rows bwt = (bwt,0, . . . , bwt,2n) for all wt ∈WC,
satisfying bwt · r < 0⇔ (2). This is achieved by setting for each wt ∈WC:

bwt,i =





1 for i = 0,
|w|ti for i = 1, . . . , n,
−|wt|ti−n for i = n+ 1, . . . , 2n.

The linear inequation system mentioned can be solved using linear program-
ming ([11]) with linear objective function to minimize the resulting separating
region, i.e. to generate minimal arc weights and a minimal initial marking.

5.2 Method of Separating Feasible Places

Given an event log σ with set of activities T we search for a preferably small finite
marked p/t net (N,m0) such that L(σ) ⊆ L(N,m0) and L(N,m0)\L(σ) is small.
According to the method of Separating feasible places we first create a p/t net
with all transitions T but no arcs or places. This way, any occurrence sequence is
enabled. Then we keep adding feasible places, until each wrong continuation of
WC(L(σ)) is prohibited. Each feasible place is created according to one wrong
continuation wt ∈ WC(L(σ)). We only calculate separating region w.r.t. {wt}
if wt is not already prohibited by already added places, because one place can
prohibit multiple wrong continuations. For details see Algorithm 1.

5.3 Algorithm for Reducing the Number of Places

In some cases (see Fig. 5) we observed more than necessary number of places in
the resulting net, so we created an algorithm for reducing the number of places
in the resulting net. This algorithm is also implemented in the PNEditor.

Given a finite set A, the symbol |A| denotes cardinality of A.
Our solution to this problem was to first identify which wrong continuations

are prohibited by which places. Each place can prohibit multiple wrong contin-
uations. This information is easy to get: we temporarily remove places P ′ ⊆ P
from the marked p/t net (N,m0), N = (P, T, F,W ) and if the net permits given
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input : An event log σ
output: (N,m0), N = (P, T, F,W ) such that L(σ) ⊆ L(N,m0)

L(σ)← process language of σ;
A← empty matrix;
(P, T, F,W,m0)← (∅, activities of σ, ∅, ∅, ∅);
foreach w ∈ L(σ) do

add row aw to matrix A;
end
foreach w ∈WC(L(σ)) do

if w ∈ L(N,m0) then
r← integer solution of A · r ≥ 0,bw · r < 0, r ≥ 0 such that r is minimal;
if such solution r exist then

p← corresponding place to r;
P ← P ∪ {p};

end

end

end

coveredWrongContinuations← {w ∈WC(L(N,m0))};
foreach p ∈ P do

P ← P \ {p};
undo← False;
foreach w ∈ coveredWrongContinuations do

if w ∈ L(N,m0) then
undo← True;
break;

end

end
if undo then

P ← P ∪ {p};
end

end
Algorithm 1: The method of Separating feasible places: We add places that
permit all correct continuations and prohibit at least one wrong continuation.
In case a given wrong continuation is already prohibited by an already added
place we do not need to create new one for the wrong continuation – it would
be unnecessary. We slightly modified the existing algorithm – we moved the
cleaning of unnecessary places after computing initial marked p/t net. See the
original algorithm in [10]. If all wrong continuations are prohibited without
given place then the place is unnecessary.
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Fig. 5. On the left is a synthesized net using method of Separating feasible places and
on the right is what we think an optimal solution.

wrong continuation w ∈WC(L(N,m0)) then we can say w is prohibited by the
places P ′.

The original method of Separating feasible places constructed each place from
exactly one wrong continuation and all correct continuations. We will be con-
structing new places in the same way except we will be using one or more wrong
continuations simultaneously.

First, we pick two places p1, p2 ∈ P . We determine which wrong continuations
WCp1,p2 ⊆ WC are prohibited by these places. Then we construct a new place
p3 from WCp1,p2 using the original method.

Now we compare what is “better”: the two places p1, p2 or the one place
p3. We need to define what “better” actually is. We assumed that if the net
has overall fewer places, fewer arcs then it is better. We decided to measure the
complexity of the net N = (P, T, F,W ) as:

complexity(N) = |P |+
∑

p∈P,t∈T
W (p, t) +W (t, p).

If the net has lower complexity without p1, p2 and with p3, we replace p1, p2
with p3, else we pick another pair of p1, p2 and repeat the cycle until we tried
every combination.

When we make a replace, we run the algorithm again until no replace is
made. The algorithm terminates because we have finite number of places.

We decided to test just two places at a time because we sought a fast algo-
rithm. Testing every possible subset of the places would not be practical as it
would have exponential time complexity according to the number of places.

Let N∗ be a set of all possible p/t nets. Let neighbour be a function N∗ ×
P × P → {0, 1}. For a given p/t net N = (P, T, F,W ) and p1, p2 ∈ P is
neighbour(N, p1, p2) = 1 when ∃t ∈ T : p1 ∈ •t ∧ p2 ∈ •t ∨ p1 ∈ t • ∧p2 ∈ t•,
otherwise neighbour(N, p1, p2) = 0.
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Further we observed that each combination of places p1, p2 ∈ P , that were
later merged to one place p3, were in the same preset or post-set of some tran-
sition, i.e. neighbour(N, p1, p2) = 1. We used this observation to improve av-
erage case performance of the algorithm. Instead of testing each possible pair
p1, p2 ∈ P , for each p1 ∈ P we pick p2 ∈ P such that neighbour(N, p1, p2) = 1.
For details see Algorithm 2.

Experimental results were positive (see Fig. 6 and Fig. 7).
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Fig. 6. Multiple steps of the algorithm for reducing complexity. On the left is input
net and on the right is the output.
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Fig. 7. On the left is synthesized net (N ′,m′
0) using method of Separating feasible

places only. On the right is output (N,m0) of our algorithm where input is the net on
the left. Both nets have the same set of all occurrence sequences enabled in the initial
marking, i. e. L(N,m0) = L(N ′,m′

0).
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input : Marked p/t net (N ′,m′
0), N ′ = (P ′, T ′, F ′,W ′)

output: Marked p/t net (N,m0), N = (P, T, F,W ) such that
L(N,m0) = L(N ′), |P | ≤ |P ′| and complexity(N) ≤ complexity(N ′)

(P, T, F,W,m0)← (P ′, T ′, F ′,W ′,m′
0);

A← empty matrix;
foreach w ∈ L(N,m0) do

add row aw to matrix A;
end
oldNumPlaces← |P |;
while True do

foreach p1, p2 ∈ P : p1 6= p2 ∧ neighbour(N, p1, p2) do
coveredWC ← ∅;
foreach p ∈ {p1, p2} do

P ← P \ {p};
foreach w ∈WC(L(N,m0)) do

if w ∈ L(N,m0) then
coveredWC ← coveredWC ∪ {w};

end

end
P ← P ∪ {p};

end
B ← empty matrix;
foreach w ∈ coveredWC do

add row bw to matrix B;
end
r← integer solution of A · r ≥ 0,B · r < 0, r ≥ 0 such that r is minimal;
if such solution r exist then

oldComplexity ← complexity(N);
p3 ← corresponding place to r;
P ← P \ {p1, p2} ∪ {p3};
newComplexity ← complexity(N);
P ← P ∪ {p1, p2} \ {p3};
if newComplexity < oldComplexity then

P ← P \ {p1, p2};
if

∑
t∈T (W (p3, t) +W (t, p3)) > 0 then
P ← P ∪ {p3};

end
break;

end

end

end
if |P | = oldNumPlaces then

break;
end
oldNumPlaces← |P |;

end
Algorithm 2: Algorithm for reducing complexity.
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6 Conclusion

Although there are many methods for synthesis of Petri nets from logs (se-
quences, languages, partial languages, etc.), the main drawback when used in
practice remains: the obtained nets are still too complicated in comparison with
human made models. There are different reasons. Remember, that a net without
places enables all sequences of transitions, and each place restricts behaviour by
removing some sequences. Often, one reason for getting compicated models is
that not each valid sequence is presented in the logs and therefore synthetised
net obtain too much places restricting too much behaviour. Obviously, such cases
cannot be solved by optimizing algorithms as presented in this paper. However,
in the case that the logs are complete, optimization is a crucial step for accep-
tance of process mining in practice. The presented algorithm provides a simple
step towards this direction. However, much of the work still has to be done in
this area to nd the right mixture between accuracy of the resulting nets and
their readability.
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Abstract. The present work is devoted to the development of software tool 
written in Java for synthesis of asynchronous speed-independent circuits. A 
special type of Petri nets - Signal Transition Graph, was used for the synthesis. 
Using the algorithm based on the theory of regions, a logic function is derived 
from this graph. In order to reduce the complexity of the resulting asynchronous 
circuit the number of gates should be minimized by optimization of logical 
function with a Quine-McCluskey algorithm.  

Keywords: Synthesis Asynchronous Speed-Independent Circuit, Signal Transi-
tion Graph, State Graph. 

1   Introduction 

Asynchronous circuits have gained in importance along with the expansion of the 
production of high integration circuits. By that time, mostly synchronous systems 
were designed. Decreasing the dimensions and increasing the operating frequency, 
however, made the synchronisation of individual function blocks on a chip more dif-
ficult. The time delay is generally caused by the increased cycle of timing signal. This 
delay (for the individual function blocks) differs locally to such a degree that it results 
in the synchronisation failure of the individual subsystems and the malfunction of the 
circuit. This issue can be solved by adding a special regulation circuit providing a 
constant clock frequency in the whole chip. Such a circuit would occupy relatively 
much space on a chip (approx. 10%) and consume much power (approximately 40% 
of the input power). This would result in the increasing cost and energy demand of 
such chips. The application of asynchronous circuits provides a different approach. 
These circuits do not need a clock signal because their operation is controlled by 
events and not by time. As no clock signal generation is required and no regulation 
circuitry is needed, such circuits are smaller and consume less energy. The only issue 
that is common for both synchronous and asynchronous circuits is the presence of so-
called hazardous states.  

The aim of this work is to provide a tool for the synthesis of asynchronous circuits 
that generates a circuit diagram as a result of the circuit behavior. The field of digital 
circuit synthesis is complex and provides many solution approaches. One of them is 
represented by the application of the Petri nets formalism as a description tool for the 
behavior of an arbitrary digital circuit. Application of algorithms for STG synthesis 

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 207–211.



(e.g. based on the region theory) a logical function is derived (using Quine-
McCluskey algorithm) and presented in the form of a circuit diagram.  

2   Basic definitions 

The signal transition graph (STG) [1] is a specially labelled Petri net that is defined 
as a heptad (P, T, F, M0, N, s0, λT), where P is set of places, T is the set of transitions, 
F is the flow relation F ⊆ (P × T) ∪ (T × P), M0 is the initial marking of Petri net, N = 
I ∪ O is a set of signals, I is a set of input signals and O is a set of output signals. s0 
represents the initial value for each signal in its initial state and λT: T → N × {+, −} is 
the transition labelling function. 

The state graph SG [1] is basically a reachability graph for the STG. Compared 
with the reachability graph, states in the state graph are labelled more functionally. It 
can be designed only in the case that the reachability graph is bounded, i.e. the num-
ber of reachable labels is finite. This graph in its final form is being used for the deri-
vation of logical functions in the synthesis of asynchronous circuits. The state graph is 
formally defined as a triplet (S, δ, λS). S is a set of all the states, δ ⊆  S × T × S is a set 
of state transitions and λS : S → (N→{0,1}) is a function of state labelling. 

Each state is labelled by a binary vector (s(0), s(1), ..., s(n)), where each signal s(i) 
i ∈{0, 1, … n} can acquire values from the set {0, 1}. Although for a better illustra-
tion of the graphical representation of possible states, individual signals can also ac-
quire possible values from the set {0, 1, R, F}. This form of labelling also provides in-
formation as to whether the respective signal is excited or not. The excited signal 
represents a change in its value from 0 to 1 or vice versa. This is illustrated by the 
characters R or F. The R character denotes the signal value in the SG being equal to 0 
but where its value has changed to 1 in the subsequent state s(i). The signal is able to 
reach the next state because the respective transition could be started. This transition 
is labelled ui+ by using the labelling function λT(t). Similarly, the F character denotes 
the signal value being equal to 1 and to 0 in the subsequent state. The excited state 
can be formally defined as follows: 

 
∃(si, t, sj) ∈ δ . λT(t) = ui+ ∨ λT(t) = ui−. (1) 

 
Each signal is labelled in the STG as a transition representing the front edge of the 

signal ui+ or the decay of the signal ui−. As stated hereinabove, STG is a special Petri 
net fulfilling the following properties:  

Input free-choice: The starting sequence of the respective transition (signal) is con-
trolled by the so-called mutual exclusion of input signals. It is indicated by a special 
transition in the transition graph.  

Boundedness: This property of the transition graph provides that the state graph (to 
be defined later in the text) shall acquire a finite number of states. The transition 
graph is single-bounded when just a single label is in each place. The transition graph 
must be a safe Petri net. 

Liveness: The STG must be free from deadlocks. 
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State consistency: All transitions providing front edge and a decay of the signal 
must strictly alter between + and  − in any execution of the STG. 

Complete state coding (CSC): This property is checked in SG. This means that a 
pair of states of S has a unique state coding defined by the labelling function λS, or it 
does not have the unique state coding but it does contain the same output signal ex-
cited in each state. If this property is not fulfilled, a new signal or signals are to be in-
serted into the SG.  

Persistency: If a transition is enabled, it is fired and the label is transferred from the 
place ahead of the transition to the place or places behind, provided that this start shall 
not be deactivated by another transition. This property must be provided for the input 
and internal signals. The persistency of the input signals must be ensured by the envi-
ronment of the designed circuit. 

3   Software description 

The model of the circuit behavior represents an input for our tool (ACDesigner 
[2]). In the process of the circuit’s design, designers mostly prefer the timing diagram 
of the circuit’s behavior. In this diagram, all input and output signals, and causalities 
between the signals, are recorded. Thus if a timing diagram is available a special Petri 
net (Signal Transition Graph) can be formed, representing the input for our software. 
By means of the algorithm presented by Cortadella et al. [3], we derive an asynchro-
nous speed–independent circuit whose behavior is characterized by the STG. Speed 
independence is a property ensuring the correct circuit operation considering that all 
logical gates have unbounded delay [1]. The graphical representation of the circuit 
synthesis process is shown in Fig. 1. 

 
 ACDesigner 
 Timing  Logic 

Circuit 
 STG SG Diagram 
 
 
 

Fig. 1. Graphical representation of the particular steps in synthesis. 

After loading STG in the software, the required properties (boundedness, consis-
tency, persistency, input free-choice, liveness, and complete state coding) are verified 
and the SG is derived. In some cases, the state graph does not comply with the CSC 
property. The solution of this issue is based on the insertion of new states into the SG 
according to the algorithm published in [4] and [5]. An example of the SG fulfilling 
the CSC (new signal csc0) property is shown in Fig. 2b. SG is an intermediate product 
in the process of synthesis and it is not visualised in our tool.  

The state graph is divided into regions and intersections of some regions. The best 
regions covering conflicts are selected (for each iteration only one conflict is se-
lected). After selection of the conflict the environment is added (consisting of 

A tool for speed-independent circuits Petri Nets & Concurrency – 209



neighbor regions) and the cost function is calculated [4]. This function serves as a ba-
sis to determine direction of the SG search to find the most suitable place for the in-
sertion of the new signal. After reduction of the number of possible insertion points, 
the best one is selected for which the least complicated circuit is formed. This itera-
tion should also be repeated several times, because single signal insertion may not 
solve all the conflicts, and new ones could even appear. The algorithm, however, con-
verges to a solution that was confirmed experimentally in the reference [4]. If SG ful-
fils the CSC property, a logic function is derived for each output and new (internal) 
signal. The minimisation of the logic function, which is required with respect to the 
resulting number of gates, is the next step. The Quine-McCluskey algorithm [6] was 
applied in our software to minimise the logic function. At this level, requirements can 
also be laid on the application of particular gate types. In our case, we focused on the 
use of the standard 2-input gates of AND, OR type and on the NOT gate. 

A Petri net in PNML format [7], which can be designed by using other tools, e.g. 
PNEditor [8] or VipTool [9], is the input file in this ACDesigner version. The net 
must contain a label indentifying the signal type (input or output signal). In a Petri 
net, signals are represented by transitions. Therefore, they must be labelled as the in-
put or output signals. In Fig. 2a, a demonstration of the Petri net is shown including 
the labelling of transitions with the keywords “in” and “out”. The name is arbitrary 
provided that it ends either with the + or  − sign. For the designer, it is an indication of 
the signal change from 0 to 1 (+ sign) or from 1 to 0 (− sign), respectively.  
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P1

P3

P4 P0

P5P6 P7

P8

P9 p10

in DSr+

in LDTACK-

in LDTACK+

out D+ out DTACK-
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  (a)    (b) 

 
 
 
 
 
 
 
 
 

(c) 
Fig. 2. (a) Input format of Petri nets - STG, (b) SG fulfilling the CSC property, bi-

nary vector is <DSr, DTACK, LDTACK, LDS, D, csc0>, (c) resulting logical circuit. 
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The software output is shown in Fig. 2c. The user can save the generated circuit in 
two formats, either as XML or as JPG. 

4   Conclusion 

The algorithm of the synthesis of asynchronous speed-independent circuits was 
implemented for the first time in the petrify tool [10]. Due to the absence of the 
graphical visualisation of the resulting circuit, we decided to programme our own 
tool, which would include this functionality. The software is written in Java ver. 1.6, 
which ensures platform independence. The implementation of more methods of logi-
cal circuits’ synthesis will be the next step. These methods should take advantage of a 
non-standard memory element (C-element). The utilization of this element may pre-
vent the occurrence of several hazardous states. Moreover, it has a very fast memory 
and can be easily implemented on a chip. The extension of support to multiple input 
and output formats is another important step in our development. One of the possible 
input formats could be the timing diagram, which is easy understandable to many de-
signers. If a logical circuit is designed, it must be verified by the simulation process. 
This option is provided by another professional simulation software (e.g. Protel, 
PSPICE, and CADENCE) that requires its own specific file format. From that point of 
view, our tool will be extended with respective additional functionalities. 
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Introduction

For the successful realisation of complex systems of interacting and reactive software
and hardware components the use of a precise language at different stages of the
development process is of crucial importance. Petri nets are becoming increasingly
popular in this area, as they provide a uniform language supporting the tasks of
modelling, validation, and verification. Their popularity is due to the fact that Petri
nets capture fundamental aspects of causality, concurrency and choice in a natural
and mathematically precise way without compromising readability.

The use of Petri nets (P/T-nets, coloured Petri nets and extensions) in the formal
process of software engineering, covering modelling, validation, and verification, is
presented as well as their application and tools supporting the disciplines mentioned
above.

This part contains contributions accepted for long and short presentation at the In-
ternational Workshop on Petri Nets and Software Engineering (PNSE’10) in Braga,
Portugal, June 22, 2010.

We received 16 high-quality contributions. The program committee has accepted
four of them for full presentation. Furthermore the committee accepted five papers
as short presentations. Three contributions were submitted and accepted as posters.
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Abstract

UML is by far the most widely used modelling language used nowadays in software
engineering, due to its large scope and its wide tool support. This software standard of-
fers many diagrams that cover all typical perspectives for describing and modelling
the software systems under consideration. Among those diagrams, UML includes dia-
grams (activity diagram, state machine diagram, use case diagrams, and the interaction
diagrams) for describing the behaviour (or functionality) of a software system. Petri
nets constitute a well-proven formal modelling language, suitable for describing the be-
haviour of systems with characteristics like concurrency, distribution, resource sharing,
and synchronisation. Thus, one may question why not combining some UML diagrams
with Petri nets for effectively supporting the activities of the software engineer. The
usage of Petri nets for/in Software Engineering was addressed by several well-known
researchers, like, for example, Reisig [6], Pezzè [1], Machado [5], and Kindler [4].

In this invited paper, we discuss some alternatives to introduce Petri nets into a
UML-based software development process. In particular, we describe how Coloured
Petri Net (CPN) models can be used to describe the set of scenarios associated with a
given use case. We describe three different alternatives that can be adopted to achieve
that purpose.

The first approach, initially presented in [7], suggests a set of rules that allow soft-
ware engineers to transform the behaviour described by a UML 2.0 sequence diagram
into a CPN model. Sequence diagrams in UML 2.0 are much richer than those in UML
1.x, namely by allowing several traces to be combined in a unique diagram, using high-
level operators over interactions. The main purpose of the transformation is to allow the
development team to construct animations based on the CPN model that can be shown
to the users or the clients in order to reproduce the expected scenarios and thus validate
them. Thus, non-technical stakeholders are able to discuss and validate the captured re-
quirements. The usage of animation is an important topic in this context, since it permits
the user to discuss the system behaviour using the problem domain language.

In the second approach, discussed in [3], we assume that developers specify the
functionality of the system under consideration with use cases, each of which is de-
scribed by a set of UML 2.0 sequence diagrams. For each use case, there should exist
at least one sequence diagram that represents and describes its main scenario. Other se-
quence diagrams for the same use case are considered to be variations of the main sce-
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nario. The transformation approach allows the development team to interactively play
or reproduce any possible run of the given scenarios. In particular, the natural character-
istics of the CPN modelling language facilitate the representation of the hierarchy and
concurrency constructs of sequence diagrams.

The third alternative, considered in [2], is an improvement with respect to the previ-
ous approach and is targeted to reactive systems. We identify and justify two key proper-
ties that the CPN model must have, namely: (1) controller-and-environment-partitioned,
which means constituting a description of both the controller and the environment, and
distinguishing between these two domains and between desired and assumed behaviour;
(2) use case-based, which means constructed on the basis of a given use case diagram
and reproducing the behaviour described in accompanying scenario descriptions. We
have demonstrated how this CPN model is useful for requirements engineering, since it
provides a solid basis for addressing behavioural issues early in the development pro-
cess, for example regarding concurrent execution of use cases and handling of failures.
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Abstract. Resource Allocation Systems (RAS) have been intensively
studied in the last years in the domain of Flexible Manufacturing Sys-
tems (FMS). The success of this research line has been based on the
identi�cation of particular subclasses of Petri Nets that correspond to a
RAS abstraction of this kind of systems. In this paper we take a parallel
road to that travelled through for FMS, but for the case of software appli-
cations. The considered applications present concurrency and deadlocks
can happen due to the allocation of shared resources. We will evince that
the existing subclasses of Petri Nets used to study this kind of deadlock
problems are insu�cient, even for very simple software systems. From
this starting point we propose a new subclass of Petri Nets that gener-
alizes the previously known RAS subclasses and we present a taxonomy
of anomalies that can be found in the context of software systems.

1 Introduction
Among the most recurrent patterns in a wide disparity of engineering disciplines,
the competition for shared resources between concurrent processes takes a promi-
nent position. The reader might think of examples in the context of distributed
systems, operations research, manufacturing plants, etc. The perspective of dis-
crete event systems theory proves appropriate and powerful as a framework in
which provide solutions to the so-called resource allocation problem [1]. Systems
of this kind are often called Resource Allocation Systems (RAS) [2, 3].

RAS are usually conceptualized around two distinct entities, processes and re-
sources, thanks to a prior abstraction process which is inherent in the discipline.
The resource allocation problem refers to satisfying successfully the requests for
resources made by the processes, ensuring that no process ever falls in a dead-
lock. A set of processes is deadlocked when they inde�nitely wait for resources
that are already held by other processes of the same set [4].

RAS can be categorized both on the type of processes (sequential, non-
sequential) and resources (serially reusable, consumable) [5]. Hereafter, we will
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focus on Sequential RAS with serially reusable resources. This means that a
process can increase or decrease the quantity of free resources during its execu-
tion. However, the process will contervail that operation before terminating, i.e.
resources are used in a conservative way.

Although other models of concurrency have also been considered [6], Petri
nets [7] have arguably taken a leading role among the family of formal models
used for dealing with the resource allocation problem [8, 9]. One of the strengths
of this approach is the smooth mapping between the main entities of RAS and the
basic elements of Petri net models. A resource type can be modelled using a place:
the number of instances of it being modelled with tokens. Meanwhile, sequential
processes are modelled with tokens progressing through state machines. Arcs
from resource places to transitions (from transitions to resource places) represent
the acquisition (return) of some resources by a process. Petri nets thus provide
a natural formal framework for the analysis of RAS, besides bene�ting from the
goods of compositionality.

This fact is well notorious in the domain of Flexible Manufacturing Systems
(FMS), where Petri net models for RAS have widely succeeded since the semi-
nal work of Ezpeleta et al. was introduced [8]. This is mostly due to a careful
selection of the subclass of Petri nets used to model these FMS, based upon two
solid pillars. First, the de�nition of a rich syntax from a physical point of view,
which enables the natural expression of a wide disparity of plant con�gurations.
And second, the contribution of sound scienti�c results which let us characterize
deadlocks from the model structure, as well as provide a well-de�ned methodol-
ogy to automatically correct them in the real system.

Nowadays, there exists a plethora of Petri net models for modelling RAS in
the context of FMS, which often overcome some of the syntactical limitations of
the S3PR class [8]. S4PR net models [10, 11] generalize the earlier, while allowing
multiple simultaneous allocations of resources per process. S∗PR nets [12] extend
the expressive power of the processes to that of state machines: hence internal
cycles in their control �ow is allowed. However, deadlocks in S∗PR net models
are not fully comprehended from a structural perspective. Other classes such as
NS-RAP [9], ERCN-merged nets [13] or PNR nets [14] extend the capabilities of
S3PR/S4PR models beyond Sequential RAS by way of lot splitting or merging
operations.

Most analysis and control techniques in the literature are based on the com-
putation of a structural element which univocally characterizes deadlocks in
many RAS models: the so-called bad siphon. A bad siphon is a siphon which is
not the support of a p-semi�ow. If bad siphons become (su�ciently) emptied,
their output transitions die since the resource places of the siphon cannot regain
tokens anymore, thus revealing the deadly embrace. Control techniques thus rely
on the insertion of monitor places [15], i.e. controllers in the real system, which
limit the leakage of tokens from the bad siphons.

Although there exist obvious resemblances between the resource allocation
problem in FMS and that of parallel or concurrent software, previous attempts
to bring these well-known RAS techniques into the �eld of software engineering
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have been, to the best of our knowledge, either too limiting or unsuccessful.
Gadara nets [16] constitute the most recent attempt, yet they fall in the over-
restrictive side in the way the resources can be used, as a result of inheriting the
design philosophy applied for FMS. In this work, we will analyze why the net
classes and results introduced in the context of FMS fail when brought to the
�eld of concurrent programming.

Section 2 presents a motivating example and discusses the elements that
a RAS net model should desirably feature in order to successfully explore the
resource allocation problem within the software enginering discipline. Taking into
account those considerations, section 3 introduces a new Petri net class, called
PC2R. Section 4 relates the new class to those de�ned in previous works and
establishes useful net transformations which forewarn us about new behavioural
phenomena. Section 5 introduces some of these anomalies which highlight the
fact that previous theoretical results in the context of FMS are insu�cient in
the new framework. Finally, section 6 summarizes the results of the paper.

2 The RAS view of a software application
Example 1 presents a humorous variation of Dijkstra's classic problem of the
dining philosophers. We will adopt and adapt the beautiful writing by Hoare at
[17] for its enunciation.

Example 1. The pragmatic dining philosophers. �Five philosophers spend their
lives thinking and eating. The philosophers share a common dining room where
there is a circular table surrounded by �ve chairs, each belonging to one philoso-
pher. A microwave oven is also available. In the center of the table there is a
large bowl of spaghetti which is frequently re�lled (so it cannot be emptied),
and the table is laid with �ve forks. On feeling hungry, a philosopher enters the
dining room, sits in his own chair, and picks up the fork on the left of his place.
Then he touches the bowl to feel its temperature. If he feels the spaghetti got too
cold, he will leave his fork and take the bowl to the microwave. Once it is warm
enough, he will come back to the table, sit on his chair and leave the bowl on the
table after recovering his left fork (please bear in mind that the philosopher is
really hungry by now). Unfortunately, the spaghetti is so tangled that he needs
to pick up and use the fork on his right as well. If he can do it before the bowl
gets cold again, he will serve himself and start eating. When he has �nished, he
puts down both forks and leaves the room.�

According to the classic RAS nomenclature, each philosopher is a sequential
process, and the �ve forks plus the bowl are serially reusable resources which are
shared among the �ve processes. From a software perspective, each philosopher
can be a process or a thread which will be executed concurrently.

Algorithm 1 introduces the code for each philosopher. Notationally, we mod-
elled the acquisition / release of resources by way of the wait() / signal()
operations, respectively. Both of them have been generalized for the acquisition
of multiple resources (separated by commas when invoking the function). Finally,
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the trywait() operation is a non-blocking wait operation. If every resource is
available at the time trywait() is invoked, then it will acquire them and return
TRUE. Otherwise, trywait() will return FALSE without acquiring any resource.
For the sake of simplicity, it is assumed that the conditions with two or more
literals are evaluated atomically.

A4
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T4

T1

T8

T5
A1

R_F2

A0

R_S

A3

T6

T7

A5

A6

R_F1

T2

Fig. 1. Philosopher 1.

Algorithm 1 - Code for Philosopher i (where i ∈ {1, 2, 3, 4, 5})

var
fork: array [1..5] of semaphores; // shared resources
bowl: semaphore; // shared resource

begin
do while (1)

THINK;
Enter the room;

(T1) wait(fork[i]);
do while (not(trywait(bowl, fork[i+1 mod 5]))

or the spaghetti is cold)
(T2) if (trywait(bowl)

and the spaghetti is cold) then
(T3) signal(fork[i]);

Go to the microwave;
Heat up spaghetti;
Go back to table;

(T4) wait(fork[i]);
(T5) signal(bowl);

end if;
(T6) loop;

Serve spaghetti;
(T7) signal(bowl);

EAT;
(T8) signal(fork[i], fork[i+1 mod 5]);

Leave the room;
loop;

Figure 1 depicts the net for algorithm 1, with i = 1, after abstracting the
relevant information from a RAS perspective. Figure 2 renders the composition
of the �ve philosopher nets via fusion of the common shared resources. Note that
if we remove the dashed arcs from �gure 2, then we can see �ve disjoint strongly
connected state machines plus six isolated places.

The �ve state machines represent the control �ow for each philosopher. Every
state machine is composed of seven states (each state being represented by a
place). Tokens in a state machine represent concurrent processes/threads which
share the same control �ow. In this case, the unique token in each machine is
located at the so-called idle place. This means that, at the initial state, every
philosopher is thinking (outside the room). In general, the idle place can be seen
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as a mechanism which enforces a structural bound: the number of concurrent
active threads (i.e. non-idle) is limited. Here, at most one philosopher of type i
can be inside the room, for each i ∈ {1, 2, 3, 4, 5}.

The six isolated places are called resource places. A resource place represents
a certain resource type, and the number of tokens in it represents the quan-
tity of free instances of that resource type. In this case, every resource place
is monomarked. Thus, at the initial state there is one fork of type i, for every
i ∈ {1, 2, 3, 4, 5}, plus one bowl of spaghetti (modelled by way of the resource
place at the centre of the �gure).

Finally, the dashed arcs represent the acquisition or release of resources by the
active threads when they change their execution state. Every time a transition
is �red, the total amount of resources available is altered. Please note, however,
that moving one isolated token of a state machine (by �ring its transitions)
until the token reaches back the idle state, leaves the resource places marking
unaltered. Thus, the resource usage is conservative.

Fork 2

Fork 1

Fork 3

Fork 4

Fork 5

Fig. 2. The dining philosophers are thinking. Arcs from/to PR are dashed for clarity.
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At this point, we will discuss some capabilities that (in our humble opinion) a
RAS model should have so as to support the modelling of concurrent programs.

Although acyclic sequential state machines are rather versatile as models
for sequential processes in the context of FMS (as the success of the S3PR and
S4PR classes prove), this is clearly too constraining even for very simple software
systems. Considering Böhm and Jacopini's theorem [18], however, we can assume
that every non-structured sequential program can be refactored into a structured
one using while-do loops. Meanwhile, calls to procedures and functions can be
substituted by way of inlining techniques. Let us also remind that fork/join
operations can also be unfolded into isolated concurrent sequential processes, as
evidenced in [9]. As a result, we can restrict process models to state machines in
which decisions and iterations (in the form of while-do loops) are supported,
but not necessarily every kind of internal cycle.

Another signi�cant di�erence between FMS and software systems from a
RAS perspective is that resources in the latter are not necessarily physical (e.g.,
a �le) but can also be logical (e.g., a semaphore). This has strong implications
in the degree of freedom allowed for allocating those resources: we will return to
this issue a little later.

In this domain, a resource is an object that is shared among concurrent
processes/threads and must be used in mutual exclusion. Since the number of
resources is limited, the processes will compete for the resource and will use
it in a non-preemptive way. This particular allocation scheme can be imposed
by the resources' own access primitives, which may be blocking. Otherwise, the
resource can be protected by a binary semaphore/mutex/lock (if there is only one
instance of that resource type) or by a counting semaphore (multiple instances).
Note that this kind of resources can be of assorted nature (e.g., shared memory
locations, storage space, database table rows) but the required synchronization
scheme is inherently similar.

On the other side, it is well-known that semaphores used in that aim can
be also seen as non-preemptive resources which are used in a conservative way.
For instance, a counting semaphore that limits the number of connections to a
database can be interpreted in that way from a RAS point of view. Here processes
will wait for the semaphore when attempting to establish a database connection,
and will release it when they decide to close the aforementioned connection.

However, semaphores also perform a relevant role as an interprocess signaling
facility, which can also be a source of deadlocks. In this work, our goal is the
study of the resource allocation problem, so this functionality is out of scope.
We propose �xing deadlock problems due to resource allocation issues �rstly,
and later apply other techniques for amending those due to message passing.

Due to their versatility, semaphore primitives are interesting for studying how
resources can be allocated by a process/thread. For instance, XSI semaphores
(also known as System V semaphores) have a multiple wait primitive (semop with
sem_op<0). An example of multiple resource allocation appears in algorithm 1.
Besides, an XSI semaphore can be decremented atomically in more than one.
Both POSIX semaphores (through sem_trywait) and XSI semaphores (through
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semop with sem_op<0 and sem_flag=IPC_NOWAIT) have a non-blocking wait
primitive. Again, algorithm 1 could serve as an example. Finally, XSI semaphores
also feature inhibition mechanisms (through semop with sem_op=0), i.e. processes
can wait for a zero value of the semaphore.

As we suggested earlier, the fact that resources in software engineering do
not always have a physical counterpart is a very peculiar characteristic with
consequences. In this context, processes do not only consume resources but also
can create them. A process will destroy the newly created resources before its
termination. For instance, a process can create a shared memory variable (or a
service!) which can be allocated to other processes/threads. Hence the resource
allocation scheme is no longer �rst-acquire-later-release, but it can be the other
way round too. Nevertheless, all the resources will be used in a conservative
way by the processes (either by a create-destroy sequence or by a wait-release
sequence). As a side e�ect, and perhaps counterintuitively, there may not be free
resources during the system startup (as they still must be created), yet being
the system live.

Summing up, for successfully modelling RAS in the context of software engi-
neering, a Petri net model should have at least the following abstract properties:

1. The control �ow of the processes should be represented by state machines
with support for decisions (if-then-else blocks) and nested internal cycles
(while-do blocks).

2. There can be several resource types and multiple instances of each one.
3. State machines can have multiple tokens (representing concurrent threads).
4. Processes/threads use resources in a conservative way
5. Acquisition/release arcs can have non-ordinary weights (e.g., a semaphore

value can be atomically incremented/decremented in more than one unit)
6. Atomic multiple acquisition/release operations must be allowed
7. Processes can have decisions dependent of the allocation state of resources

(due to the non-blocking wait primitives, as in �gure 2)
8. Processes can lend resources. As a side e�ect, there could exist processes that

depend on resources which must be created/lent by other processes (hence
they cannot �nish if executed in isolation)

3 PC2R nets

In this section, we will present a new Petri net class, which ful�lls the require-
ments advanced in section 2: the class of Processes Competing for Conservative
Resources (PC2R). This class generalizes other subclasses of the SnPR family
while respecting the design philosophy on these. Hence, previous results are still
valid in the new framework. However, PC2R nets can deal with more complex
scenarios which were not yet addressed from the domain of SnPR nets.

De�nition 1 presents a subclass of state machines which is used for modelling
the control �ow of the processes in isolation. Iterations are allowed, as well as
decisions within internal cycles, in such a way that the control �ow of structured

The resource allocation problem Petri Nets & Concurrency – 225



programs can be fully supported. Non-structured processes can still be refactored
into them as discussed in Section 2.

De�nition 1. An iterative state machine N = 〈{p0} ∪ P, T,C〉 is a strongly
connected state machine such that either every cycle contains p0 or P can be
partitioned into two subsets P1, P2, with a place p ∈ P2 such that:

1. The subnet generated by 〈{p} ∪ P1,
•P1 ∪ P1

•〉 is a strongly connected state
machine in which every cycle contains p, and

2. The subnet generated by 〈{p0}∪P2,
•P2 ∪P2

•〉 is an iterative state machine.

In �gure 1, if we remove the resource places R_F1, R_F2 and R_S then we
obtain an iterative state machine, with P1 = {A2, A3, A4}, P2 = {A1, A5, A6},
p0 = A0 and p = A1. The de�nition of iterative state machines is instrumental
for introducing the class of PC2R nets.

PC2R nets are modular models. Two PC2R nets can be composed into a
new PC2R model via fusion of the common shared resources. Please note that
a PC2R net can simply be one process modelled by an iterative state machine
along with the set of resources it uses. Hence the whole net model can be seen
as a composition of the modules for each process. We will formally de�ne the
class in the following:

De�nition 2. Let IN be a �nite set of indices. A PC2R is a connected gener-
alized pure P/T net N = 〈P, T,C〉 where:

1. P = P0 ∪ PS ∪ PR is a partition such that: (a) [idle places] P0 = {p01 , ...,
p0|IN |}; (b) [process places] PS = P1 ∪ ...∪P|IN |, where ∀i ∈ IN : Pi 6= ∅ and
∀i, j ∈ IN : i 6= j, Pi ∩ Pj = ∅; (c) [resource places] PR = {r1, ..., rn}, n > 0.

2. T = T1 ∪ ...∪T|IN |, where ∀i ∈ IN , Ti 6= ∅, and ∀i, j ∈ IN , i 6= j, Ti ∩Tj = ∅.
3. For all i ∈ IN the subnet generated by restricting N to 〈{p0i} ∪Pi, Ti〉 is an

iterative state machine.
4. For each r ∈ PR, there exists a unique minimal p-semi�ow associated to r,

Yr ∈ IN|P |, ful�lling: {r} = ‖Yr‖ ∩ PR, (P0 ∪ PS) ∩ ‖Yr‖ 6= ∅, and Yr[r] = 1.
5. PS =

⋃
r∈PR

(‖Yr‖ \ {r}).

Please note that the support of the Yr p-semi�ows (point 4 of de�nition 2)
may include P0: this is new with respect to S4PR nets. Such a resource place r is
called a lender resource place. If r is a lender, then there exists a process which
creates (lends) instances of r. In our model, processes can start their execution
creating resource instances, but before acquiring any other resource. Otherwise,
it could happen that the support of a minimal p-semi�ow would contain more
than one resource place (thus infriging condition 4 of de�nition 2).

The class supports iterative processes, multiple resource acquisitions, non-
blocking wait operations and resource lending. Inhibition mechanisms are not
natively supported (although some cases can still be modelled with PC2R nets).

The next de�nition generalizes the notion of acceptable initial marking intro-
duced for the S4PR class. In software systems all processes/threads are initially
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inactive and start from the same point (the begin operation). Hence, all of the
corresponding tokens are in the idle place in the initial marking (the process
places being therefore empty). Note that lender resource places may be empty
for an acceptable initial marking. Figure 2 shows a P2CR net with an acceptable
initial marking which does not belong to the S4PR class.
De�nition 3. Let N = 〈P0∪PS ∪PR, T, C〉 be a PC2R. An initial marking m0

is acceptable for N i� ||m0|| = P0 ∪PR and ∀p ∈ PS , r ∈ PR : Y T
r ·m0 ≥ Yr[p].

4 Some transformations and related classes
In [19], we introduced a new class of Petri net models for RAS, called SPQR
(Systems of Processes Quarreling over Resources). SPQR nets feature an appeal-
ing syntactical simplicity and expressive power though they are very challenging
from an analytical point of view. They can be roughly described as RAS nets
in which the process subnets are acyclic and the processes can lend resources
in any possible (conservative) manner. Every PC2R can be transformed into a
Structurally Bounded SPQR net (SB SPQR net).

The transformation rule is based on the idea of converting every while-do
block in an acyclic process which is activated by a lender resource place. This
lender place gets marked once the thread reaches the while-do block. The token
is removed at the exit of the iteration. This transformation must be applied
starting by the most intern loops, proceeding in decreasing nesting order. Figure
3 depicts the transformation rule. The rule preserves the language accepted by
the net (and thus liveness) since it basically consists in the addition of a implicit
place (place P1 in the right hand net of �gure 3, since R_P1 can be seen as a
renaming of P1 in the left hand net).

Figure 4 illustrates the transformation of the net of example 1 but restricted
to two philosophers into the corresponding SB SPQR.

Thanks to such transformations, the SB SPQR class can express the widest
range of systems in the Sequential RAS Petri net family. Figure 5 introduces the
inclusion relations between a variety of Petri net classes for Sequential RAS.
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Fig. 3. Transforming PC2Rs into SB SPQRs: From iterative to acyclic processes
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5 Some bad properties through examples

The bad news about the discussion in sections 2 and 3 is that siphon-based
control techniques for RAS do not work in general for concurrent software, even
ignoring (i.e., not using) the resource lending feature introduced by PC2R nets.

Let us have a look back at example 1 and its related algorithm 1. It is not
di�cult to see that, if every philosopher enters the room, sits down and picks
up the fork on the left of himself, the philosophers will be trapped in a livelock.
Every philosopher can eventually take the bowl of spaghetti and heat it up in the
microwave. This pattern can be repeated in�nitely, but it is completely useless,
since no philosopher will ever be able to have dinner.

This behaviour is obviously re�ected in the corresponding net representation
at �gure 2. Let us construct a �ring sequence σ containing only the �rst transition
of each state machine (i.e., the output transition of its idle place). The �ring order
of these transitions is irrelevant. Now let us �re such a sequence, and the net falls
in a livelock. The internal cycles are still �rable in isolation, but no idle place can
ever be marked again. Unfortunately, the net has several bad siphons, but none
of them is empty or insu�ciently marked in the livelock. In other words, for every
reachable marking in the livelock, there exist output transitions of the siphons
which are �rable. As a result, the siphon-based non-liveness characterization for
earlier net classes (such as S4PR [10]) is not su�cient in the new framework.

A similar pattern can be observed in the upper net of �gure 4. There exist
three bad siphons, which are D1 = {A2, A3, A4, A5, A6, B2, B4, B5, B6, R_F2,
R_S}, D2 = {A2, A4, A5, A6, B2, B3, B4, B5, B6, R_F1, R_S} and D3 = {A2,
A4, A5, A6, B2, B4, B5, B6, R_F1, R_F2, R_S}. Besides, every transition in
the set Ω = {TA2, TA3, TA4, TA5, TB2, TB3, TB4, TB5} is an output tran-
sition of D1, D2 and D3. After �ring TA1 and TB1 from the initial marking,
the state A1 + B1 + R_S is reached. This marking belongs to a livelock with
other six markings. The reader can check that, unfortunately, there exists a
�rable transition in Ω for every marking in the livelock. A similar phenomenon
can be observed for the SB SPQR net at the bottom of �gure 4.

In general, livelocks are not a new phenomenon in the context of Petri net
models for RAS. Even for L − S3PR nets, which are the simplest models in
the family, deadlock freeness does not imply liveness [20]. However, deadlocks
and livelocks always could be related to the existence of a siphon which was
`dry'. Unfortunately, this no longer holds. Another well-known result for simpler
subclasses was that liveness equalled reversibility for nets with acceptable initial
markings. For PC2R, this is also also untrue, as �gure 6 proves.

We believe that the transformation of PC2R nets into SB SPQR can be use-
ful to understand the phenomena from a structural point of view. Intuitively
speaking, the concept of lender resource seems a simple yet powerful instrument
which still remains to be fully explored. Still, SB SPQRs can present very com-
plex behaviour. For instance, acceptably marked SB SPQR nets do not even
hold the directness property [21] (which e.g. was true for S4PR nets). Figure 7
shows a marked net which has no home states in spite of being live. This and
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other properties are profoundly discussed (along with their implications) in a
previous work [19].
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Fig. 7. A marked SB SPQR which is live but has no home states

6 Conclusion and future work

Although there exist a variety of Petri net classes for RAS, many of these def-
inition e�orts have been directed to obtain powerful theoretical results for the
analysis and synthesis of this kind of systems. Nevertheless, we believe that the
process of abstraction is a central issue in order to have useful models from a
real-world point of view, and therefore requires careful attention. In this work,
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we have followed that path and constructed a requirements list for obtaining
an interesting Petri net subclass of RAS models applied to the software engi-
neering domain. Considering that list, we de�ned the class of PC2R nets, which
ful�lls those requirements while respecting the design philosophy on the RAS
view of systems. We also introduced some useful transformation and class rela-
tions so as to locate the new class among the myriad of previous models. Finally
we observed that the problem of liveness in the new context is non-trivial and
presented some cases of bad behaviour which will be subject of subsequent work.

A Petri Nets: Basic de�nitions

A place/transition net (P/T net) is a 3-tuple N = 〈P, T,W 〉, where W is a
total function W : (P × T ) ∪ (T × P ) → IN, being P , T non empty, �nite and
disjoint sets. Elements belonging to the sets P and T are called respectively
places and transitions, or generally nodes. P/T nets can be represented as a
directed bipartite graph, where places (transitions) are graphically denoted by
circles (rectangles): let p ∈ P , t ∈ T , u = W (p, t), v = W (t, p), there is a directed
arc, labelled u (v), beginning in p (t) and ending in t (p ) i� u 6= 0 (v 6= 0).

The preset (poset) or set of input (output) nodes of a node x ∈ P ∪ T
is denoted by •x (x•), where •x = {y ∈ P ∪ T | W (y, x) 6= 0} (x• = {y ∈
P ∪T |W (x, y) 6= 0}). The preset (poset) of a set of nodes X ⊆ P ∪T is denoted
by •X (X•), where •X = {y | y ∈ •x, x ∈ X} (X• = {y | y ∈ x•, x ∈ X}

An ordinary P/T net is a net with unitary arc weights (i.e., W can be de�ned
as a total function (P × T ) ∪ (T × P )→ {0, 1}). If the arc weights can be non-
unitary, the P/T net is also called generalized. A state machine is an ordinary
net such that for every transition t ∈ T , |•t| = |t•| = 1. An acyclic state machine
is an ordinary net such that for every transition t ∈ T , |•t|, |t•| ≤ 1, and there is
no circuit in it.

A self-loop place p ∈ P is a place such that p ∈ p••. A pure P/T net (also self-
loop free P/T net) is a net with no self-loop places. In pure P/T nets, the net can
be also de�ned by the 3-tuple N = 〈P, T,C〉, where C is called the incidence
matrix, C[p, t] = W (p, t) − W (t, p). Nets with self-loop places can be easily
transformed into pure P/T nets without altering most signi�cant behavioural
properties, such as liveness, as shown in �gure 8.
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Fig. 8. Removing self-loop places
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A p-�ow is a vector Y ∈ ZZ|P |, Y 6= 0, which is a left annuler of the incidence
matrix, Y · C = 0. The support of a p-�ow is denoted ‖Y ‖, and its places are
said to be covered by Y . A p-semi�ow is a non-negative p-�ow, i.e. a p-�ow
such that Y ∈ IN|P |. The P/T net N is conservative i� every place is covered
by a p-semi�ow. A minimal p-semi�ow is a p-semi�ow such that the g.c.d of its
non-null components is one and its support ‖Y ‖ is not an strict superset of the
support of another p-semi�ow.

A set of places D ⊆ P is a siphon i� every place p ∈ •D holds p ∈ D•. The
support of a p-semi�ow is a siphon but the opposite does not hold in general.

Let N = 〈P, T,W 〉 be a P/T net, and let P ′ ⊆ P and T ′ ⊆ T , where
P ′, T ′ 6= ∅. The P/T net N ′ = 〈P ′, T ′,W ′〉 is the subnet generated by P ′, T ′ i�
W ′(x, y)⇔W (x, y), for every pair of nodes x, y ∈ P ′ ∪ T ′.

A marking m of a P/T net N is a vector IN|P |, assigning a �nite number
of marks m[p] (called tokens) to every place p ∈ P . Tokens are represented by
black dots within the places. The support of a marking, ‖m‖, is the set of places
which are marked in m, i.e. ‖m‖ = {p ∈ P | m[p] 6= 0}. We de�ne a marked P/T
net (also P/T net system) as the pair 〈N ,m0〉, where N is a P/T net, and m0

is a marking for N , also called initial marking. N is said to be the structure of
the system, while m0 represents the system state.

Let 〈N ,m0〉 be a marked P/T net. A transition t ∈ T is enabled (also �rable)
i� ∀p ∈ •t : m0[p] ≥ W (p, t), which is denoted by m0[t〉. The �ring of an
enabled transition t ∈ T changes the system state to 〈N ,m1〉, where ∀p ∈
P : m1[p] = m0[p] + C[p, t], and is denoted by m0[t〉m1. A �ring sequence σ
from 〈N ,m0〉 is a non-empty sequence of transitions σ = t1 t2 ... tk such that
m0[t1〉m1[t2〉 ...mk−1[tk〉. The �ring of σ is denoted by m0[σ〉tk. A marking m is
reachable from 〈N ,m0〉 i� there exists a �ring sequence σ such thatm0[σ〉m. The
reachability set RS(N ,m0) is the set of reachable markings, i.e. RS(N ,m0) =
{m | ∃ σ : m0[σ〉m}.

A transition t ∈ T is live i� for every reachable marking m ∈ RS(N ,m0),
∃m′ ∈ RS(N ,m) such that m′[t〉. The system 〈N ,m0〉 is live i� every transition
is live. Otherwise, 〈N ,m0〉 is non-live. A transition t ∈ T is dead i� there is
no reachable marking m ∈ RS(N ,m0) such that m[t〉. The system 〈N ,m0〉 is
a total deadlock i� every transition is dead, i.e. no transition is �rable. A home
state mk is a marking such that it is reachable from every reachable marking,
i.e. ∀m ∈ RS(N ,m0) : mk ∈ RS(N ,m). The net system 〈N ,m0〉 is reversible
i� m0 is a home state.
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Abstract. A tool for optimizing cost and time of a workflow execution
with respect to allocation of multi-purpose resources is presented. The
optimization is done as a result of simulations, which take into account
the cost and time associated with each of the resources, when allocated
to transitions in Petri nets representing a workflow. These attributes can
be collected and updated based on the logs of the finished instances. The
program suggests the best allocation procedures, giving the estimates of
the performance of the whole run for all possible decisions.

1 Introduction

Modeling processes as workflows has become quite popular and proved its use-
fulness in practice. One of the problems associated with running a workflow is
the resource management. By resources we mean all components required to run
an activity. In our case, their necessity is described by certain requirements (e.g.
skills or functions) associated with activities (transitions). With each resource
we associate a bunch of skills, so we can choose, which of the resources are to
be attached to certain activity at the workflow simulation run-time. The Petri
net approach requires collecting all the resources necessary for a given transition
before triggering an acitivity to run. One cannot reserve a resource, and keep it
busy, while waiting for other resources necessary to run an activity. Only when
all resources are available we can make a decision to run (fire) an activity.

It often happens that a resource is requested by different activities. A resource
conflict occurs, when a single resource is shared by two enabled transitions. We
must make a decision, which activity will use the resource first. We assume here
that the resources are re-usable, and that after finshing a transition the resource
can be used by another activity.

When we make a decision about the resource allocation, we should take
into account several aspects. Usually we try to optimize some quality function,
like time or cost of the workflow run. We assume here that during a workflow
run we can perform several actions concurrently. Since some of them will be
competing for resources, a proper allocation can improve the quality of workflow
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run. Engaging proper resources can diminish for instance the delays caused by
lack of the only resource requested by a concurrent action and hence waiting for
this resource to be released.

As described in [BPS09], there are many essential aspects of resources, which
should be taken under consideration during workflow simulation. One of them is
already mentioned: the multifunctionality of resources. Resources have attributes
describing their skills. In other words these are the abilities to perform certain
actions. Each resource is associated with the set of activities, in which it can
be used. Other attributes taken under consideration are performance and cost
associated with engaging the resource. So we know how fast a resource can do
an activity and how much it costs to use it. By expense of a resource we mean
here a value per time unit associated with involvement of the resource. A chief
accountant probably has a driving license, but using him to drive the documents
somewhere can be a waste of his time and precious skills. His cost per hour is
much higher than that of a professional driver.

Since workflows can be quite complex, the authors do not see any analitycal
approach, which would be effective in the optimization of runs. It is hard to
predict all the possible outcomes of the allocations decisions, when resources
are in many conflicts. Instead, we propose an experimental approach, which
involves the simulation of many runs, taking into account different allocations
and estimating the desired measures as a result of allocation decisions. In our
prototype IRS-MT (Intelligent Resource Sharing-Modelling Tool) the manager
can edit a structured workflow net and set the number of experiments. The
program makes random allocations reporting times and costs of the runs. Based
on this knowledge the manager can use the suggestions of the program and get
a picture of possible outcomes of the decisions taken. The decisions can be made
incrementally. After each decision the workflow run advances its state, and when
we come to the next decision, a separate simulation will be made, basing on the
actual state of the system.

2 Basic definitions

In our tool we consider resources (S), roles (R), requirements (Q) and activities
(A). Resources and roles are finite and defined a priori (by designer). For each
resource we define a set of skills (roles), which it can use. This is denoted by
FSR : S → P (R) function. Additionally, for each role in a resource, its efficiency
may differ. For every resource s ∈ S, we define the efficiency function Es :
FSR(s) → R+. This function describes how fast a resource performs each of
its roles. The lower this value is, the higher is the efficiency (one is the base
value). Additionaly, for every resource we define its use cost per time unit as a
function C : S → N. On the other hand, for each activity in a workflow, a set of
requirements needed to fire it, should be determined. Every requirement Q ∈ Q
is a subset of roles. We define a function FAQ(a) which is a bag of requirements
associated with the activity. It is important, that every activity has an expected
duration time defined and its standard deviation value. Later, in the generation
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and simulation phase, only the available resources fulfilling these requirements
will be considered for taking part in such activity. And so, s ∈ S is fulfilling
q = 〈Rq〉, iff Rq ⊆ FSR(s). It is important, that if a resource is involved in some
activity, it cannot be used by any other activity (there is one exception, which
will be covered later in this section).

Initially all the resources are free, available in a pool of idle resources. We
assume, that all the resources are reusable, so at the beginning of activity exe-
cution the needed resources are collected and at the end all the freed resources
will be returned to the pool of idle resources and will be available for further
use. The graphical representation of relations between the introduced notions is
depicted on Fig 1.

Fig. 1. Model

Our workflows are Petri nets created using five basic refinement patterns,
proposed in [PCh03]: sequential-split of a place or transition, parallel-split of
a place, choice-split of a transition and loop-split which attaches the spawned
transition with a self-loop to a place. The additional rule for attaching a resource
place is dual to the loop-split. It just glues a freshly created (resource) place to a
transition by a self-loop. From the Petri net perspective we assume here that such
place will contain initially a token for each physical resource available. We call
the places created by such splits resource places or activity places. One cannot
refine resource places. Even if the transition is refined, the resource will be allo-
cated at the beginning of its execution and released, when it is done. Moreover,
every resource place will carry the set of requirements defined for corresponding
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activity. If we match the resource places with activities accordingly, we will see,
that the requirement assignments are defining the FAQ function.

When we use activity refinement on a transition, which is inside some other
activity, we will create a nested activity. By its ancestor activity we call every
other activity, in which this one is nested. Such nested activities do not differ
from any other activities, except for the fact, that these can use resources from
its ancestors, as long, as the resource will not have one of its roles assigned to
requirements in two different activities.

3 Tool overview

The main goal of this work is to provide a a tool, which can be helpful in
improving the resource management. We concentrate on optimization of the
workflow execution by providing the user with relevant statistical information
and letting him make decisions on resource-to-activity assignments. To achieve
this, a Petri net defining a workflow with activities and resources, will be created.
For this purpose we introduce a Workflow Designer. It is the editor for building
workflows using refinement patterns. In the editor we create activities, declare
the set of requirements and approximate execution duration. On the other hand,
we have Resources Editor. We use it for defining a pool of resources, assigning
roles to them, and determining their effectiveness in each role. The set of defined
roles can be modified by an always-visible editor Roles Viewer. All these three
editors form the static part of the tool. Its more detailed description is presented
in section 3.1.

After defining the model in the static part, we can proceed to the dynamic
part of the tool. We will use Generator, to create sufficent number of random
runs. When this is done, the Simulator, the Report Viewer and the Bucket Editor
shows up. The first one displays a copy of our workflow, where resource places
contain both the requirements and lists of currently available resources, fulfilling
given requirements. Here, the tool provides us with information about expected
time and cost of workflow completion for each of resource-to-requirement assign-
ment we see. Basing on this knowledge we can decide, which resource should be
assigned for current requirement. Every choice causes the expected values to be
recalculated, so that we can run the workflow deciding, how resources should
be used in the activities. The Report View presents detailed information about
expected time and cost of workflow completion. It is synchronized with cur-
rent simulator state, so all the values are always up-to-date. The Bucket Editor
is a tool for storing, and presenting details of the runs, which were manually
performed by user in the Simulator.

For example, let us consider the following, simple case. There is a package,
which must be delivered to the destination within an hour. We know, that stan-
dard travel time by a scooter in current traffic would take around fifty minutes.
We have two available scooter drivers: Evan and Gregory. Both of them can do
the delivery, but Gregory has got his license for much longer time than Evan,
and he shortens the expected delivery time by around 20 percent. Evan, on the
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other hand, is still afraid of driving fast and using tricky shortcuts, so his deliv-
eries often take 20 percent longer than normal. However, Gregory’s earnings are
twice the earnings of Evan. This is the classic case, where no optimal resolution
to the problem exists. It must be up to user’s decision, whether time or cost is
more important, and it is up to our tool to provide the user with information
about expected cost and time consequences of each decision. We achieve it by
simulating many thousands of runs and preparing the estimates with all aspects
of the workflow taken into consideration, i.e.: activities order and dependencies,
resources usage conflicts, possible time/cost variations.

3.1 Static Part

To present the tool in more details, we introduce other, more complex example.
Let us suppose, that we have two rooms: A and B. We need to plaster and paint
both of them. Additionaly, room A needs to be decorated. Here we assume, that
a room cannot be painted, unless it is plastered and it cannot be decorated,
unless it is painted. Expected time units, required to complete these tasks for
each room are following:

– Room A — plastering: 20, painting: 10, decorating: 20;
– Room B — plastering: 10, painting: 20.

This process is presented on Fig. 2. We also need two resources, applicable for
the work: Steven and Tom. Steven is an experienced painter, with a skill of
plastering. Tom, on the other hand, is a decorator, who also can paint, but it
takes him some more time that it does for Steven.

The purpose of the static part of the tool is to model this situation, so that
it can be then simulated and later analysed in the dynamic part. We will now
explain, how it can be achieved using available functionalities.

Resources Editor Defining resources consists of identifying the available set
of people, machines and tools. For each of them, we can define a set of attributes
like: use cost per time unit, collection of applicable roles (skills) and the effec-
tiveness in each role. Every resource may have many skills, and many resources
can have the same role. As it turns out, we often miss such knowledge during
resources allocation planning and we do not take all the benefits from what a
resource is capable of doing. Because of that, we can also miss the optimal reso-
lution for given situation. Therefore we need to integrate all these aspects in the
analysed context, so that we can consider consequences of particular situations
with respect to most important factors. It is worth noticing, that in most popu-
lar Human Workflow management tools like Tibco [BS07] or Corel iGraphix, as
well as in some academical tools like Yasper [YA06], during the workflow design
and simulation phase, the roles are treated as resources. No resource, can have
two skills. This, for modelling purposes, is a major limitation. It means, that
one resource will never be requested for two activities with different required
roles, which tightly limits analysed possibilities. In our tool there are no such
boundaries.
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Fig. 2. Sample net
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Fig. 3. Resources edition

Fig. 3 presents the pair of our resources: Steven and Tom. The interface is
straightforward and it uses drag and drop features across almost every view. At
the depicted state of modeling Steven lacks the plastering skill yet. In order to
add it, we type plasterer in Roles View, press Add role button, drag the newly
created role from this view and drop it over the Steven entry. New skill would get
all of the necessary attributes initialized to default values. At the bottom of the
window, we can see the Properties tab, which, as a context panel, allows us to
modify attributes of currently selected object. The information about Steven’s
efficiency as a painter (Time Cost row) is displayed here. To be consistent with
the descritpion, we should change this value from 1.0 to 0.8. This indicates that
activity performed by Steven in a role of painter could take 20 percent shorter
than normal. We repeat similar scenario for Tom, associating with him the role
of painter and decorator and setting the efficiency coefficients for each of these
roles. Expenses for each person should be defined also here.

Workflow Designer In the presented tool we can model sound workflows using
refinement patterns presented in [PCh03]. To make this process easier it is pos-
sible to apply these patterns to any node the refinement tree, including the inner
ones. Each node can also have its subtree truncated. The structural approach
has been chosen to simplify both the design process and the inner application
processing engine. In this tool we introduced the basic set of six refinements.
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These might be extended in future by other patterns like communication or
synchronization patterns described in [PCh03].

Editor offers additional operations for collapsing and expanding nodes, ac-
cording to the information held in the refinement tree, so we can view our net at
desired level of detail. The application displays all the nodes automatically in the
viewer, but we can also move them around manually. The process from the exam-
ple, has been created using refinement patterns, as shown on Fig. 4. Currently the
B:[[plasterer]] resource place is selected, so that we can see, which requirements
are defined for this requirement place in the bottom right tab Requirements (in
our case all resource places will be labelled 〈room name〉:[[〈required role〉]]). As
it was mentioned earlier, resource places are created by the ACTIVITY pattern,
and cannot be further refined. Each resource place is associated with exactly one
activity, so it is the right place to hold all the needed requirements for activity.

The whole net has been built using only the SEQUENCE, CONCURRENCY
and ACTIVITY patterns. On the Fig. 5, all possible refinement operations are
presented both for each standard place (not resource place) and each transition.

Every transition has got a special property, a measure, which describes its
desire to be executed. We can modify this value to indicate transitions, which
should have higher/lower probability of being executed, when in conflict with
some other ones. This value is used only when at least two transitions are in
conflict. By default this value is set to 1, but if we wish to make some transition
to be executed more often, this value should be set accordingly. For instance
if we have two active transitions, one with this value set to 3, and the second
one to 1, then the first of them will be fired with 75% chance. This way we can
declare, which actions are more probable or what kind of situations occur more
often.

3.2 Dynamic Part

Statistics Generation Generator is a tool for preparing a list of complete
runs with respect to guidelines defined in a workflow project and resources set.
For this purpose, a special, extended copy of the designed workflow is created.
Apart from copies of all the elements created by the designer, there are additional
resource places for automatic resource availability management. It is guaranteed,
that before each run, the whole net will be reset. Allocation decisions taken
between two different runs are then mutually independent. It can happen that
two identical runs could be generated by chance. Each run is executed and
recorded using the following algorithm.

Initially, the in place of a workflow, is marked by a token, as well as there
are tokens in the resource places. In a loop, a complete set of active transitions
(activities) is constructed. If the set is empty, and the workflow is finished (a
token is present on out place of the workflow), then the run is stored, the token
from out place is moved to back in place. If there are at least two enabled tran-
sitions, one of them is randomly chosen (according to its desire to be executed).
The selected enabled transition is fired and the loop is repeated. Note, that some
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Fig. 4. Designer

of these transitions will indicate the begin or end of some activity. In such case
an additional resource acquistion or return will be performed.

When the generator attempts to start an activity, all the requirements are
being covered by skills owned by resources assigned to it. When we start one ac-
tivity, some other can also start or end, so the tool can model various concurrent
situations. When an activity ends, assigned resources are freed, the generator
updates the workflow timer, the amount of time and cost counters for later anal-
ysis. A series of runs allows us to consider usefulness of certain choices in the
context of further possible events.

The working time of the generator is dependent mostly on the number of
allocations and releases of resources, which corresponds to one run. The com-
putation power is also very important. In our case the generation of 10000 (ten
thousand) runs on a standard computer takes no more than a few seconds.
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Fig. 5. Refinement patterns

Simulator Taking into account possible allocation decisions, we analyse time
and cost of a workflow run. A few similar simulation tools have been reviewed
in [BPM05]. On that basis some of the functionalities have been adapted to this
tool, and a few flaws have been evaded. As a result, the application provides the
simulator of the given net, and gives us a browser of performed runs.

In the report viewer (described later), we can browse all the runs created
during generation. All these runs have been performed automatically, so using
sorting capabilities of the report viever, we can easily find the optimal runs.
Sometimes the differences in evaluation are very small, and the user may wish
to examine the non-optimal allocation. For such purposes the simulator allows
us to perform a step by step manual run of the designed net. An estimated time
and cost of the run completion for every resource-to-requirement assignment at
currently chosen state is presented. Thanks to this we know, which consequences
are a result of our decision. The simulator remembers all the choices (resource
assignments, order of activities start and end times) that a user makes during
a simulation. It uses this knowledge to find all the statistical runs that are
applicable to this situation, and then provides us with the estimates. Note, that
in neither of Tibco, iGraphix nor Yasper, such manual interference in resource
assignments is possible, because all resources in these simulators can have only
one role. Moreover, up to the authors knowledge, there is no other tool, which
supports simulation of resources with multiple roles, giving the user a chance to
take part in a simulation at such informative level.

Let us suppose that a simulation has come up to a situation shown on the
Fig. 6. The tokens presence on places Room A and Room B means that the
Initialization phase has already ended. As we can see, enabled transitions have
double-lined border. At the moment both A:Plaster and B:Plaster transitions
require the same skills (in our case: plasterer), which have been defined in the
corresponding places: A:[[plasterer]] and B:[[plasterer]]. Both places contain no
tokens, which means, that no resources have been assigned to these activities
yet. Currently selected place A:[[plasterer]] shows in the Properties View all the
possible resource assignments for the plasterer skill. As it turns out, only Steven
is suitable. Next to his name there is some information indicating the estimated
cost and time of the run completion, with him taking part in this activity. In
our example, Steven’s Cost : [1038 − 42.14] 970|1034|1050|1050|1084 Time :
[63− 9.44] 50|56|70|70|72 means:
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Fig. 6. Simulator

– average cost of completion is 1038 units with standard deviation of 42,14;

– average costs of completion in five successive quantiles are: 970, 1034, 1050,
1050, 1084;

– average time of completion is 63 units with standard deviation of 9.44;

– average times of completion in five successive quantiles are: 50, 56, 70, 70,
72.

When we select the B:[[plasterer]] place, the estimates for Steven’s change to
Cost : [1004− 44.44] 950|988|1000|1011|1075 Time : [65− 8.73] 60|60|60|69|80.
So, starting work in room A will cost us more, but it will shorten the total
execution time. Knowing this at such an early stage lets us undertake proper
decisions from the very beginning. On that basis we may tend to choose room A
first, if we want to save time. On the other hand, when cost is being considered
crucial, we should choose beginning work from room B.
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When all requirements are met, the corresponding activity becomes active.
We can fire such enabled transition, and move to the next activity, where we
will have more decisions to make. Note, that at every time, we make a decision
or fire a transition, the estimates are being recalculated, to show the current
situation in the net. This rule also applies to the Report Viewer.

Report Viewer Much more information about current situation in the simu-
lated net can be seen on additional report view. The sample screenshot on Fig. 7
presents the state of report viewer, when Steven has been assigned to A:Plaster
activity in the simulator. Thanks to synchronization between these two tabs, we
can always take a look at all the computed details and expected values. Diagrams
on the 7 present:

– Total cost distribution — average, cumulative cost of run performance in
current simulator situation in 10 successive quantiles;

– Resources cost distribution — as above, but for each of the resource;
– Total time distribution — average time of run performance in current

simulator situation in 10 successive quantiles;
– Resources time distribution — as above, but for each of the resource.

Diagrams of total cost and time provide us with information about differ-
ences between optimistic and pessimistic run executions. When viewing costs
of resources, we can see, which of them have major influence on the growth in
pessimistic cases. In the example shown above it is a fact that, when considering
cost, in the optimistic case (on the left side of the diagram), Steven involvement
is minimal, and the cost of Steven’s work even goes below the cost of Tom’s
work. On that basis we can conclude that the main way to cut the cost will
be to maximize Tom’s involvement and minimize Steven’s. It can be seen that
bigger involvement of Steven means smaller involvement of Tom and vice versa.
So if time does not matter we will prefer the cheaper resource.

The distribution of resource involvement time gives us somewhat different
conclusions. It cannot be explicitly determined whether one of the resources
should be favoured to improve the process duration. It may seem at a first glance,
that in order to optimize the run we should always choose the fastest resource.
But it is not the case, since it can slow down other parts of the workflow. The
faster one can be the only one who can perform another action which should not
be delayed.

Two additional tables at the bottom of this view present:

– list of runs, which are up to date with current situation in the simulator
(including time and cost of them as well as pointing out the three most busy
resources);

– list of successive concurrent events for the run selected in the first table.
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Fig. 7. Report viewer
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Bucket Editor To ease the efforts, and allow the user to store the most inter-
esting runs for further analysis, a simple Bucket Editor has been created. After
the simulation comes to an end, the user can store the run he has just performed
manually. This run will be available for later view. The bucket presents informa-
tion similar to the report viewer, but because it contains information for several,
manually chosen runs (not thousands like report viewer), those can be presented
in a slightly different form.

Fig. 8. Bucket viewer

Fig. 8 shows a screenshot of the bucket with two stored runs. As we can see
it is organized similarly to the report viever, and the visible diagrams present
the same information as those from report viewer:

– Total cost — total cost of execution each of the stored runs separately;
– Resources cost distribution — as above, but for each of resources;
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– Total time distribution — total time required to complete each of the
stored runs separately;

– Resources time distribution — as above, but for each of resources.

The bottom tables represent information about stored runs, showing exactly
the same attributes and properties, as the report viewer does.

First of them (displayed on the left hand side of every diagram) has been
performed with the goal to minimize the time. Second, though, was made to run
the process as cheap as possible, ignoring the time at all. As we can see, the
cost reduction requires extra time in workflow execution. Of course, increasing
the execution speed increases the cost. Major differences can also be seen in the
resource usage distribution in both of these cases. Cost reduction has led to a
significant decrease of Steven’s involvement. In this case, Tom takes some of his
responsibilities. When the time was the goal, the proportions has significantly
changed. Steven became more desired, because Tom seemed cause the most
delays.

4 Conclusions and future work

The provided example shows, how largely the work organization can differ, de-
pending on goals that we want to achieve. In many cases minor changes in the
resource allocation can have large influence on the overall result and, conversely,
sometimes major allocation changes result in very similar outcomes. Very often
humans do not take under consideration all the aspects, which the presented
tool does. Its role is to simplify this whole process and make it easier, to find a
suitable organization plan that will fit our needs and fulfill the criteria. While
the simplification of resource allocation planning is one point, the other one is
the possibility to point out uncommon executions, which can lead to increased
effectiveness and so increase our profits. Combining user’s knowledge and com-
puter’s computation power could therefore lead to major design corrections,
which would be a basis for further business improvements.

The presented tool is still a prototype, and there are some practical and
theoretical issues that need to be addressed. On the theoretical side additional
extensions to resource and workflow definition language should be introduced.
This includes further conformance to the form of resources described in [BPS09],
because only a few resource attributes have already been implemented in this
tool. There is also a big potential of the currently used workflow language, which
can be further extended. In the context of statistical data tooling, some addi-
tional information could be presented (e.g. the Student’s t-distribution, 3− σ).
Finally, no measure of reliability have yet been introduced and, in the sense of
realism of modelled cases, this is one of the major flaws of the presented tool.

On the more practical side, the integration with existing systems and methods
should be made. First of all the statistical runs of the net could generate logs
from the run to make them readable by other applications in the same way as the
YAWL does [WS09]. The conformance with CPN seems attractive, because of its
formal basis and constant development. Secondly, the integration with currently
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used common tools is to be made as well. The LDAP for instance is a main source
for human resource information. The reporting tools like Microsoft Dynamics AX
(Microsoft Business Solutions – Axapta) can be a source of information about
resource experience and effectivness of each of such resource. Any other form
of gathering of knowledge about past and predictable future resource usefulness
can become important in such case. Therefore more integration of this tool will
be examinated and developed in the future.
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Tool description

The tool is written in Java and can be run on any machine
with Java (JRE 6.0) installed. It can be downloaded from the
http://duch.mimuw.edu.pl/˜pch/IRSMT/irsmt.zip. The zip file contains a
full version of the tool and a README file, which explains how to install and
use the application.
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Abstract. Factoring and warehouse distribution centers face numerous
and interrelated challenges in their e�orts to move products and materi-
als through their facilities. New technologies in navigation and guidance
allow true autonomy with more �exibility and resource e�ciency. In this
paper we investigate a complete design approach to obtain deadlock-free
minimal adaptive routing algorithms for these systems. The approach is
based in an abstract view of the system as a Resource Allocation System.
The interconnection network and the routing algorithm elaborated by the
designer, are the initial information used to obtain in an automatic way
a Petri Net model. For this kind of routing algorithms, we prove that the
obtained Petri Net belongs to the well-known class of S4PR net systems,
and therefore the rich set of analysis and synthesis results can be applied
to enforce the liveness property of the routing algorithm.

Key words: AGVs, Control Software, Resource Allocation Systems (RAS),
Modular Models, Structural Analysis.

1 Introduction

Nowadays, many factories and warehouse and distribution centers use Auto-
matic Guided Vehicles (AGV s) for item transportation among workstations.
The wheeled trailers are the most productive form of AGV for tugging and tow-
ing because they haul more conveyor-loads per trip than other AGV types. In
this paper we consider a warehouse distribution center as a programmable sys-
tem for conveyor-loads movement among workstations using tugger AGV . The
problem to be investigated concerns the design of Deadlock-Free minimal adap-
tive routing algorithms for the guidance system of tuggers AGV s, travelling into
an warehouse distribution center. We say that the routing algorithm is minimal
because only routes of minimal length between two workstations are taken into
account. Moreover, the routing algorithms we are considering are adaptive in
the sense that the route of a conveyor-load is constructed segment by segment.
The assignment of a segment to the route of a conveyor-load is done in a work-
station when the �rst trailer try to leave the workstation towards its destination
workstation.

From the methodological point of view, the design of deadlock-free minimal
adaptive routing algorithms is a complex task, where the designer experience
is required because deadlock states can appear. There exist several approaches
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to cope with this problem [1�5]. They consider more general routing algorithms
than those considered in this paper (including, for example, non-minimal routes).
Because this generality, very few powerful analysis and synthesis results are
available.

Our approach gives a full design cycle forminimal adaptive routing algorithms
using Petri Nets as formal model that allows structural analysis of the liveness
property of the model. Afterwards, if it is necessary, the initial routing algorithm
is changed. From the point of view of software engineering, in the context of the
control software for AGV s systems, this paper intends to make contributions in
the following directions: (a) The formalization of an abstraction process of the
system to retain only the relevant characteristics in the study of deadlock prob-
lems in the routing software of AGV s. This abstraction is constructed around a
minimal set of concepts � processes and resources. (b) The demonstration that
for AGVs with minimal adaptive routing algorithms, the proposed abstraction
process gives rise to models belonging to a well known class of Petri Nets named
S4PR, and so, we have many available results to cope with these systems. (c)
A modular methodology to construct the models based on the speci�cation of
processes with resources that form the modules. The modules are composed by
the fusion of common shared resources (segments) by di�erent modules. This
paper is organized as follows. In Section 2 an illustrative example is presented.
In section 3 the proposed methodology is presented in detail. Section 4 presents
the �rst step of the methodology consisting of the abstraction of the warehouse
distribution center and the routing algorithm to retain only those aspects related
to the appearing of deadlocks. Section 5 is devoted to the Petri Net model rep-
resenting the Resource Allocation view of the system. This section also proves
that the Petri Nets obtained for these routing algorithms belong to the class
of the S4PR nets. Section 6 presents the analysis and synthesis phases of the
methodology that pro�t the theoretical results known for the class of S4PR.
Finally, section 7 presents some conclusions.

2 An Example

In this section, a simple example of a warehouse distribution center, will be pre-
sented. The speci�cation of this example illustrates the typical situation in the
transportation system of items. We start with a layout of the shipping areas
de�ned by a set of workstations WS and a set of segments SG interconnecting
the workstations. The connection pattern among workstations will be called the
framework of the warehouse distribution center. The example that we are con-
sidering is an unidirectional ring in clockwise fashion as underlying framework.
There are four workstations WS={w0, w1, w2, w3} and they are interconnected
by a set of segments SG={sa0, sa1, sa2, sl1, sl2, sl3}. This warehouse distribution
center is depicted in schematic way in Fig. 1.a. Observe that if a workstation
has two output segments, a train can follow any of them. This decision is taken
by the local minimal adaptive routing algorithm of the workstation. The other
de�ning element of the warehouse distribution center is the behavior of the
conveyors because a train can tow single or multiple trailers hence the length
of the conveyors is variable. As the conveyors �ow in pipeline fashion through
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Fig. 1. a) Framework skeleton and its, b) Warehouse Graph.

the framework, these can have simultaneously allocated several segments of the
framework. The �rst trailer of the AV G train is the head of the conveyors and
reserve the segments to transit; the last trailer is the tail and release them. Tra-
ditionally, each segment supports only one conveyor at time to avoid collisions.
In our example, each workstation executes, an instance of the following minimal
adaptive routing algorithm parameterized by the identity of the workstation.

ALGORITHM 1 Minimal Adaptive Routing Algorithm for workstation i.
Input: The head trailer cl from the conveyor-load queue.
Local: Si ⊆ SG, output segments for workstation i

F ⊆ Si, set of non-assigned output segments
Output: The next segment to be used for cl
begin
if (destination(cl) = i) then store the conveyor-load cl in workstation i
else
if ( sai ∈ F ) then use sai ; F :=F\{sai}
else
if ((destination(cl) < i) ∧ (sli ∈ F )) then
use sli ; F :=F\{sli}

else enqueue cl
end if

end if
end if
end

That means the workstation knows its non-assigned output segments and the
algorithm assigns, if it is possible, the output segment that the �rst trailer must
follows in order to reach its destination. In other words, to reach a destination
workstation, wd, di�erent to the current workstation wi, the algorithm tries to
assign the output segment sai if it is an output free segment of wi. Otherwise,
sli is assigned if this segment is an output free segment of wi and the index d
of the workstation wd is less than the index i of wi. This reservation is done by
the head trailers. The intermediate trailers follow through the reserved segments
and the tail trailer release the segments that they will be added to the set of free
segments F . The design of minimal adaptive routing algorithms can lead to so-
lutions where deadlock states can be reached. A deadlock state, in a warehouse
distribution center, arise when a set of conveyor-loads are in transit to their
respective destination workstations but all of them are stopped forever in inter-
mediate workstations. They are waiting for the availability of output segments of
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these intermediate workstations that have been previously assigned to conveyor-
loads belonging to this set. Therefore, none of the implied conveyor-loads will
reach their destination workstations. The minimal adaptive routing algorithm
of our example presents this anomaly that we illustrate by means of the fol-
lowing deadlock state. We have four conveyor-loads, {cl1, cl2, cl3, cl4}, each one
composed by more than one trailer. It is easy to verify that the state described
in table 1, for the four conveyor-loads in transit, is reachable, where H and T
represent the current workstations of the head and tail trailers, respectively. The
rest of the columns in the table 1 represent: Allocated segments− segments as-
signed to the conveyor-load; Destination workstation− represents the destination
workstation of the conveyor-load; Next segment− segment to be assigned to the
head trailer according to the minimal adaptive routing algorithm. Observe that

Conveyor Trailers Allocated Destination Next

-loads H T Segments Workstation segment

cl1 w0 w3 sl3 w1 sa0

cl2 w1 w0 sa0 w2 sa1

cl3 w2 w1 sa1 w3 sa2

cl4 w3 w2 sa2 w1 sl3

Table 1. Deadlock state reached in the example concerning four conveyor-loads.

all conveyor-loads are in intermediate workstations and in order to advance in
the warehouse distribution center, all conveyor-loads need segments (those given
by the minimal adaptive routing algorithm) that they are allocated by other
conveyor-loads in the same set (compare the two columns "Allocated Segments"
and "Next segment" in the table 1). On the other hand, none of the tail trailers
can release segments because if some tail trailer moves ahead, it will be in the
same workstation that the head trailer and this is not possible. Therefore, we
have reached a deadlock state where the four classical necessary conditions for
the existence of a deadlock are ful�lled. Finally, you can observe that although
we are in a deadlock state, there exist two segments, sl1 and sl2, that they are
free, and the minimal adaptive routing algorithm cannot assign these segments
to the four conveyor-loads of our scenario.

3 The proposed methodology

In this paper we advocate for a methodology where, after an analysis phase
of the model obtained from the framework (the interconnection network) and
the minimal adaptive routing algorithm, a synthesis procedure transform the
original routing algorithm to make it deadlock-free. In order to implement this
methodology we will make use of Petri Net models. Therefore, the �rst task will
be the construction of the Petri Net model that retains only those aspects related
to the appearing of the deadlock states. Deadlocks appear as a consequence of
the allocation of the segments by the conveyor-loads in transit in the warehouse
distribution center. Therefore, we will adopt a Resource Allocation perspective
to abstract the system (RAS view of the warehouse distribution center) where
segments will be considered as resources, that they are used in a conservative
way (they are not created nor destroyed) by the user processes that they are
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the conveyor-load moving from a source workstation to a destination worksta-
tion. In next section, from the framework and the routing algorithm we will
obtain a Routing Graph for each destination workstation. One of these Routing
Graphs represents a transition graph where we present the reachable states of a
conveyor-load, composed by more than one trailer, from a source workstation of
the warehouse distribution center to the destination workstation corresponding
to the Routing Graph. From these Routing Graph and the segments consid-
ered as resources, in section 5 we obtain a Petri Net that, in the case of minimal
adaptive routing algorithms, belongs to the well known class of S4PR nets. Now,
using the known analysis results for this class of nets we can characterize the
existence of deadlocks using a structural reasoning. The synthesis procedure is
based on the methods for liveness enforcing developed by di�erent authors [6]
[7] [8]. The Fig. 2 presents in graphical form the methodology we propose for the
design of deadlock-free minimal adaptive routing algorithms. In this methodol-
ogy, the Petri Nets play a central role, because they are used to model the RAS
view of the warehouse distribution center, and this is the reason of this paper:
to present how to obtain these Petri Nets and to prove that they belong to a
previously known class of Petri Nets (S4PR), and so well studied.
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Minimal Path Graph
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Fig. 2. Design Flow Methodology.
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4 Construction of the Routing Graph

The goal of this section is to represent, step by step, the construction of the so
called Routing Graph from the information about the framework of the ware-
house distribution center and the minimal adaptive routing algorithm. This
Routing Graph will represent the sequence of states that a conveyor-load must
follow to reach a given destination workstation, wi. The de�nition of the state
concerns the set of segments that the conveyor-load is using each time. Therefore,
RG give us the so called Resource Allocation (RAS) view of the warehouse distri-
bution center. First, the framework is formalized through the Warehouse Graph
(WG). The WG is a labeled graph WG=(W,S), where W is a set of vertices
and S is a set of edges. The set W is equal to WS and S⊆W×2SG×W , where
WS is the set of vertices and SG the set of segments. An edge (w1, s, w2)∈S
means that there exists a set of segments s⊆SG from the workstation w1 to the
workstation w2, as it is shown in the Fig. 1.b. We are considering the class of
minimal adaptive routing algorithms. Therefore we will represent for each desti-
nation workstation wi all the paths of minimal length from a workstation wj to
the destination workstation wi. This information is captured into the Minimal
Path Graph (MPGi) with destination workstation wi. Each one of these graphs
is a subgraph of the WG = (W,S) and it will be an acyclic directed labeled
graph, MPGi=(V, E), where V =W , and E⊆S, verifying that:

1. All output arcs of wi in WG do not belong to E.
2. The function Li:V →IN is well de�ned: Li(wi)=0 and ∀wj ̸=wi, Li(wj)=k,

where k is the length of the minimal path from wj to wi in the WG.
3. All arcs (w1, s, w2) ∈ S in WG, such that Li(wi)+1 ̸=Li(w2), do not belong

to E.

The graphs MGPi for the example of Fig. 1 are depicted in the Fig. 3. Observe
that we will have four of these graphs, one for each possible destination worksta-
tion. Each MPGi can be seen as the set of paths that can follow a conveyor-load

Fig. 3. Minimal Path Graph for all destination of our example.

originated in the workstation wj with destination workstation wi, an this path
satisfy the minimality condition of the considered routing algorithm. Neverthe-
less, we are considering conveyor-loads with more than one trailer of length,
because a conveyor-load with only one trailer cannot participate into a dead-
lock, since a deadlock must ful�ll the Hold and Wait condition. Therefore in our
model we must distinguish states according to the workstations where the head
and tail trailers can be found. On the other hand, it is important to say that the
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advancement of the head trailer from a workstation to another can be done if and
only if there exists at least a segment that can be allocated for this movement.
Segments, therefore are resources in our RAS view of the warehouse distribution
center. If the head trailer allocates the needed resources for the movement of the
full conveyor-load, the tail trailer take charge of the release operation after the
use of a segment. In order to represent the states of a conveyor-load with desti-
nation workstation wi we will construct, from the MPGi, the so called Conveyor
Behaviour Graph (CBG) for the destination workstation wi, CBGi=(Q, F ), ver-
ifying that.

1. Q⊆V ×V , where ∀wh, wt∈Q, wh=wt or L(wh)<L(wt). That is, the �rst com-
ponent of the de�ned states corresponds to the workstation where the head
trailer is, and the second to the workstation where the tail trailer can be
found.

2. F⊆Q×{A,R}×2SG×Q, where F will contain the following edges:

(a) Allocation edges ((wh1, wt), A, S, (wh2, wt)), ∀ wt∈V ,∀(wh1, s, wh2) ∈ E.
(b) Release edges ((wh, wt1), R, S, (wh, wt2)), ∀ wh∈V ,∀(wt1, s, wt2) ∈ E.

Obviously, CBGi is a directed acyclic graph because MPGi is also a directed
acyclic graph. The Fig. 4 shows the Conveyor Behaviour Graph for destina-
tion workstation 0, CBG0, corresponding to the MGP0 of Fig. 3. Finally, to

Fig. 4. Conveyor Behaviour Graph for destination workstation 0.

construct the announced Routing Graph of our warehouse distribution center
we need to incorporate the information corresponding to the routing algorithm.
The routing algorithm is a function R:WS×WS→2SG, such that if wc is the
current workstation of the head trailer and wd the destination workstation of
the conveyor-load R((wc,wd)) determines the output segments of wc to be al-
located in order to reach the destination workstation. The model that we will
construct is a possibilistic model, in the sense that from a current workstation
we can have several alternative transitions, each one corresponding to a di�erent
allocated segment. Therefore in order to represent this information of the rout-
ing algorithm, from each CBGi we will construct the so called Routing Graph
(RG) to the destination workstation wi, RGi=(Q′, F ′), where Q ⊆ V ×V ×SG∗

represents the set of states in which a conveyor-load can be found.
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ALGORITHM 2 Construction of the RGi = (Q′, F ′)
Input: CBGi = (Q,F )
Output: RGi = (Q′, F ′)
begin
next-level := {(w,w, ε)|(w, w) ∈ Q}
Q′ := next-level; F ′ := ∅;
while next-level ̸= ∅ do
current-level := next-level; next-level := ∅;
for each (w1, w2, r) ∈ current-level do
for each ((w1, w2), X, S, (w3, w4)) ∈ F do
for each c ∈ S do
if (c ∈ R(w1, wi)) and (X = A)
then next-level := next-level ∪{(w3, w4, r&c)};

Q′ := Q′ ∪ {(w3, w4, r&c)};
F ′ := F ′ ∪ {((w1, w2, r), X, c, (w3, w4, r&c))};

endif
if (r = c&t) and (X = R)
then next-level := next-level ∪{(w3, w4, t)};

Q′ := Q′ ∪ {(w3, w4, t)};
F ′ := F ′ ∪ {((w1, w2, c&t), X, c, (w3, w4, t))};

endif
endfor
endfor
endfor
endwhile

end

The state is characterized by the workstations of the head trailer and the
tail trailer, respectively, and the sequence of segments that, in this state, the
conveyor-load maintains allocated; F ′ ⊆ Q′ × {A, R} × SG × Q′ is the set of
arcs that represents the transition from a state to another by the movement of
the head trailer or tail trailer. The movement of the head trailer allocates (A)
the segment speci�ed in the arc. Observe, that now in the RGi a path from a
state (w, w, ϵ), w ̸=wi, that corresponds to the birth of a conveyor-load in the
workstation w, to the state (wi, wi, ϵ), represents the routing of a conveyor-load
in the warehouse distribution center from the source workstation w to the des-
tination workstation wi. So, in order to obtain this RGi = (Q′, F ′) from the
corresponding CBGi(Q,F ), we apply the algorithm 2 (Note: with the symbol &,
in the algorithm, we denote the concatenation operation of two strings) In the
Fig. 5 the RG0, obtained from the CBG0 of the Fig. 4. Applying the previous
algorithm, we use the solid arcs to represent the segment allocation, and the
dashed arcs to represent the segment release.

5 The Petri Net Model

In the previous section we have obtained the RAS abstraction of the warehouse
distribution center plus the considered path selection algorithm. This abstraction
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Fig. 5. Routing Graph for destination workstation 0.

is composed by the resources: The set SG of segments; and the set of processes:
the set of routing processes to a destination workstation, each one represented by
means of the corresponding Routing Graph. From these elements, in this section
we proceed to the construction of a Petri Net integrating all processes and all
resources.
First, from the RGi(Q

′, F ′), we construct the Petri Net Ni = ⟨P0i ∪ Psi, Ti, Fi⟩
representing the state space of a conveyor-load born in the warehouse distribu-
tion center with destination workstation wi. This construction proceeds accord-
ing to the following rules.
1. Add a place to the set Psi for each vertex of the RGi, (w1, w2, s) ∈ Q′ such

that w1 ̸= w2. The name of the place will be formed by the concatenation
of identi�ers of the workstations of the head and tail trailer, w1 and w2,
respectively, and the sequence of segments that remain allocated for this
conveyor-load and represented by s. All these places are unmarked at the
initial marking M0, because in the initial state there are not conveyor-loads
in transit. We call these places process places.

2. Add a unique place poi, Poi = {poi}, corresponding to the fusion of states
of the form (w, w, ϵ) ∈ Q′. The initial marking of this place will be equal
to the maximum number of conveyor-loads that can be simultaneously in
transit to the destination workstation wi. If this number is not limited, or
it its unknown, then we don't need to add a place poi, i.e. the number
of conveyor-loads with destination workstation wi, in this network, is only
limited by the available segments. These places will be called idle places.

3. Add a transition to the set Ti for each arc of the graph RGi. For an
arc ((w1, w2, s), X, c, (w3, w4, r)) ∈ F ′, the name of the transition will be
w1&w2&s&w3&w4&r. (The concatenation of this strings identifying the el-
ements of the arcs).

4. For each arc ((w1, w2, s), X, c, (w3, w4, r)) ∈ F ′, w1 ̸= w2, add an arc from
the place w1&w2&s to the transition w1&w2&s w3&w4&r, and an arc from
this transition to the place w3&w4&r.
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Fig. 6. Petri Net model for the example of the Fig. 1.

5. For each arc ((w, w, s), X, c, (w3, w4, r)) ∈ F ′ add an arc from the idle place
p0i (if there exists) to the transition w&w&s&w3&w4&r, and an arc from
this transition to the place w3, w4, r.

Observe that the net Ni, obtained following the rules of the preceding para-
graphs, is a strongly connected state machine. In e�ect, by construction, each
transition has only one input place and only one output place because a transi-
tion has been added for each arc in the graph RGi, and the places correspond
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to the both ends of the directed arc. Moreover, it is a strongly connected state
machine because all vertex in RGi, (w1, w2, s), is reachable by a path from a
source vertex (w,w, ϵ), since the construction of RGi requires that we can con-
struct the sequence of allocated segments s from a source vertex; and from a
vertex (w1, w2, s) always exists a path to the destination vertex (w, w, ϵ). Taking
into account that place P0i represent the fusion of all vertices (w, w, ϵ) of the
graph RGi, we can conclude that the net Ni is strongly connected. Additionally,
we can see that all circuits of Ni contain the place p0, because the original RGi

is acyclic. After all these transformations we obtain a set of strongly connected
state machines Ni, each one corresponding to a di�erent destination workstation
in the warehouse distribution center. The last step to obtain the RAS view of
the warehouse distribution center is the addition of the resources, that, in this
case, they are the segments connecting the workstations, and their integration
with to the state machines. This can be done state machine by state machine
and constructing the full model by fusion of the resource places with the same
name. That is, we are constructing the model in modular way. The two steps to
be applied are:

1. Add a place pc to the set PR for each segment c ∈ SG of in the warehouse
distribution center. The initial marking of this place will be equal to the
maximum number of trailers that can be in transit simultaneously in the
segment. (Normally. it will be equal to one representing tha availability of
the segment).

2. For each arc of the graph RGi of the form ((w1, w2, s), A, c, (w3, w4, r)) ∈
F ′, add an arc from the place pc, (resource place representing the segment
c) to the transition w1&w2&s&w3&w4&r. This arc, in the Petri Net, will
represent the allocation of the segment c. For each arc of the graph RGi of
the form ((w1, w2, s), R, c, (w3, w4, r)) ∈ F ′ add an arc from the transition
w1&w2&s&w3&w4&r to the place c. This arc in the Petri Net represents the
release of the segment c.

We denote this net by N R
i , representing the routing of the conveyor-loads to

the destination workstation wi, and the competition for the resource/segments.
The full model is obtained from the di�erent N R

i by the fusion of the resource
places (segments places) with the same name that appear in di�erent N R

i . The
Fig. 6 represents, in an schematic way, the full Petri Net corresponding to the
example in Fig. 2. In this Fig. 2 the names of places and transitions have been
simpli�ed in order to maintain readable. In order to identify the states of the
conveyor-loads with the places that represent them, we have used the simpli�ed
notation hi+tj ; that it means that the head trailer is in workstation i and the
tail trailer is in workstation j.

The �nal part of this section is devoted to prove that the obtained Petri
Nets for warehouse distribution centers with minimal path selection algorithms
belong to the subclass of Petri Nets named S4PR [6][9]. In order to do that we
recall the basic de�nitions of this class of nets.
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De�nition 1 (The class of S4PR nets) Let IN={1, 2, ...,m} be a �nite set
of indices. An S4PR net is a connected generalised self�loop free Petri net
N=⟨P, T,C⟩ where:
1. P = P0 ∪ PS ∪ PR is a partition such that:

(a) PS =
∪

i∈IN
PSi , PSi ̸= ∅ and PSi ∩ PSj = ∅, for all i ̸= j.

(b) P0 =
∪

i∈IN
{p0i}.

(c) PR = {r1, r2, . . . , rn}, n > 0.

2. T =
∪

i∈IN
Ti, Ti ̸= ∅, Ti ∩ Tj = ∅, for all i ̸= j

3. For all i ∈ IN , the subnet Ni generated by PSi ∪ {p0i} ∪ Ti is a strongly
connected state machine, such that every cycle contains p0i .

4. For each r ∈ PR there exists a minimal P�Semi�ow, yr ∈ IN|P |, such that
{r} = ||yr|| ∩ PR, yr[r] = 1, P0 ∩ ||yr|| = ∅, and PS ∩ ||yr|| ̸= ∅.

5. PS =
∪

r∈PR
(||yr|| \ {r}).

Each place p0i
is called idle place. Places of PR are called resource places being

unique for the whole model. The Places of PS are called process places. This def-
inition must be completed with the de�nition of the acceptable initial markings.
Initial markings represent no activity in the system, allowing the routing of each
conveyor-load in isolation.

De�nition 2 Let N = ⟨P0 ∪ PS ∪ PR, T,C⟩ be a S4PR net. An initial marking
m0 is acceptable for N if and only if: (1) ∀i ∈ IN , m0[p0i ] > 0. (2) ∀p ∈ PS,
m0[p] = 0. (3) ∀r ∈ PR, m0[r] ≥ maxp∈||yr||\{r} yr[p].

From the previous de�nitions and the procedures described in the sections 4 and
5 to obtain the Petri Net model of an warehouse distribution center the following
result can be easily veri�ed.

Proposition 1 Given an warehouse distribution center speci�ed by means of
a framework and a minimal adaptive routing algorithm, the Petri Net model
obtained through the procedure described in sections 4 and 5, belongs to the class
of S4PR net systems.

Proof (Sketch of the proof). In the section 5, after the rules to obtain the Petri
Nets Ni from the corresponding Routing Graph RGi, we have proven that each
Ni is a strongly connected state machine, and for all Ni,Nj , i ̸= j, they are
disjoint net systems. We have also proven that every cycle of each strongly
connected state machine Ni contains P0i . Therefore, to complete the proof we

only need to prove the existence of a unique p-semi�ow yr ∈ IN|P | for each
resource r. But this is very easy to proof because from each transition where the
resource place r inputs (the resource is allocated), there exists a unique path, in
the strongly connected state machine, to reach each transition where r outputs
(the resource is released). Moreover, all transitions where r is an output place
in the state machine Ni are connected by means of a minimal path from some
transition where r is an input place. Therefore, the resource r plus all the process
places de�ning the minimal paths connecting the output transitions of r and the
input transitions of r form the p-semi�ow that it is unique because we are dealing
with the nets Ni that they are state machines.
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Observe that the previous result is also true for non-regular frameworks because
we are considering in an explicit way the paths to a destination workstation.
Therefore, non regularity does not a�ect the �nal Petri Net. Nevertheless, non-
minimality of the path selection algorithms can lead to more general class of
nets than the S4PR in the case of existence of cycles in the followed route by
some conveyor-load. Once we have characterized the type of nets we can obtain,
we can use the developed theory for S4PR, trying to interpret these results from
the point of view of the warehouse distribution centers, in the next section. In
some cases we will see that we arrive to some negative results.

6 The Analysis and synthesis phase

The Petri Net model obtained in the previous section belong to the S4PR class.
Therefore, we can take advantage of this property and use the theoretical results
about the liveness characterization in S4PR. One of this results is presented in
the following theorem.

Theorem 2 ([6]) An S4PR, ⟨N ,m0⟩, is non�live if and only if there exists a
marking m ∈ RS(N ,m0) such that the set of m�process�enabled transitions is
non�empty and each one of these transitions is m�resource�disabled.

This characterization is a state based characterization. The interpretation in
terms of the warehouse distribution center is very easy. A token in a process place
of the state machine Ni represent a conveyor-load in an intermediate workstation
with destination workstation wi. That is, is a conveyor-load in transit. The
theorem 2 says that if all conveyor-loads in transit cannot advance because there
is no an available segment to advance (each one of these transitions is not enabled
because an input resource place is empty), this situation characterizes a deadlock
state: none of these conveyor-loads will arrive to its destination workstation
because they are stopped forever in the current process places. In [6], veri�cation
procedures of the characterization stated in this theorem are presented. They
are based in Integer Linear Programming Techniques.
An equivalent characterization to the previous one is based in the Petri Net
concept of siphon. A siphon is a set of places that if they become a set of empty
places, they remain empty forever (these is a structural de�nition of siphon but
we prefer to present the deep reason for the appearing of deadlocks in this class of
nets). Therefore, all output transitions of the places of the empty siphon will be
dead forever because at least an input place (that belong to the siphon) is empty
forever. The presence of one of this siphons in the net is potentially bad because
this siphon can become an empty siphon. The veri�cation procedures search
for a siphon and a reachable marking under which the siphon is empty. Empty
siphons represent a generalization of the circular waits, because in a siphon we
can �nd an intricate structure of superposed cycles of empty resources. For the
Petri Net in Fig. 6, you can �nd the two following bad siphons Di={p1, p2, p3,
p4, p13, p15, p17−to−20, p22, p24, p25, p28, p30, p31, p33, p34, p36, p37, p39, p40,
p42, p43, p45, p46} and Dj={p1, p2, p3, p4, p6, p13, p15, p17−to−20, p22, p24, p25,
p27, p28, p30, p31, p33, p34, p36, p37, p39, p40, p42, p43, p45, p46}. The deadlock
state described in section 2 corresponds to the reachable marking written as a
symbolic sum mr = p5 +p6 +5 ·p7 +2 ·p8 + ·p9 +2 ·p10 +p29 +p32 +p38 +p44. The
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reader can easily verify that the siphon Di is insu�ciently marked or he/she can
verify the mr satisfy the conditions of the theorem 2. Therefore, we conclude that
the proposed path selection algorithm is not deadlock-free. After the previous
analysis phase, the theory of S4PR nets gives results and methods to enforce
the liveness in the case of nets presenting deadlock states. These techniques
transform the initial Petri Net model in such a way that deadlock states become
not reachable. In some sense, they correspond to deadlock prevention techniques.
We can incorporate this phase because we are using Petri Nets as formal model
and they belong to the subclass of S4PR. The known synthesis approaches
enforcing liveness work on the bad siphons that can be found in the Petri Net
model. These techniques can be classi�ed into two groups.

1. Centralized Approach: [6][9] These techniques compute a place for each
bad siphon preventing that the siphon becomes empty. This new place is of
the same category that the resource places, and so it is said that the synthesis
problem is solved by using virtual resources that they are implemented as
a centralized monitors in the central software. In the case of the Petri Net
of the Fig. 6 we need three places to make live the net. In fact, in some
cases, to take the decision to allocate the virtual resource/segment in a local
workstation we can need coordinate the local path selection algorithm with
other local routing algorithms.

2. Distributed Approach:[10]. Previous limitations are solved developing a
distributed control policy using the so called swap virtual segments.

All these methods are iterative, but the performed transformations maintain the
transformed Petri Net inside the class of S4PR nets.

7 Conclusions

The design of deadlock-free minimal adaptive routing algorithms for warehouse
distribution centers is a complex and tedious task, for which the current method-
ologies, in many cases, only supply trial and error procedures. The assistance to
the designer is very small in order to �x the problem in the proposed algorithm.
In this paper we propose a methodology oriented to the design of deadlock-free
minimal adaptive routing algorithms trying to cope with all phases of the design.
The �rst step in this methodology consists of the abstraction of the system in or-
der to retain only the elements of the system allowing the study of the appearing
of deadlocks. These elements are the segments of the warehouse distribution cen-
ter, that they are seen as the resources for which the routing processes compete
to send conveyor-loads to destination workstations. The other elements are the
routing processes itself that represent the routing sequence through the frame-
work according to the routing algorithm. The result of this abstraction process is
formalized by means of a Routing Graph for each possible destination worksta-
tion. From the Routing Graphs and the segments we have obtained Petri Nets
that, for the class of routing algorithms that we are considering, belong to the
class of S4PR. Therefore, we pro�t that the class of S4PR is a well studied sub-
class of Petri Nets and using the known results we can proceed with the analysis
and synthesis phases of our methodology. So, the deadlock-free property in the
warehouse distribution center correspond to the liveness-property in our Petri
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Net model. The analysis of this liveness property can be done by two alternative
characterizations that have a good interpretation at the level of warehouse dis-
tribution center. Algorithms and methods to verify the property can be found in
[6]. In the case of non-liveness, there exist methods to enforce the liveness prop-
erty based in the addition of places that can be interpreted in terms of Petri Net
model as centralized software monitors.
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Abstract. Grid is one of the most e�ective new paradigms in large
scale distributed computing. Only recently Petri nets have been adopted
as a formal modeling framework for describing the speci�c aspects of the
Grid. In this paper we describe a Grid tool for High Energy Physics data
analysis, and we show how modeling its architecture with nets-within-
nets has led us to identify and solve a number of defects a�ecting the
current implementation.

1 Introduction

In the last decade the Grid computing [10, 9] approach to parallel and distributed
computing has de�ned a new path to enable high performance and throughput
applications. Grid infrastructures expose computational and storage resources
provided by di�erent computing centers as uniform families of services that can
be coordinated to create large scale e-Science work�ows.

Grand-challenge experiments, like those related to High Energy Physics, life-
science, and environmental science adopted the Grid as the tool for implementing
their software. In this paper we will consider a Grid distributed data analysis tool
developed to serve the community of the Compact Muon Solenoid (CMS) [19]
experiment at the CERN Large Hadron Collider (LHC) [20]. A speci�c software
tool has been developed to analyze physics data over the Grid, so that the users
are protected from the architectural complexities of the distributed infrastruc-
ture itself. This application, called CMS Remote Analysis Builder (CRAB) [7] is
released as open source software and has been adopted by the physics community
since 2005. Even though the code quality is being continuously improved thanks
to code analyzers (e.g., lint), the overall architecture has never been validated
with formal tools like Petri nets.

The aim of this work is to validate some relevant parts of the CRAB tool
using nets-within-nets [23]. In this paradigm the tokens of a Petri net can be
Petri nets themselves. As we will see, the hierarchical structure of the system
components is particularly suited for investigation with this formal framework.
The Renew tool [17] has been chosen as modeling platform, as it is the only
nets-within-nets tool that is mature enough to describe a real system like CRAB.
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In particular, the features of Renew used to model the system are such that the
obtained model is very similar to a hypernet [2].This is a class of high level Petri
nets which implements the nets-within-nets paradigm using a dynamic hierarchy,
and a bounded state space [3]. As detailed in Section 4, this approach allowed
us to isolate some problems in the CRAB implementation. Our approach do not
cover analysis yet: modeling and step-by-step simulation are the two means used
to unveil these problems.

In the literature high level Petri nets have been applied to di�erent contexts
related to Grid computing technologies. Most of the works in this �eld focus
on the usage of Petri nets as a tool for work�ows speci�cation and execution
[1, 13, 11]. A di�erent application of Petri nets to Grid is reported in [5]. Here
the resources exposed by the distributed computing infrastructure are modeled
directly with the aim of validating both properties like the soundness and the
fairness of their sharing for a process mining work�ow. As far as we know, high
level Petri nets, and in particular hierarchical nets, have been applied neither to
the Grid infrastructure, nor to the study of a classical Grid application pattern
like the distributed data analysis.

The remainder of the paper is organized as follows: Section 2 introduces
the basic notion of nets-within-nets we refer to, and the Renew tool. Section
3 describes the Grid architecture we are considering, while in Section 4 the
modeling of the system and the bugs found thanks to the formal approach are
presented. A discussion about the modeling choices used in our approach is made
in Section 5. Finally, some conclusions are reported in Section 6.

2 The Nets-Within-Nets Paradigm and Renew

According to the nets-within-nets paradigm, the tokens of a Petri net can be
structured as Petri nets themselves. This idea is due to Valk (see [21]), who
de�ned and studied the class of Elementary Object Nets (EOS) in [22]. Later on,
properties of EOS were studied in [15], and other classes of high level Petri nets
which uses the nets-within-nets paradigm were de�ned, like for example [12, 2,
14, 24, 18].

In all these models a system is usually modeled as a collection of nets. One
net is designated as the system net, the top level of the net hierarchy. All other
nets are assigned to an initial place, a place in which they reside initially. This
distribution of nets induces a hierarchy. The system evolves by moving tokens
from place to place through the �ring of autonomous transitions, or by synchro-
nizing transitions between nets at di�erent levels. The hierarchical structure of
the model is usually static, but in some models there can be interactions be-
tween nets at di�erent levels in the hierarchy which can dynamically change the
hierarchy itself. For example, in hypernets a net N can be moved from a place
belonging to a net A, to a place belonging to a distinct net B. The interaction
between nets A and B is only possible if they are close in the hierarchy.

The development of the Renew software tool [17], a Java-based high-level
Petri net simulator that provides a �exible modelling approach based on Refer-
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ence nets [16], allows the use of this paradigm to model real systems. Renew is
not only a nets-within-nets editor and simulator: it allows the use of high level
net concepts like arc inscriptions, transition guards, and coloured tokens. How-
ever, we only use a subset of the features of Renew. In particular, we choose to
model the system with a hypernet-like model [2] (we will discuss in section 5 why
the system is not a proper hypernet). The system is modeled as a collection of
net instances. Tokens are references to net instances. Therefore it is possible that
a net has more than one reference (token) in the system which refer to it. Arc
inscriptions contain single variables. When a transition is �red tokens are bound
to these variables. Transition inscriptions may contain channel names, used by
two or more nets when they need to synchronize. An uplink is used when a net
wants to synchronize with the net above it in the hierarchy, a downlink is used
when a net wants to synchronize with one of the reference tokens it contains.

From a syntactical point of view the Renew constructs we used in our model
are the following:

� A net instance is created by a transition inscription of the form var : new
netname, which means that the variable var will be assigned a new net
instance of type netname.

� An uplink is speci�ed as a transition inscription :channelname (expr). It
provides a name for the channel and a variable which is used for vertical
communication between nets.

� A downlink has the form netexpr :channelname (expr) where netexpr is an
expression that must evaluate to a net reference.

To �re a transition that has a downlink, there must be an input arc labelled
with a proper variable name (netexpr for the previous downlink example), and
this variable must evaluate to a net instance. The referenced net instance must
provide an uplink with the same name,and it must be possible to bind the
variables suitably so that the channel expressions evaluate to the same values on
both sides. The parameter is bound to a variable present in one of the input arcs
of the up(down)-link, and then it is bound to the parameter in the corresponding
down(up)-link. Then the transitions can �re simultaneously.

The exchange of (structured) tokens between nets, typical of hypernets, is
possible by means of parameters. Figure 1 shows an example. The only transition
enabled at the beginning is create (Figure 1(a)), which creates an empty child1
net, and a child2 net (Figure 1(b), and Figure 1(c) respectively). The di�erence
between using the parenthesis or not using the parenthesis in creating a new net is
that, if you use them, then the transition that is being �red must synchronize on
the channel new() in the child net. Therefore, transition create in the system net
synchronizes with transition create in the child1 net, which creates the ANet net.
Afterwards, transitions exchangeNet, moveANet, receiveANet can �re, moving
ANet to child2.

Let us notice that in our model the exchange of tokens between the two
children nets, child1 and child2, is made under the supervision of the system
net. This means that the system net in some way observes the token exchange
between its children.
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[]

(b) The child1 net which creates a net
of type ANet and sends it upward

net
receiveANet

:ch(net)

ANet
(after)

[]

(c) The child2 net which
receives a net from above

Fig. 1. A simple example

3 The Application Context: Grid distributed analysis

The CMS experiment at CERN produces about 2 Petabytes of data to be stored
every year, and a comparable amount of simulated data is generated. Data needs
to be accessed for the whole lifetime of the experiment, for reprocessing and anal-
ysis, from a worldwide community: about 3000 collaborators from 183 institutes
spread over 38 countries all around the world.

The CMS computing model uses the infrastructure provided by the World-
wide LHC Computing Grid (WLCG) Project [6] through the supporting projects
EGEE, OSG and Nordugrid. Grid analysis in CMS is data driven. A prerequi-
site is that data is already distributed to some remote computing centers, and
correspondingly published in the CMS data catalogue, so that users can discover
available datasets. Parallelization is provided by splitting the analysis of large
data samples into several jobs. The output data produced by the analyses are
typically copied to the storage of a site and registered in the experiment spe-
ci�c catalogue. Small output data �les are returned to the user. In the CMS
experiment the CRAB tool set has been developed in order to enable physicists
to perform distributed analysis over the Grid. The role of CRAB is to allow
the user to run over distributed datasets the very same analysis she/he ran lo-
cally, and collect the results at the end. CRAB interacts with the distributed
environment and the CMS services, hiding as much of the complexity of the
system as possible. CMS community members use CRAB as a front-end which
provides a thin client, and an Analysis Server which does most of the work in
terms of automation, recovery, etc. with respect to the direct interactions with
the Grid. The Analysis Server enables full work�ow automation among di�er-
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ent Grid middlewares and the CMS data and workload management systems.
Indeed, the main reasons behind the development for the Analysis Server are:

� automating as much as possible the whole analysis work�ow;
� reducing the unnecessary human load, moving all possible actions to server

side, keeping a thin and light client as the user interface;
� automating as much as possible the interactions with the Grid, perform-

ing submission, resubmission, error handling, output retrieval, post-mortem
operations;

� allowing better job distribution and management;
� implementing advanced use cases for important analysis work�ows

The server architecture adopts a completely modular software approach.
In particular, the Analysis Server is comprised of a set of independent com-
ponents (purely reactive agents) implemented as daemons and communicating
asynchronously through a shared messaging service supporting the �publish &
subscribe� paradigm. Most of the components are themselves implemented as
multi-threaded systems, to allow a multi-user scalable system, and to avoid bot-
tlenecks. The task analyses are completely handled during their lifetime by the
server through di�erent families of components: there are components devoted
to monitoring the Grid status of the single jobs in a task, other groups of agents
coordinate to manage the output retrieval and the recovery of the failed jobs by
scheduling their resubmission automatically. A relevant part of the agents is de-
signed in order to handle the submission chain of user tasks to the Grid. As the
Analysis Server internal architecture is a natural candidate for being analyzed
with the nets-within-nets paradigm, as aforementioned, we decided to model
and study the Grid submission chain. The aim of this study is to check that
the involved agents behave correctly and e�ciently with respect to the foreseen
submission work�ow. We decided to consider the system at the component-task-
job level, as it represents a good compromise between the e�ects perceived by
the tool �nal users and the large number of technical details that a complete
representation of the Grid would require.

4 Modeling the submission use-case

In this Section we describe in detail the process of submitting jobs to the Grid
through the CRAB Analysis Server. For each relevant component of the sys-
tem its net representation is discussed. In addition, the bugs that have been
discovered thanks to the net models are presented with the solutions that the
actual code has adopted in order to solve the issues. The CRAB analysis suite
was modeled using nets in a hierarchical fashion, as shown in Figure 2. A ver-
tical line with multiplicity n, indicates the presence of n nets in the higher one
(e.g.: the CRABClient net contains from 1 to N Task nets); a horizontal dashed
line indicates that the linked nets are references to the same net. In our mod-
eling we consider one client just for the purpose of simplicity. Of course, the
discussed functionalities and use cases still hold when a larger number of clients
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reference

Fig. 2. The Nets hierarchy for the CRAB suite.

is considered, as the client server model assumes no direct interactions among
the clients. In addition, for the use case that will be discussed, the server code
separates properly the session of work for every task.

The OverallSystem net, which is the system net, contains three nets which
respectively model the behavior of the client who is using the CRAB server
(CRABClient net), the TaskRegister component which is a thread running on
the CRAB server (TaskRegister net), and the CRABServerWorker which is also
a thread running on the server (CRABServerWorker net). Tasks are the objects
a client creates, and deals with. They are composed of jobs, the single units of
work that need to be performed. The TaskRegister component is responsible
for registering tasks, i.e. creating some data structures on server disks, check-
ing if each task has all the inputs it needs to be executed, and checking if the
Grid can access the proper security credentials to execute it. The CRABServer-
Worker component continuously receives jobs, schedules them for execution on
the Grid infrastructure, and creates a SubmissionWorker thread which monitors
the lifecycle of each job on the Grid. The clients interact with the server, and
can initiate some operations like: submitting jobs, killing them if needed, and
asking for the results.

4.1 CRABClient, Tasks, and Jobs

The �rst component we are going to discuss is the CRAB client, which is modeled
with the net in Figure 3. This component is what enables all the action sequences
that the users can do on their Grid analyses.

The �rst thing a client does is to create a new task on the client machine.
The typical usage pairs a unique task with a CRAB analysis session. For this
reason we assume that the tasksPool can contain a �nite number of tokens. After
the task has been locally created on the client machine, the client can perform
a submit operation, which is of course the most important one as it starts the
submission chain. The �rst time a task is submitted to the server, it is also regis-
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:csf(task)
tasksPool

submittedTaskPool

Fig. 3. The CRABClient net.

tered by the TaskRegister component. Subsequent submits are handled directly
by the CRABServerWorker component. In our model the di�erence between the
two types of submits is modeled as two di�erent transitions. In particular crab
-submit(first) transition has an uplink (:csf(task)), which means that it must be
synchronized with the upper level. As a result the task reference is copied to the
TaskRegister component by the Overall System net. After creation, the main
operations a user can do are submit, resubmit, kill, getoutput, and clean. All
these operations require an interaction with the server, but since we have focused
on the submission use case, these interactions have not been explicitly modeled.
For example the getOutput command is modeled as an interaction between the
client and the job by means of two inscriptions. Handling all the possible inter-
actions between the actors involved in the system would have resulted in a very
big model, making it impossible to describe in this paper.

A task, see Figure 4, is a bag of jobs (the system allows to collect up to 4000
jobs into a singe task) and it is a representation that CRAB uses to perform
collective actions on the Grid processes. Places notRegistered, registering, regis-
tered of the Task net contain information about the state of a task itself. These
places control the enabledness of transitions crab -submitFirst, and taskRegis-
tered, which are respectively called by the CRABClient when a job is submitted,
and by the TaskRegister component when the task has been successfully reg-
istered after a submit �rst operation. The submit transition is called when a
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j

j

j

overkilling

:new()

j2j1

j2j1

j1

j1 j2

Fig. 4. The Task net. Only four jobs are considered in order to exemplify the
relation with the job net.

CRABClient performs a submit subsequent action. In our model both taskReg-
istered, and submit transitions send upward two jobs through a synchronous
channel, and make the job move to the submission request state.

The net representing the state of Grid jobs and their allowed actions is re-
ported in Figure 5. This net has been modeled combining the �nite state machine
reported in the CRAB o�cial documentation with the information extracted di-
rectly from the portion of code devoted to the Grid job state handling. Several
transitions of this net contain uplinks, and therefore have to be synchronized
with some other net. Transitions with a :crs() uplink (CRAB Resubmit) are
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:crs()
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Fig. 5. The Job net.

transition enabled only if the job is in a state where a resubmit is possible, and
are synchronized with the crab -resubmit transition of the CRABClient net, or
the resubmit transition of the SubmissionWorker net. In the same way killings
(channel :ck()), failures (channel :f()), submission (channel :s()), and output re-
trieving (channel :cg()), have to be synchronized with a correspondent transition
in another net.

The integration of the documentation and the code with the formalism of
the nets has allowed us to identify a bug in the way job states are modi�ed.
In particular, the net allows some transitions that are not actually activated by
any event observed by the system (bug 1, b1). For example let us consider the
unlabeled transition between the sub.success and the cleaned places in Figure
5: the latter denotes that a job has been abandoned because the user security
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credentials are expired and the Grid will not manage processes whose owner
cannot be recognized. A malicious code interacting with the clients in place of
the proper server could move jobs arbitrarily to this terminal state. The �x for
this bug consisted in a review of the code managing the job state automata in
accordance with what is stated by the presented Job net. Also, the pre-conditions
that allow a client to perform a kill request over the jobs are not granted properly
(b2): jobs can be killed when they are in states where the killing is dangerous.
For example, a user could run into a condition where a failed job cannot be
resubmitted as the system requires to kill it. That means the job is in a deadlock,
as a failed job cannot be killed on the Grid.

4.2 TaskRegister

The TaskRegister component, shown on the left of Figure 6, duplicates the task
and jobs structures that have been created at the client side and alters all the ob-
ject attributes in order to localize them with respect to the running environment
of the server, taking care also of security issues (like user credentials delegation)
and �les movement (check the existence of input). We modeled this cloning by
means of the reference semantics: the TaskRegister component receives from the
client a copy of the reference which points to the Task.

The component is able to handle more tasks simultaneously thanks to a pool
of threads implementing the net of Figure 6. The �rst transition that is �red is
submission, which is synchronized with the transition in the system net that re-
ceives the task reference from the CRABClient. Then four operations which can
fail are executed on the task. These include local modi�cation of the task with
respect to the server environment, the user's credential retrieval (also known as
delegation), the setting of the server behavior according to what the credentials
allow to do and, �nally, the checking that the needed input �les are accessible
from the Grid. If the registration fails the only possible operation available is
archiveTask which deletes the reference to the task from the task register com-
ponent. If the user has the privileges to execute the jobs in the task, and if the
inputs needed by the task are available, then a range of jobs is selected from
the task and passed to the CRABServerWorker by �ring the toCSW transition
(again under the supervision of the system net). The modeling and the simu-
lation of the TaskRegister net has highlighted some relevant defects and bugs.
In case of failure the TaskRegister component was not able to set properly the
status of the jobs in a task to fail. This macroscopic lack in the system design
implied di�erent side e�ects. The server was not able to discriminate whether
to retry automatically the registration process or to give up and notify the user
about the impossibility to proceed (b3). In addition, the system could not tell
if the registration has been attempted previously. This implies that the client
transfers the input data every time a registration failure appears, with a waste
of network resources (b4). Both the defects have been solved by introducing the
proper synchronization between the fail transition in the component with sub-
mission failed in the job net. Mapping the synchronization into the server code
has granted that the status of the jobs is set to the correct failure state and that
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Fig. 6. TaskRegister and SubmissionWorker nets respectively

the submission counters are properly incremented (being implementative details
the counter is not reported in the Job net). With this modi�cation the server
becomes aware that a �rst try has been executed and also network transfers are
exploited more e�ciently. A second bug has been identi�ed thanks to the study
of the synchronization among the transitions for the client, the jobs and the
TaskRegister nets. In detail, the handling of the kill commands presents some
issues. If a user requires to kill some jobs while the task is being registered, the
system cannot distinguish properly which jobs have to be killed and therefore it
applies an over-killing strategy by halting the whole task (b5). This happens be-
cause the code performs some sort of synchronization with the Task net instead
of having rendezvous with the related transitions into the lists of killing jobs.

The killing of Grid jobs is a demanding action, both in terms of network
communications and in terms of coordination among the di�erent services in-
volved in a Grid. Furthermore the killing of an analysis job is a permitted but
infrequent action. For these reasons the CRAB developers have decided to sup-
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press this early job termination feature in order to avoid the bug. Now users are
allowed to kill jobs only once they have been actually submitted to the Grid.

4.3 CRABServerWorker, and SubmissionWorkers

In our model the result of a submit operation is that the CRABServerWorker
component, shown in Figure 7, receives a structured token in the place accepted.
If the submit was the �rst, transition newTaskRegistered is �red after the task has
been registered by the TaskRegister component by means of transition toCSW,
which is synchronized with transition newTaskRegistered through the overall
system. If the submit is not the �rst, the task has been already registered,
therefore transition subsequentSubmission is �red. After receiving the range of
jobs, the CRABServerWorker component schedules these jobs for the execution
on the Grid infrastructure. The practical e�ect of this component is to break
the task into lists of jobs in order to improve the performance thanks to bulk
interactions with the Grid middleware. The Submission Worker thread spawned
by the component monitors the actual submission process of the jobs. We have
modeled this fact by creating a Submission Worker net for each one of the jobs in
the list. Indeed, transition triggerSubmissionWorker creates a new Submission
Worker assigned to the variable sw and synchronizes it with a transition labeled
init.

schedule
j j

sw

:acceptTR(j1,j2)
newTaskRegistered

acceppted

triggerSubmissionWorker

:clean()
clean

subsequentSubmission
:subsequentSubmission(j1,j2)

j

sw: init(j)
sw: new SubmissionWorker

j1 j2

j2j1

Fig. 7. The CRABServerWorker Net

The thread is responsible both for tracking the submission to the Grid in-
frastructure, and for resubmitting jobs when a failure occurs. Failures can occur
for di�erent reasons: network communication glitches, unavailable compatible
resources, etc. Some types of failures are recoverable and in those cases the Sub-
mission Worker automatically tries to resubmit the job a three times. This value
can be con�gured in the code, but in the model we only used the actually em-
ployed value of three. If the failure persists the job is permanently marked as
failed. The net shown on the right in Figure 6 is our model of the submission
worker component.
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The study of the synchronization between the job and the Submission Worker
nets allowed us to identify another bug in the code. The submission success
transition in the job net (Figure 5) synchronizes with the submit Submission
Worker's transition (right of Figure 6). This means that the CRAB Server marks
the submission as successful just after the interactions with the Grid. Actually
the network latencies could delay the propagation of the job failure message (b6)
and, therefore, the correct rendezvous should be enacted between submission
success and evaluateOutcome.

It is relevant to observe that the approach followed for the modeling of the
CRAB Server submission chain is a particular case for a quite general class
of Grid systems. All the Grid middlewares rely on jobs that are represented by
�nite state automata and that are concurrently managed by the di�erent services
involved in the Grid. In addition, the intermediate action of a broker like the
CRAB Server is becoming a common pattern with the di�usion of scienti�c
gateways: programmatic portals that abstract the user applications from the
complexities of the distributed infrastructures acting as back end.

The adoption of the nets-within-nets paradigm has provided a natural and
e�ective way to model subtle interactions among the di�erent net levels. It would
have required a signi�cantly greater e�ort to discover the same problems with
a �at net approach. In the following subsection details about the process of
deriving the models from the documentation and the code are given.

4.4 Details on the model derivation process

The model was derived from the code by analyzing both the o�cial documenta-
tion and the source code of the system. The Job net is directly built from the doc-
umentation. A �nite state automata which describes the Job is reported explic-
itly. After that, simply by using pattern matching we analyzed the source code
relevant for the submission use case by searching for interaction with jobs. Each
source module is modeled as a net (e.g.: CRABClient, TaskRegister, CRAB-
ServerWorker etc), and the interactions with the Job nets are modeled using the
Renew uplink/downlink mechanism. A modi�cation of the status of a job in
the code is modeled as a pair of synchronized transitions in the model itself: one
in the job net and one in the net that models the component changing the job
status.

To ensure that the model is an accurate representation of the software, we
made several task submissions with the CRAB tool and monitored the status
of the jobs during the evolution. The request parameters were set up so that
di�erent behaviours of the system are tested. For example, jobs lacking of input
�les, job submitted by users with expired credentials, and jobs killed before the
completion of task registration process are test cases that have been considered.
After that, we simulated each submission on the model, taking care that the
simulation of the status of the job net was consistent with the actual job status
in the system.
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5 Discussion

In the study we have just presented, a formal approach was used to validate
a system that has already been implemented. Simulating the behavior of the
system by means of a computer aided tool was what allowed us to �nd problems
in the implementation of the CRAB server. However, another great advantage
of modeling a system with formal methods is the possibility to apply automatic
analysis techniques to extract information about the system, like invariant anal-
ysis, and model checking.

In order to apply some of these techniques, the formal model must respect
speci�c prerequisites. For example, most algorithms for model checking a con-
current system require a bounded state space. Nets-within-nets models which
satisfy this last requirement are hypernets [2] and their generalization [4], which
can both be expanded to 1-safe Petri nets [3, 18]. This expansion guarantees the
possibility of applying all the analysis techniques of this well known class of Petri
nets to hypernets.

The �rst idea was to use such a class of nets to model the CRAB server,
but because of the absence of modeling limitations and veri�cation features in
Renew, and because of the high complexity of the system, we preferred to
use a slighty more powerful version of hypernets. To come back to the class
of hypernets, having therefore the certainty that the state space is limited, the
following �xes are necessary:

� Transitions which create or delete tokens must be deleted in some way. For
example, transition crab -create of the CrabClient net cannot create an un-
bounded number of tasks anymore, but an input place which contains as
many tokens as the maximum number of allowed tasks must be added.
This is not a big problem. As a matter of fact the computers disks space is
limited, and consequently so are the number of tasks which can be created
by a user.

� Hypernets use a value semantics, which means that a net cannot have two
references to it. Nevertheless, in our model some transitions duplicate the
references to a net. Duplication of references is somehow dangerous if the
intention is to keep the state space bounded. Loosely speaking, the risk is
of an uncontrolled grow of the references of a net without a corresponding
deletion of these references. In our model the use of the value semantics can
be achieved by deleting these duplications of references, and using simple
tokens to communicate the intention to modify the referenced net.

Even though analysis of properties is not available with the current version
of the model because of the issues just discussed, the more practicality of the
reference semantics from a modeling point of view helped us �nding several
design defects in the implementation of the CRAB server. In the future we plan
to restrict the model to a hypernet in order to be able to verify properties like
invariants, or to do model checking 1. In our opinion, as a �rst step it was

1 Restricting the model to hypernets is not the only way to have a limited state space,
but a formal proof is available using hypernets thank's to the 1-safe expansion
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important to use a powerful formalism to avoid getting lost in the details of the
model, even though that meant sacri�cing the analysis capabilities.

6 Conclusions

In this paper, we discuss a large scale Grid application used to perform dis-
tributed data analysis in High Energy Physics experiments. Because of the com-
plexity of the architecture, the software tool has been modeled using the nets-
within-nets paradigm in order to validate the correctness of its behavior using
simulation. In particular we considered the fundamental use case of the submis-
sion of user data analysis to the Grid. Every component of the CRABServer
involved in this use case has been modeled in the hierarchy of the nets and
compared to the behavior expected by its users.

From the simulation of the model a number of bugs and design defects
emerged. This has led the developers to improve the overall quality of system
implementation in the subsequent releases that the users now adopt. Two groups
of bugs have been identi�ed: bugs related to wrong coding of the expected be-
haviors and bugs where the speci�c adoption of nets-within-nets formalism has
highlighted synchronization problems among the entities .

In addition, the approach followed to model the CRAB tool set has shown
its generality in order to model most of the Grid applications in which an or-
chestration entity drives the nets representing both the �nite state machines of
the jobs running on the distributed infrastructure and the services exposing the
resources themselves.

The class of nets used to model this system is a more powerful version of
hypernets, using the reference semantics instead of the value semantics, and
allowing creation/deletion of tokens. As discussed in Section 5, it is possible
to restrict the model to a proper hypernet by sacri�cing its readability (some
places and transitions must be added). Then, by means of hypernets and their
expansion to 1-safe nets, it will be possible to use all the techniques de�ned for
the class of 1-safe nets for analyzing the system.

A plugin of Renew that allows to draw and to analyze a hypernet is being
developed. We plan to use this plugin to make automatic veri�cation of properties
of the system.
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Abstract. In this paper we examine ways to verify reference nets, a
class of high level Petri nets supported by the Renew tool. We choose
to restrict reference nets to hypernets, another nets-within-nets model
more suitable for verification purposes thanks to an expansion toward
1-safe Petri nets. The contribution of the paper is the implementation
of such analysis techniques by means of a Renew plugin. With this
plugin it is now possible to draw, and to analyze a hypernet. The work
is demonstrated by means of a simple example.
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1 Introduction

The verification of properties of a software system has become an important
part of software engineering. Especially specifications critical to the correct ex-
ecution of a software system need to be verified in order to guarantee them
after deployment. The problem of verification is its complexity and the effort
required for it. Without proper methods the verification itself is difficult, costly
and time-consuming.

In this paper we approach the general problem of verification with the help
of Petri nets. The formalism is deeply rooted within established theoretical and
formal methodologies, as well as being supported by a multitude of tools and
analysers. Petri nets have been studied in detail and contain properties, for which
established verification techniques exist. Using Petri nets the general approach
is to map and translate specific software issues and properties to these Petri
⋆⋆ Partially supported by MIUR, and DAAD
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net properties. These properties can then be verified using the known Petri
net techniques. Assertions made for these can then be translated back for the
software behind it.

High level nets, Petri net models enriched with additional abstraction con-
structs, are well suited to represent complex systems due to their high abstrac-
tion constructs. One of their problems is that verification of their properties
is difficult. Properties which are computable with low-level formalisms become
undecidable, and thus cannot be verified anymore in some high-level models.
However, high-level formalisms can be restricted in some way so that they can
be translated into low-level formalisms, which in turn can be verified again. In
particular, the interest of this paper is on high level nets which use the nets-
within-nets paradigm, formalisms in which the tokens of a Petri nets can be
structured themselves as Petri net. The two formalisms analyzed are reference
nets, the formalism used as a basis for the Renew tool, and hypernets, another
nets-within-nets formalism with particular restrictions that allow the expansion
toward an equivalent 1-safe Petri nets. In this paper we will show how to trans-
late a subset of the high-level reference net formalism into hypernets, which in
turn can be easily translated into 1-safe nets. These can then be analysed by
existing toolsets. The main result of our work is the implementation of a Re-
new hypernet plugin which incorporates features for computing S-invariants,
and features for model checking a hypernet. As far as we know, this is the first
time that analysis techniques typical of Petri nets has been implemented in a
tool which support the nets-within-nets paradigm, and it is mature enough to
be used in a real application context. In the rest of the paper when we will talk
about invariants we are always referring to S-invariants.

The paper is structured into the following sections. Following this introduc-
tion the theoretical and technical background is shortly discussed in section 2.
This section will focus on the reference net and hypernet formalisms. In section 3
we will show how to translate reference nets into hypernets and determine the
prerequisites for analysis. Section 4 describes the Hypernet plugin created for
Renew. Section 5 gives a short example how these different tools are incorpo-
rated and used to analyse a given net. The conclusion of the paper is found in
section 6.

2 Background and related work

In this section we will introduce by means of examples the basic theoretical
formalisms used in this paper, as well as motivate why we have chosen them as
our means of verification and modelling. The interested reader can find them
in the cited references. In general Petri nets offer a simple way of modelling
concurrent behaviour of a system. Higher level nets often introduce abstractions
from the simple net models, which offer structures and methods not available to
or difficult to model in low-level Petri nets. One major such abstraction is the idea
of nets within nets, introduced in [11] for Object Petri nets. This paradigm allows
for arbitrary nets to be the tokens of other nets. In this way it is possible to model
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the behaviour and interaction of different entities within a complex system, all
modelled with Petri nets. Using these formalisms to model and even implement
software systems is quite natural. Of course high-level Petri nets and especially
formalisms following the nets-within-nets idea are far more complex then the
relatively simple low-level Petri nets. This increases the effort and complexity
of verifying properties within these nets, which is the main motivation of this
paper.

In the following subsections we will describe the reference and hypernet for-
malisms.

2.1 Reference Nets and Renew

The reference net formalism serves as the starting point of our examinations. It
was described in [7]. It is a high level Petri net formalism based on the nets-
within-nets paradigm. In this formalism it is possible for tokens within a net to
be almost arbitrary objects and especially other Petri nets. Nets can then be used
like tokens within their respective so-called system net, but it is also possible
to let nets of different layers communicate with one another. The reference net
formalism uses reference semantics. This means that tokens within a net do not
exclusively correspond to their object/net (value semantics), but only reference
their object/net. As a result of this multiple tokens can refer to the same object.
This makes it possible to express complex systems in a natural way.

Communication between different net instances within the reference net for-
malism is handled via synchronous channels, based on the concepts proposed
in [5]. Synchronous channels connect two transitions during firing. Transitions
inscribed with a synchronous channel can only fire synchronously, meaning that
both transitions involved have to be activated before firing can happen. Dur-
ing firing arbitrary objects can be transmitted bidirectionally over the channel.
While the exchange of data is bidirectional there is a difference in the handling
of the two transitions. The transition, or more accurately the inscription of the
transition, initiating the firing is called the downlink. The downlink must know
the name of the net in which the other transition, the so-called uplink, is located.
The inscription of the downlink has the form netname:channelname(parameters),
in which the parameters are the objects being send and received during firing.
If the downlink calls an uplink located in the same net the net name is simply
replaced by the keyword this. The uplink’s inscription is similar, but looses the
net name, so that it has the form :channelname(parameters). Uplinks are not
exclusive to one downlink and can be called from multiple downlinks, so that
this construct can be used in a flexible way. It is also possible to synchronise
transitions over different abstraction levels. While during firing one downlink is
always linked to just one uplink, it is possible to inscribe one transition with
multiple downlinks, so that more than two transitions can fire simultaneously.

Figure 1 shows a simple example of a reference net system. The example
was modelled using the Renew tool, which will be described later. It models
a producer/consumer system, which holds an arbitrary number of producers
and consumers. The system consists of three kinds of nets: the system net, the
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Fig. 1. Reference net example

producer nets and the consumer nets. The producer and consumer nets both
possess the same basic structure, but use different channels. The system net
serves as a kind of container for the other nets. The transitions labeled manual
initiate the creation of new producers and consumers by creating new tokens
when a user manually fires them during simulation3. The transitions labeled
C and P actually create new producer or consumer nets when firing. These
new nets are put onto the places below the transitions. The transition labeled
I synchronises the firing of a transition in one consumer and one producer each
(labeled I1 and I2 in the other nets). In this way it is possible to simulate
the behaviour in such a way, that whenever a producer produces a product an
arbitrary consumer consumes it. It is of course possible to enhance this model
by, for example, adding an intermediary storage, which can store items from
arbitrary producers until consumers need them. Another way of making the
model more realistic is to explicitly model the products as nets as well. That
way they would not just be simple tokens but actual objects being exchanged
via the synchronous channels between the producers and consumers. In this case
the parameters of the channels would be the nets, which would be transmitted
from within the producer nets into the consumer nets.

The Petri net editor and simulator Renew (The REference NEt Workshop)
was developed alongside the reference net formalism, and is also described in [7]
as well as in [8]. It features all the necessary tools needed to create, modify, simu-

3 This is a special function of the Renew tool, which was used for this example.
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late and examine Petri nets of different formalisms. It is predominantly used for
reference nets, but can be enhanced and extended to support other formalisms.
It is fully plugin based, meaning that all functionality is provided by a num-
ber plugins that can be chosen, depending on the specific needs. Plugins can
encapsulate tools, like a file navigator or certain predefined net components, or
extensions to the standard reference net formalism, like hypernets or workflow
nets. Renew is freely available online and is being further developed and main-
tained by the Theoretical Foundations Group of the Department for Informatics
of the University of Hamburg. Since the tool supports the idea of nets within
nets and is flexible enough to support multiple formalisms, it was chosen as the
basic environment for the examinations of this paper.

2.2 Hypernets

As we will discuss later in section 3, we introduce hypernets in this paper be-
cause they have been used as a restriction of the reference nets formalism to
allow property verification in Renew. Hypernets are a nets-within-nets formal-
ism introduced to model systems of mobile agents [2]. After their introduction
several studies has been conducted on hypernets. In [3] it has been shown that
it is possible to expand a hypernet in a 1-safe Petri net in such a way that the
(hyper) reachability graph of the hypernet is equivalent to the reachability graph
of the 1-safe net. In [1] a class of transition system, called agent aware transition
systems, has been introduced to describe the behaviour of hypernets. In order to
model a class of membrane systems, a generalisation of the hypernet formalism
which relaxes some constraints of the basic formalism was introduced under the
name of generalised hypernet in [4], and a theorem proving the existence of an
expansion towards 1-safe nets for generalised hypernets was proved in [9].

Due to technical limitations in the Renew tool only the basic version of
the formalismi [3] has been implemented. Now we will informally discuss how
hypernets work by means of an example. From a structural point of view a hy-
pernet is a collection of (possibly empty) agents N = {A1, A2, ..., An}, which are
modelled as particular Petri nets. A state of a hypernet is obtained associating
to each one of the Ai agents (nets), but one, a place p belonging to one of the
other agents. That place will be the place which contains the agent Ai. This
containment relation induces a hierarchical structure which by definition must
be a tree. The root of the tree is the only agent which is not associated to any
place (this agent is the system net).

The system evolves moving agents from place to place. A peculiar character-
istic of hypernets is that the hierarchical structure is not static, but an agent
can be moved from a place p belonging to an agent Ai, to a place q belonging
to a distinct agent Aj . Another characteristic of hypernets is that agents cannot
be created or destroyed. To ensure this ”law of conservation of tokens” each net
representing an agent is structured as a set of modules which have the structure
of synchronised state machines, enriched with some communication places that
allow the exchange of tokens between two agents close in the hierarchy. Agents
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and modules have a sort, and an agent can only travel along modules of the
same sort.

In Figure 2, and Figure 3 the hypernet modelling a slightly modified version
of the one seater plane case of study is drawn. This case of study has been
introduced in [3], and models an airport in which planes can do basic things like
landing, deplaning/boarding passenger, refuelling, and taking off. The changes
we made in regards to the number of travellers in the example, the simplification
of the safety refuel check and the part of the hypernet which makes sure a plain
is empty when it is being refuelled.

To keep the example simple we considered a version with a plane which has
only one seat. We choose to illustrate this example to show in an informal way
how hypernets works. Moreover, in Section 5 we will show how it is possible
to prove some properties of this simple example using the Renew plugin we
developed.

Fig. 2. Airport agent

The agent in Figure 2 models the behaviour of the airport. It has three mod-
ules, one for handling passengers, one for handling planes and one for synchroni-
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sation purposes. Transition board belongs to both module passenger and module
plane, and can only be executed synchronously. The same applies for transitions
deplane and to_rf. Communication places are the dashed half circles. They can
either be up-communication places, used for communicating with the net at the
level immediately above in the hierarchy (such as the two communicating places
of the module plane in the airport agent), or down-communication places, used
to communicate with an agent located in another module of the current net
(such as the communication places in the synch, and passenger modules of the
airport). In the latter case, a name of a module is provided. In this module there
must be an agent ready to provide the traveling token which will be moved in
the hierarchy, otherwise the transition is not enabled.

For example, transition deplane of the passenger module in Figure 2 has an
input communication place which indicates that a token is expected. Since this
communication place is marked with the plane annotation, the traveling token
which is being moved to place l must be provided by a plane agent. This plane
agent must be located in the input place of transition deplane in module plane
of the airport, namely lg. In the example the only agent which can provide a
token is P1. The traveling token, which must be a passenger, is then selected

Fig. 3. The P1 plane agent shown in Figure 2

and taken from the seat place of the plane agent (Figure 3), and moved to l.
Transition to_rf is another example of use of communication places. From

the airport perspective it is only required that an agent located in the plane
module has a module synch containing with a transition to_rf preceeded and
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followed by two up-communication places. This requirement is fulfilled by agent
P1, but from the P1 perspective it is also required the enabledness of the syn-
chronized to_rf transition in the module check-passenger. Therefore this con-
figuration to_rf is not enabled because freePlaces is not marked.

Hypernet being a high level net model means that the execution of a transi-
tion, like deplane, has several firing-modes [10]. Each firing-mode in a hypernet
is a called consortium, and is obtained by selecting a transition, a set of agents
that contain the transition, and a set of passive agents that will be moved as
shown in the previous example when the consortium fires. For example, one en-
abled consortium is the one we just discussed which moves the agent T 1 from
place seat of the plane, to place rf of the airport agent that we just discussed.
Another consortium is corresponding to agent T 2, which in the configuration
shown in the example is not enabled since T 2 is not located in place seat.

One of the most important features of hypernets is that they have a straight-
forward expansion towards a behaviourally equivalent 1-safe nets. This expansion
not only gives hypernets a precise semantics in terms of a well known Petri nets
basic model, but also guarantees the possibility to reinterpret on hypernet all
the analysis techniques developed for the basic model. The 1-safe net is built in
the following way:

– For each agent A, and for each place p in the hypernet a place named 〈A, p〉
is added in the corresponding 1-safe net. A token in this place means that
A is located in p,

– For each consortium Γ in the hypernet a transition named tΓ is added in
the 1-safe net,

– An arc is added from a place 〈A, p〉, to a transition tΓ if A is a passive agent
in Γ , and p is the input place from which the agent A comes.

– An arc is added from a transition tΓ , to a place 〈A, p〉 if A is a passive agent
in Γ , and p is the output place where the agent A is going to.

Finally, a place 〈A, p〉 of the 1-safe net is marked if in the initial configuration
of the hypernet agent A is located in place p.

For example, the one seater plane case of study we just discussed is translated
in the 1-safe net shown in Figure 4. Plane P1 can be in places lg, rf, bg in the
hypernet, thus the 1-safe net contains places 〈P1, lg〉, 〈P1, lg〉,〈P1, lg〉. The same
must be done for traveler agents, and for the CHK check agent. Since transition
deplane in the hypernet has two firing-modes, in the 1-safe net two transitions
which models each of the firing modes of deplane are added (for simplicity both
called deplane). The same has been done for transition board. The firing of a
transition in the 1-safe net exactly models what happens when a consortium
fires in the hypernet.

As already mentioned, it can be demonstrated that this net is 1-safe, and
has a reachability graph isomorphic to the one of the corresponding hypernet.
Details, formal definitions, and proofs discussed can be found here for hypernets
in [3], and in [9] for the generalization version.
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<T1,l>
[]

<CHK,freeplaces>

[]

Fig. 4. The expansion toward 1-safe net of the hypernet in Figure 2 and Figure 3

3 Restricting Reference Nets to Hypernet

The main motivation for using high level nets is that, given a system, it is
possible to obtain a model of the system with an high level net which is smaller
compared to the model obtained using basic Petri nets. However, if you are not
careful, the increase of the modelling power decreases the decision power of the
model. For example, in [6] it was shown that, even considering a simple subclass
of reference nets with one system net, and several references to an object net,
the reachability problem becomes undecidable.

It is in this perspective that the implementation of the hypernet formalism as
a plugin of the Renew tool has been made. Restricting reference net is probably
the most intuitive way to use verification techniques in Renew. In particular,
the use of a nets-within-nets formalism like hypernets as a restriction permits
the use of the nets-within-nets paradigm, which is probably the most intresting
feature in Renew. The original contribute of the paper is to show how this
plugin allows the use of verification techniques, like invariants and CTL model
checking, to check properties of systems which are suitable to be modeled with
the the nets-within-nets paradigm.
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4 The Hypernet Plugin

From a technical point of view the implementation of a new formalism in Renew
is done using a plugin mechanism. The most important method contained in the
classes implementing the plugin is a compile method which takes as input a
shadow net, a set of Java objects containing all the information about the net
the user has drawn in the graphical editor of Renew, and transform it in a set
of Java objects used by the simulator engine to simulate the net. This compile
method is responsible for checking that the net drawn by the user is an actual
hypernet in our case. In particular, in order to be able to use Renew as a
hypernet simulator, the arc and transition inscriptions used in the modeling
process must be restricted in such a way that the drawn net is a hypernet.
Therefore the restrictions applied in the plugin are the following:

– Inscriptions (tokens) inside places can only be in the following forms: iden-
tifier or identifier:netType. In the first case the identifier represent the name
of an empty net, and will be treated by the simulator engine as an black
token; in the second case a new instance of the net netType will be created
and placed inside the place.

– Inscriptions on arcs are restricted to single variables only. Each arc must
contain exactly one variable inscription.

– The inscriptions of input (output) arcs must not be duplicated. In this way it
is possible to preserve the identity of nets: duplication of tokens is forbidden.

– Balancing of transition has to be checked, i.e.: the set of variable names used
to inscribe input arcs must coincide with the set of variable names used to
inscribe output arcs.

– Communication places are deleted, and are simulated by means of syn-
chronous channels. These channels are counted when checking transition
balance.

For example, the airport agent shown in Figure 2 can be drawn as a hypernet
in Renew using the net shown in Figure 5. The traveler empty tokens are place
inscriptions T 1 and T 2, and the plane net instance is created by the P1 : place
inscription. Each transition is balanced. For example transition deplane in the
airport has a bidirectional arc labelled pl, and an output arc labelled pa for which
there is a correspondant downling, namely pl : deplane(pa). Each communication
place is deleted, and it is replaced with a synchronous channel. Land and takeoff
transitions are equipped with two uplink because they were connected to two
up-communication places. Deplane and board transitions contain two downlinks
because they were connected to down-communicating places. The module name
used to label communicating places is used to retrieve the variable name used
in the downlink.

The P1 agent of Figure 3 is drawn in the hypernet plugin of Renew with
the net in Figure 6. Again, up-communication places are replaced by channels,
and transition to_rf must synchronise with the corresponding transition in the
airport agent.
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Fig. 5. The airport agent drawn with the hypernet plugin of Renew
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to_rfdeplaneboard

chk

pa

chk

chk

seat
T1

chk

CK

freeplaces

numPass

Fig. 6. The plane agent drawn with the hypernet plugin of Renew

As we already mentioned, thanks to the expansion to 1-safe nets it is possible
to use verification techniques defined for this class of net to analyse system
modelled with a hypernet. Two of the most useful techniques are invariants
analysis, and model checking. We explored two possibilities of using them in
the plugin we implemented: internal implementation in Renew, or exporting
the 1-safe net in a format understandable by other tools. Since implementing
these analysis techniques in an efficient way is a difficult task (some tools are
very elaborated, and have been implemented over several years), and since very
efficient open source tools are available for free, we decided to use external tools
to implement invariant analysis, and model checking of a hypernet.

In the following sections we will show how the extensions and incorporation
can be used in a practical example.

5 Example

The invariant analysis, and the model checking extensions we implemented
in Renew can be used to prove properties of a system. We have chosen the
external tools LoLA (see http://www2.informatik.hu-berlin.de/top/lola/
lola.html) and INA (see http://www2.informatik.hu-berlin.de/~starke/
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ina.html) for analysing purposes. Starting from the hypernet example of Sec-
tion 2.2, we will prove using invariants that there is never more than one passen-
ger on the plane, and we will prove using the model checker that a plane never
refuels if there are a passenger on board.

By running the invariant analysis we get the following invariants:

T2@l T2@seat CHK@pass P1@lg P1@rf P1@bg CHK@freepl T1@seat T1@l
0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0

The first four invariants are those which guarantee the truth of “law of con-
servation of agents”, achieved thanks to the state machine decomposition in the
formalism. For each agent there is a corresponding invariant indicating the places
in which that agent can be located. Since the places of each invariant contains
only one token in the initial marking, it is mathematically proved that each agent
can be only in certain places: the places which are of the same sort of the agent
itself. Moreover, these four invariants can also be used to prove that the net is
1-safe: they cover all places of the net, and contain only one token in the initial
marking.

The fifth invariant is {〈T 2, l〉, 〈CHK, numPass〉, 〈T 1, l〉} and contains two
tokens in the initial marking. Together with the second and the fourth invariants
it can be used to prove that if the place 〈CHK, numPass〉 is marked then one
of the two passenger is seated on the plane. The place is not marked only if both
passenger are in the airport.

The sixth invariant is the counterpart of the fifth, and states that only one of
the following places can be marked: {〈T 2, seat〉, 〈CHK, freeplaces〉, 〈T 1, seat〉}.
The information is clear: only one passenger can be in the seat place of the plane.
If none of them is in the plane 〈CHK, freeplaces〉 is marked.

In Figure 7 a screenshot of Renew after the computation of invariants is
shown.

While invariants analysis can be launched, and the computed invariants can
be analysed to extract information about the system, in order to analyze the
system using model checking a formula specified in a temporal logic is needed.
Since we choose LoLA, which is a CTL model checker, we need to specify the
property we want to verify using this logic. For example, checking the property
“if the plane is located in the place representing the refueling station then no
passenger is on board” can be done by entering as input of the Renew plugin
we implemented the following CTL formula:

ALLPATH ALWAY S

NOT ((T 1.seat = 1 AND P1.rf = 1) OR (T 2.seat = 1 AND P1.rf = 1))
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Fig. 7. A screenshot of the invariants computed inside Renew

The formula checks that in every reachable state (ALLPATH ALWAY S) the
situation in which both placed 〈T 1, seat〉 and 〈P1, rf〉 are marked never occurs
(and the same for places 〈T 2, seat〉 and 〈P1, rf〉). The analysis performed con-
firms that the truth value of the formula is true, which is enough to guarantee
that the property is true for the system.

As it can be seen in this simple example, the advantage of using model check-
ing is that it is possible to express, and consequently to verify, more properties
compared to invariant analysis. In our example, the information that a plane
never refuels if a passenger is on board is not present in the computed invari-
ants, but can be verified using the model checking. However, the drawback is
that it is necessary to explore the whole state space of the system in order to ver-
ify a property. Invariants are computed on the static structure of the net, which
is usually exponentially smaller compared to the state space of the system. In
general, in real huge application both the techniques are useful: invariants give a
quick overview of some properties of the system, model checking take more time
and it can be used to verify specific properties of the system.

6 Conclusion

In this paper we discussed the verification of high-level Petri nets which use the
nets within nets paradigm, with particular attention to the reference nets and
the hypernets formalisms. We examined them, and we showed how to transform
a subset of reference nets into hypernets, which in turn can be transformed
into 1-safe nets. We then proceeded to describe the hypernet plugin created for
Renew in the course of our work. With the help of this plugin and external tools
we can analyse the transformed low-level nets, and in this way verify properties
of the high-level net.

The contributions, and the results of this paper are the implementation of a
plugin for Renew with which it is possible to draw of a hypernet, to compute
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its invariants, and to model check it. With this approach it is now possible to
verify properties of systems modelled with net within nets oriented formalisms,
such as reference nets and hypernets.

The results of this paper will make it possible to automatically analyse a hy-
pernet, instead of first transforming it by hand, and then analysing the equiva-
lent low-level nets. This will make the verification simpler and more user-friendly,
which in turn will make it easier for software engineers to use these techniques
in practical use cases. We plan to use these approaches to verify the model of
an actually adopted Grid tool for High Energy Physics data analysis, and in the
context of the HEROLD project. Future work will also focus on extending the
possibilities of the verification, automating the process as far as possible and
extending the toolset to other high-level Petri nets formalisms. The flexibility
and adaptability of the Renew tool will be a large asset in this endeavour.
Finally, the definitions of analysis techniques directly on the high level model,
without the need of converting it to a low-level one, is a subject for future in-
vestigations, because it will avoid the conversion to low-level nets, which is an
expensive operations in term of computational resources.
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Abstract. This paper discusses an application of software agents to
improve workflow management systems, with a practical emphasis on
Petri net-based systems. The properties of agent technology will be used
to gain advantages within the workflow management systems on both
a conceptual and practical level. In this paper we discuss the theoreti-
cal background of our work, the conceptual idea and approach and one
possible practical implementation. As a central practical means we use
reference nets, a high-level Petri net formalism. These nets are used to
model both agents and workflows, which results in a clean and natural
integration of both technologies.

Keywords: High-level Petri nets, workflow management systems,
multi-agent systems, software architecture.

1 Introduction

Workflows and Workflow management systems (WFMS) have been very attrac-
tive research topics in the last decades [13, 18, 16]. They provide means to further
understand, unambiguously specify and analyse business processes within organ-
isations. According to the state of the art, several heterogeneous WFMS can be
combined to perform a specific complex task that cuts across various organisa-
tions. While such a combination is currently possible in an ad hoc manner, a
more systematic approach demands greater care both from the modelling and
implementation perspectives. In this research, we set out to address this limita-
tion. This paper discusses the conceptual approach to achieve the overall goal.

Among the rising software paradigms, the concept of agent is a preeminent
one. In the last decade, agents have been touted as a most appropriate paradigm
to support the design and implementation of decentralised and distributed appli-
cations/systems, which yield intelligent behaviour and require a great deal of in-
teroperability. A decentralised application implies an application which consists
of autonomous entities. Clearly, these are among the properties one seeks while
developing an approach for interorganizational workflows. Therefore, agents can
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contribute a great deal in our quest for a systematic approach for interorganiza-
tional workflows.

Using agents to design and implement distributed applications across a net-
work is not new in itself. However, the autonomy of the various subparts is
not well captured in the overall collaboration. As such, approaches of this kind
cannot be generalised for the design and implementation of collaborative appli-
cations across various organisations. Concepts such as workflows, which render
a clear view of business processes within organisations need to come into play.

Introducing agents in WFMS is not counterintuitive. By virtue of being au-
tonomous, sociable and intelligent, human agents and artificial ones share many
similarities. Moreover, human agents’ operational mode can be viewed as a set
of independent yet interoperable entities. From that angle, a human agent can
be viewed as an agent system. Finally, since human agents have to coordinate
the various tasks they are involved in at a certain point in time, they can be
regarded as a WFMS. We take this human analogy, especially its duality, to
show that both, agents and workflows, can be joined in a complex system.

As discussed in the foregoing, WFMS can benefit from agents in various
regards. In this paper, we discuss seven points where agents help enhance the
level of management in interorganizational workflows. These include distribu-
tion, autonomy, interoperability and intelligence. In order to make the resulting
approach appealing to new technologies, we structure our assumptions and ideas
into a reference architecture, which we believe lays the foundation for more spe-
cific and advanced architectures to support collaboration within and between
organisations. We do not claim that our current implementation is as powerful
as the existing commercial tools. However, thanks to the Petri nets formalism,
our implementation holds the potential to properly handle concurrency, robust-
ness and resilience in the future.

The contributions discussed in this paper are a clearer articulation of ideas
and intuitions presented in [20–22]. More than all these papers, we elaborate on
the underpinnings of the conceptual role agents can play in the new approach.
Finally, we discuss the implementations.

The remainder of the paper comes as follows. Section 2 describes the technical
and theoretical background of our work. Section 3 gives an overview of our
overall architecture. Section 4 examines the conceptual view of our approach,
while Section 5 discusses one implementation of our approach. Finally, Section 6
draws conclusions and directions for the future.

2 Frameworks & Formalisms

In this research, MASs are designed following Mulan’s (MULti-Agent Nets)
structure [11, 23]. Mulan has been extended with Capa (Concurrent Agent
Platform Architecture) in order to comply with Fipa’s (Foundation for
Intelligent and Physical Agent (see http://fipa.org)) (communication) standards
to support concurrent execution [4]. Mulan and Capa describe the various com-
ponents of a MAS using reference nets, which can be executed using the Re-
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new (REference NEts Workshop (see http://www.renew.de)) tool. The reader
should thus note that not only do we offer a formal ground to reason about the
behaviours of agents, but we also provide an execution environment for MAS.

Inspired from the nets within nets concept introduced by Valk [25], Mulan’s
structure is a four-layer architecture used to describe a MAS. These layers re-
spectively describe the overall MAS, the agent platforms, the agents and their
behaviour, the protocols. Every layer within Mulan’s reference architecture is
modelled using reference nets, a high level Petri net formalism which will be
discussed later.

In order to adhere to Fipa’s standards, and especially the communication
mechanisms, Mulan has been extended with Capa. In so doing, Capa agents
can easily interact with any type of Fipa compliant agents.

Each of the key concepts in this paper, agent and MAS on the one hand and
workflows on the other hand, is represented using a Petri net formalism. Agents
and MAS are represented using reference nets, while workflows and WFMSs
are represented using workflow nets implemented as a special kind of reference
nets. Reference nets have been introduced in [15]. They follow the philosophy of
nets within nets. Reference nets use Java as an inscription language, manipulate
various types of data structures, and like many other types of high-level Petri net
formalisms, offer several types of arcs. Finally they use synchronous channels to
synchronise with other nets or Java objects. The treatment of Java objects and
net instances is transparent, so that both kinds of artefacts can be exchanged
arbitrarily. The workflow nets used in our systems are based on principles of
workflow nets introduced in [26]. They are implemented as reference nets and
make use of a special task transition introduced in [9]. Moreover, in the Petri net
community, tool support is a general trend. Therefore, the Renew tool has been
developed to support quick prototyping of systems or parts of systems using the
reference net formalism. Renew provides an editor to specify and draw the nets
as well as a simulation engine to test and validate them.

3 Overall architecture

The results we present in this paper are part of a larger ongoing effort. The
systems described in the next sections can be classified within the overall archi-
tecture described in [19]. The goal of this architecture is to integrate agent and
workflow technologies. The architecture consists of five tiers, built on top of each
other. Each tier itself is a layered architecture, which combines various aspects
of both technologies. Starting from either a pure workflow or agent system, the
architecture gradually evolves into a novel integrated unit system, which equally
benefits from both original concepts. The main motivation in building this ar-
chitecture lies in the shortcomings of each individual concept as is discussed in
detail in [19] and [28]. In short, agent technology struggles with offering a clear
behavioural view of large distributed systems, but can describe the structure
of such a system in a natural way. Workflow technology can easily describe the
behavioural view of a complex system, but struggles with the structural view.
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Fig. 1. Architecture of the first tier of the overall architecture, modified from [19]

In combining both technologies we can integrate the views offered by both into
one new system which supports both a clean structural and behavioural view. It
should be explained that the notion of tiers in this architecture denotes a kind
of step-by-step refinement/enhancement on the way to the overall goal of inte-
gration. The tiers can be viewed as the layers of the overall abstract architecture
but they do not correspond to layers within a concrete architecture. Each tier
modifies the structure of its own layered architecture compared to the previous
tier and in doing so enables new or improved aspects to be used. We will now
shortly discuss the five tiers of the architecture.

First Tier The first tier is our starting solution to address the limitations of both
technologies. It involves either a pure agent management system (AgMS) or a
WFMS. Such systems exclusively use workflow or agent technology to provide
their functionality. This means that there is almost no integration between the
two. Because of this, the architectural view of this tier (see Figure 1) offers only
two layers. The bottom depicts the adopted management system (either agent or
workflow), on top of which an application lies. Examples of systems, which can
be classified into this tier, are Mulan and Capa on the agent side and WFMS
like ADEPT (see [3]) or WIFAi (see [24]) on the workflow side.

Second Tier In the second tier, one of the paradigms is used to realise the other.
In other words, we use agents to design a WFMS, and vice versa. Because of this,
there are two variants of the second tier (agents in the background or workflows
in the background). The architectural view of this tier (see Figure 2) offers three
layers. The topmost layer still represents an application but between the bottom
management system and the application an intermediate layer has been added.
This layer implements a management system for the alternative concept using
the functionality of the bottom layer. For example, if the bottom layer is an
AgMS, then the intermediate layer is a WFMS based on agents. The application
layer of this tier uses only the concept provided by the intermediate layer.

Building on the first tier the second tier can be achieved by designing the
application within the first tier to be the required management system. On top
of that management system another application can then be built, turning the
application layer of the first tier into the intermediate layer of the second tier.
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Fig. 2. Architecture of the second tier of the overall architecture, modified from [19]

Compared to the first tier, the advantage is that one can perceive an inte-
gration of the concepts. However, the available constructs only affect the back-
ground instead of being directly available in the application layer. For example,
distribution, interoperability, etc. are facilitated in WFMS using agents.

In the remainder of this paper, the higher level tiers will only be based on
the variation using agents in the background, i.e. the one including an AgMS,
an agent-based WMFS (AgWFMS) and an application. Examples for these kind
of systems are detailed in [6], [7] and [10].

Third Tier The third tier greatly enhances the application development by em-
ploying both agents and workflows. This results in an arbitrary degree of inte-
gration between agents and workflows. In addition to the interface between the
application and intermediate layer, this tier allows direct access from the ap-
plication layer to the bottom management system. In practice, the application
can thus use both the interfaces offered by the core AgMS and the AgWFMS.
Consequently, the key functionality of the AgMS is then combined with that
of the AgWFMS. The architectural view of this tier (see Figure 3) only adds a
direct connection between the application and the bottom layer, compared to
the second tier. While this additional connection is a clear advantage over the
previous tier by expanding potential and flexibility, it suffers from a major lim-
itation. The resulting system is completely unstructured, i.e., the relation and
integration between agent and workflow needs to be potentially re-invented for
each application. Consequently it becomes very difficult to harness the power of
this tier, especially the efficient design of complex systems. In order to reach a
structured integration of both concepts within the architecture, we need to take
one step back and limit the immense possibilities offered by this tier.

Fourth Tier The fourth tier adds an integration layer to the architecture, which is
responsible for restricting the possibilities of the third tier in order to provide an
explicit structure for the application developed on it (see Figure 4). Through this
integration both technologies are used in the background and the relationship
between agents and workflows is pre-defined. However, only one perspective is

Improving a workflow management system Petri Nets & Concurrency – 305



Fig. 3. Architecture of the third tier of the overall architecture, modified from [19]

supported when modelling on the application layer. In this way it provides an
abstraction and thus a higher level of modelling.

In order to achieve the desired explicit structure, this tier basically reduces
the functionality offered to the application layer compared to the third tier. It
refocuses on either agents or workflows as the exclusive main abstraction for
application development. There are once again two distinct variations of this
tier, one offering agents to the application (called workflowagents ; left hand side
of Figure 4), the other one offering workflows (called agentworkflows ; right hand
side of Figure 4). The integration layer provides exclusively WFMS or AgMS
functionality, but uses both technologies in the background. This means that an
agent application possesses parts and aspects of workflows and vice versa (in the
other variation). In this way the possibilities of this tier are, opposed to the third
tier, restricted, because we refocus on just one technology. But by doing this,
we gain a much more powerful means of supporting one of the two technologies.
The integration of both variations will take place in the fifth tier. For now we
need both variations in order to create the desired structure within the relation
between agents and workflows in both directions separately.

It is worth noting that, even though we are looking at either workflows or
agents at the top layer again, the main difference between this tier and the
second tier is that we no longer have one concept realising the other. Rather,
we obtain a successful combination of both, i.e., agents and workflows working
side by side and benefiting from each other. The agentworkflow variation of this
tier is the main focus of this paper and will be discussed in detail in the main
sections.

Fifth Tier This tier introduces the concept of unit, an abstraction to any entity
involved in the design of the system. Units offer both the facets of agents and
workflows. In order to achieve this, the AgMS and WFMS have to be integrated
and combined. This results in a novel type of management system, a unit man-
agement system (UMS). The architecture of this tier can be seen in Figure 5. The
integration layer of the fourth tier has been split into two parts, of which UMS
represents the upper part. Since one can no longer clearly differentiate between
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Fig. 4. Architecture of the fourth tier of the overall architecture, modified from [19]

Fig. 5. Architecture of the fifth tier of the overall architecture, modified from [19]

agents and workflows, the application layer is simply called unit application, also
referred to as agent/workflow applications in [19]. In merging both agent and
workflow concepts into a single unit concept, both the structural view (from the
MAS) and the behavioural one (from the workflows) are available. Note that
both these views are available during runtime and design time.

4 Conceptual View

In this section we will discuss our conceptual approach to improving workflow
management with agent technology. As stated before our goal is to use aspects of
software agents to benefit the execution and management of workflow instances.
Because we use agents to improve workflows we generally refer to this approach
as agentworkflows. We reason that common properties of agents, like mobility,
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autonomy and proactivity, and especially the encapsulation of workflow instances
through agents can greatly benefit workflow execution. Having agents in general
handle aspects of workflow management can also help distribute the execution
in order to spare less powerful resources.

As mentioned before this particular work is just part of a larger effort to
integrate workflow and agent technologies in order to achieve a novel approach
that combines the advantages of both technologies. The work presented in this
paper focuses on the fourth tier of the overall architecture (see Section 3). We
discuss the variation of the fourth tier, in which the integration layer offers a
WFMS to the application layer. This WFMS strongly relies on the functionality
of the AgMS in the background in order to provide its own functionality. This
means that the workflows offered to the application possess some properties
gained from the agents. How this can be achieved will be discussed in this section,
as well as the advantages and disadvantages of this approach,.

One of the core ideas behind our approach is to encapsulate workflow in-
stances through autonomous software agents. With this it is possible to transfer
properties of that software agent directly to the workflow instance. In other
words the clear separation between agent and workflow begins to diminish. This
is a key concept of the overall architecture and is important for the fifth tier.
Another important aspect of our approach is to also consider other entities of the
workflow management system as agents. Having the general functionality of the
WFMS be provided by agents is already part of an AgWFMS of the second tier.
In our approach agents can be used to realise any of the elements (e.g., tasks,
users, resources, etc.) of the workflow as well. In [17] for example, we used agents
to realise activities. Thanks to the agent technology, the resulting WFMS does
not only focus on the behaviour of the system, as was the case in the previous
tiers of the overall architecture, it also emphasises the structure of the system.
This paper focusses on the aspect of encapsulating workflow instances through
agents. Other aspects are considered but will not be discussed in great detail.

We will now examine some of the principal and conceptual areas and aspects
in which workflows can benefit from agents. The following points will directly
cover some agent properties and their particular benefits but will also include
some general observations.

Encapsulation In general the encapsulation of one or more workflow instances
through agents can be seen as a prerequisite to opening up many of the
possibilities offered by the agent-oriented paradigm. Without this concept
it would be hard or impossible to transfer other agent properties over to
the workflows. Nonetheless the encapsulation also benefits the workflows in
more ways than that. For example the encapsulation provides the workflows
with an even clearer identity within the overall system since they can now
be identified in the same way as the other elements (agents) of the system.
This makes it easier to monitor, observe and analyse the system, which in
turn makes maintenance and improvement more efficient. A disadvantage of
the encapsulation is that the number of agents active is possibly, drastically
increased, depending on how the encapsulation is handled. This may pose
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problems on less powerful systems, which simply cannot handle this number
of agents or the communication between them. However, since agent archi-
tectures are generally built to efficiently handle communication, this should
not pose a real problem in practical use.

Mobility By allowing workflows to gain agent mobility they benefit in a vari-
ety of possibilities. In the context of software agents mobility describes the
capability of a software agent to discontinue its execution within one exe-
cution environment (agent platform), migrate to another environment and
continue the execution there starting off from its previous state. For agent-
workflows this means that the execution of a workflow can be discontinued
on one instance of an executing WFMS and continued on another WFMS.
Practically this can be used if certain resources needed for the execution of
a workflow are not available on every platform. This can include particular
(groups of) users or certain, possibly critical data. Another use case for this
property is to have a workflow instance migrate not because certain resources
are needed, but because its home platform is beginning shutdown or because
another platform carries less of a load then the home platform. This use of
mobility can lead to improved flexibility, efficiency and fault tolerance.

Autonomy One of the key concepts of the agent paradigm is that agents are
autonomous entities. This means that, to a certain degree, they are indepen-
dent of their environment and can choose for themselves whether to execute
an action or not. In the context of agentworkflows this property can be used
in a number of ways. It can for example be used as a kind of access control
to critical data for which an agent is responsible. This can be a workflow in-
stance but also other entities like activities or the handling of users. Another
use of this becomes relevant if combined with mobility. An agent migrating
to another platform to access certain data or perform certain actions can do
this relatively independent from the other agents and software constructs of
that platform, if, of course, it has all the necessary permissions.

Intelligence Intelligence in software agents can be used to describe a multitude
of aspects. One major aspect is the ability of certain agents to proactively
decide by themselves which actions to take. In the context of workflow man-
agement this can be used to predetermine which users should be offered cer-
tain tasks, taking variables like workload into consideration. At this point
reactivity of agents also comes into play. Software agents can react to events
in their environment and adapt according to the situation. For example if
there is an error during the execution of a task the agent could observe this
and retry the action with changed parameters. Another very interesting as-
pect where intelligence, proactivity, reactivity and adaptiveness can be used
is the adaptivity of workflow instances. Changing workflow instances and
even entire workflow definitions according to changed circumstances (cur-
rent or permanent) improves the flexibility and versatility of a WFMS and
can be handled in a natural way using agent intelligence.

Distribution The agent oriented paradigm naturally supports the design of dis-
tributed software systems. The main reasons for this are the asynchronous
message communication and the autonomy of the individual agents. By re-
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lying on agents as the main building blocks of a WFMS it is easy to use
these predispositions for the distribution of the system. The communica-
tion of different parts of the system can be handled through asynchronous
messages, which are flexible and versatile. Extending on this idea opens up
even more possibilities of using distribution to the advantage of workflows.
Interorganizational workflows can benefit from a distributed WFMS, so that
their critical information is not stored in some centralised location.

Interoperability The Fipa communication standards are accepted by many
widely-used agent frameworks. Adhering to these standards guarantees in-
teroperability between the different involved software systems, independent
of agent architecture or framework. This can be translated into workflow
management based on agents as well. In this case different WFMS of dif-
ferent providers can work together, as long as they can process the data
structures that are exchanged. This aspect is especially important in the
context of interorganizational workflows since it allows some freedom for the
choice of the different WFMS in the different companies. But also in general
use cases interoperability can be used to an advantage. A Fipa-compliant
WFMS can request data from any other Fipa-compliant system, which im-
proves the possibilities of the WFMS. Another aspect which is related to
this and distribution, is the openness of the system. Through interoperability
and distribution it is possible to create flexible and dynamic open systems
to which different WFMS can connect to, complete some tasks, and then
disconnect again. Open systems can provide users with functionality that is
otherwise difficult to obtain without specialised software solutions.

Structure This point is related to the motivation behind our overall architec-
ture. As described, we reason that workflow systems have trouble adequately
describing the structure of the system they are modelling, while focussing
on the behaviour. Agent systems on the other hand possess a strong focus
on this structure. By joining the two in the ways described in this paper
we begin to combine this structural view given by the agents with the be-
havioural view of the workflows. This is mostly related to the encapsulation
aspect discussed above, but contains a more abstract view. By relying on
agents one can easily describe the current state of an entity including its
current location (in regards to distribution), knowledge and behaviour. By
adapting this for workflow instances it can already help provide the struc-
tural view needed within a distributed system. If the agentworkflow idea is
taken even further and every aspect of the system modelled through agents
the structural view becomes even more useful. The location (in regards to
distribution) of every resource, user and workflow can be determined and
displayed in a way that helps monitoring and maintaining the system.

It should be noted that all these properties only unfold their full poten-
tial if used in combination. Every one of these properties and aspects possesses
some benefits but together with the others new and improved possibilities can be
achieved. For example using mobile agents in a distributed environment of many
interoperable agent platforms is more advantageous then forcing the same agent

310 Petri Nets & Concurrency Moldt et al.



system onto all involved partners. Equally an autonomous, intelligent agent can
decide for itself if a migration is reasonable or not and initiate the action accord-
ingly. Using these properties together also strongly improves interorganizational
workflow management and execution. While interoperability and distribution
already favour this field, the other properties are also useful, especially in col-
laboration. For example mobility allows for the transmission of data in a natural
way, while encapsulation allows for the clear separation of critical data.

The main disadvantage of our approach is that the realisation and handling
of these improved workflows are more complex than handling regular workflows.
The reason for this is mainly that the new and improved possibilities will be
difficult to harness. It can, if used in the wrong way, affect execution in a negative
way or even, in the worst case, prohibit correct execution at all. However, if
used correctly and efficiently, they offer clear, distinct advantages to workflow
execution in general. They offer novel ways of modelling many parts of workflows
and can increase efficiency in use.

After discussing the conceptual view in this section we have shown that our
approach offers many advantages, but is difficult to realise and handle. For the
realisation part we have chosen technologies based on Petri nets. One problem of
the conceptual approach is that different kinds of entities (agents and workflows)
have to be combined. By choosing Petri nets as a common basis we can partially
circumvent this problem, since it is easier to combine the two kinds of entities
when they possess the same basis at the lowest level. On the other hand this
choice has the problem of not being widely spread and available. However, certain
aspects, like concurrency and displaying behaviour, are very easy to model using
Petri nets. In the next section we will discuss one prototypical implementation
of our conceptual approach using Petri nets, which already covers some of the
properties described in this section.

5 Implementation

In this section we will discuss a prototypical implementation of our agentwork-
flow approach. As mentioned before we use Petri net based technologies to
achieve a common basis for the integration and combination of workflow and
agent technologies. In particular we use Mulan and Capa for our agents and
workflow nets for our workflow functionality (see Section 2). The starting point
of the practical work is an AgWFMS of the second tier of the overall architec-
ture. This AgWFMS has been described in detail in [27]. It relies solely on agents
to provide the functionality but does not mix the agent and workflow concepts
enough to be considered an agentworkflow system.

Before going into the details of the implementation we will shortly discuss
how the different properties observed in the conceptual section can be mapped
onto Petri nets. Since discussing these aspects in a reasonable extent would go
beyond the scope of this paper and since extensive work on this has already been
performed and published we will limit this to referring to other contributions.
The mobility aspect has been extensively studied, especially in the context of
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Fig. 6. Principle approach of the S-AgWf

nets within nets, for example in [2] and [12]. The autonomy and intelligence
of Petri net agents have been discussed in the context of Mulan in [23]. The
encapsulation aspect has been examined for object-oriented nets in [1]. Interop-
erability and openness have been explored in [14]. The final aspect, the structural
view of combining agents and workflows, was discussed in [19].

The practical approach, called structure-agentworkflow (S-AgWf), extends
the regular AgWFMS (now called AgWFMS*) to allow for the definition and
execution of distributed workflow instances. More precisely, the workflow in-
stances are now hierarchical workflows with nested subprocesses as defined by
the WfMC (see [8]).As a consequence the entire system consists of a number of
Capa platforms, which all execute instances of the extended AgWFMS* and are
working together. The different AgWFMS* instances are known to one another
and messages can be exchanged between them. A more detailed description of
the S-AgWf approach can be found in [28].

The basic principle of the S-AgWf can be seen in Figure 6. One agent encap-
sulates one workflow instance. This agent, called structure-agent, possesses an
internal workflow, the structure-workflow. When the structure-agent for a new
workflow instance is started, it receives the definition of the structure-workflow
from the database agents of the AgWFMS* and instantiates the workflow net.
When this initialisation is finished, the execution of the structure-workflow
automatically begins. The tasks of the structure-workflow correspond to sub-
workflows. Sub-workflows can only be executed on certain AgWFMS* instances
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within the overall system. The information about which AgWFMS* instance
is suitable is stored within the data of the task and can be extracted by the
structure-agent. Whenever a task becomes active, the structure-agent assigns it-
self as the executor of that task. Once this is done the structure-agent queries a
special agent of his own platform for a list of all the known AgWFMS* instances
currently active. It then compares this list to the information extracted from
the task and chooses a suitable AgWFMS* instance. The interface-agent of the
chosen instance is then contacted by the structure-agent. The structure-agent
asks the interface-agent to instantiate the subworkflow locally and transmits all
relevant parameters, like input data etc. The subworkflow is then executed like
any other workflow in the regular AgWFMS. Once it has reached the end of its
execution the responsible structure-agent is informed and any (optional) results
are sent back. The results are transmitted into the structure-workflow net and
the structure-agent completes the task, so that the execution can continue. The
execution of tasks and subsequent instantiation and execution of sub-workflows
is continued, until the end of the structure-workflow is reached. The initiator of
the overall workflow is then informed and the structure-agent can terminate.

In the example in Figure 6 two sub-workflows are currently executed on
the two different AgWFMS* platforms. The structure-agent responsible for the
structure-workflow is communicating with the agents of the two AgWFMS*
platforms in order to initiate the execution and receive results. When both
sub-workflows are finished the structure-agent will start a final sub-workflow
(SubWF C ), before it can conclude the execution of the structure-workflow.

This realisation of the agentworkflow concept offers distinct and practical ad-
vantages, but also still suffers from some limitations. The possibility to distribute
the execution of workflows is a huge advantage for the otherwise centralised Ag-
WFMS. The support of nested subprocesses allows for interorganizational work-
flows to be defined and executed. Since the details of the local workflows are
not needed globally, the sub-workflows and any critical data they may contain
are only known to the local parties. This satisfies the need of interorganizational
workflows to secure and conceal confidential and valuable information.

The main limitation of this particular, specialised implementation of the
agentworkflow concept is its still centralised nature. If the platform of the
structure-agent is disconnected or fails, the entire workflow fails. This could
partially be rectified by adding mobility to the structure-agent. It can then eas-
ily migrate to another platform, if it discovers any changes in its home platform
that might hinder its execution.

The pre-defined relationship between agents and workflows within this sys-
tem combines the structural aspect of agents with the behavioural aspect of
workflows as is the goal in the fourth tier of the overall architecture. The
two concepts agent and workflow begin to merge together, since in this sys-
tem a workflow is an agent and partly vice versa. The practical advantages
this particular system gains from this merge mostly consist in a groundwork for
further enhancements. Agent autonomy may for example be used to give the
structure-agent more control over the workflow instance (e.g. choice over where
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sub-workflows are executed), which could result in added flexibility. However the
instances within the S-AgWF system already possess certain degrees of distri-
bution (structure-agents communicate with other AgWFMS* platforms in order
to execute their structure-workflow), interoperability (the structure-agents ex-
change FIPA-compliant messages so it is possible to exchange the AgWFMS*
platforms with other WFMS if they adhere to the interface) and encapsulation
(the structure-workflow is clearly encapsulated by the structure-agent).

6 Conclusion

In this paper, we made a strong case for a systematic introduction of the agent
concept to enhance the management of workflows. We pointed out key aspects
in which agents improve workflows and their management.

In our quest to develop a systematic approach to support workflow manage-
ment, we proposed a reference architecture, which builds on an integration of
agents and WFMS. The architecture consists of five distinct tiers. These dif-
ferent tiers gradually show how the agent concept first integrates into WFMS
and then enhances them on the various aspects we discussed above. This effort
culminates in the fifth tier, where both concepts exist alongside each other. As
stated in the foregoing, our overall goal in this research is to achieve a seamless
integration of agents and WFMS. In this paper, we presented an approach which
builds on the agent technology to address WFMS. However, the other variant
of the fourth tier, the workflowagents, needs to be considered as well. In it, the
main abstraction of the application layer are agents, which strongly rely on the
functionality of the WFMS in the background to address the inherent limita-
tions to an agent-based system. Clearly, following that perspective, a WMFS
could for example bring its systematic and proof-driven approach to complex
task execution. In the future, we wish to explore that perspective as well.

From the lessons learned from both approaches, we expect to collect the
amount of information that enables us to design a full-fledged conceptual ap-
proach which offers the best of both agent and workflow technologies in one
single system, i.e. the fifth tier. Such an approach will balance out the weak-
nesses of each technology. With the support of high-level Petri nets as a foun-
dational formalism, we are guaranteed of combining structure and behaviour in
one representation.
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Abstract. Questionnaires for complex studies can grow to considerable
sizes. Several hundred questions are not uncommon. In addition, routings
are used to distinguish between question paths for different respondents.
This leads to the question of how to ensure validity and other important
properties.

We examine this question for a case with even more demanding side
conditions: An important part of the OECD study ”PIAAC”(Programme
for the International Assessment of Adult Competencies) is a background
questionnaire (BQ) containing more than 400 questions. This BQ has to
be adapted by all participating countries. Nevertheless, integrity of the
overall system has to be ensured.

Keywords: automata, Petri nets, questionnaires, analysis

1 Motivation and Overview

Large scale studies in psychology, sociology, and for many other purposes try to
find out characteristics of complete populations or at least of big parts of a pop-
ulation. International studies often aim at comparing the complete population
of one country to that of another country. The well-known PISA study of the
OECD, as an example, aims at comparing all students of age 15 worldwide. This
is done by examining representative samples in each country that participates
in PISA.

To be able to compare one first has to find out some background information
about the people that are compared. This is mainly done by asking those people
questions. Larger chunks of questions grouped together in order to find about
the background of the surveyed people are called background questionnaires, or
BQ in short.
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The author of this paper was involved in the definition, implementation,
national adaptation, and deployment of the BQ for the OECD PIAAC study.1

The OECD is the ”Organization for Economic Co-Operation and Development”,
see [5] for details. Among many other activities, the OECD is well-known for
organizing world-wide comparability studies, like the PISA study. PISA [6] is the
abbreviation of ”Programme for International Student Assessment”. The PIAAC
study, ”Programme for the International Assessment of Adult Competencies”can
be seen as an extension of the PISA study for adults. It aims at finding out about
skills needed by adults in order to be successful in everyday work life. See [7]
for details about the PIAAC study. PIAAC is carried out by 24 countries all
over the world (participating countries are located in North and South America,
Europe, Asia and Oceania).

1.1 Background Questionnaire Properties

There is no exact definition of what a BQ is. It is therefore not possible to exactly
determine properties that have to be valid for each and every BQ. Naively, it is
just a bunch of questions that an interviewer has to present to an interviewee. In
practice, in discussions with psychologists, sociologists, or other questionnaire
practitioners, certain universally agreed principles and best practices become
clear. From this starting point, desirable properties can be derived. Neverthe-
less, it is not possible in the moment to definitely define and answer all related
questions. We strive for more general validity, though.

A BQ usually has one single entry or starting point, the first item or ques-
tion. In practice, this is often a hidden item, where predefined data is imported.
An example: One often knows the name of the interviewee in advance. Within
the BQ, there may be many different paths through the question pool, often
depending on previously entered data or chosen randomly. An item that is in-
tended to be the last question of a BQ is called an end item. Again, this may be
a visible item (a question) or a hidden item not visible to the interviewer. While
there often only is one end item, for example thanking the interviewee for time
and patience or, more technically, exporting the assembled data, this is not a
standard requirement of a BQ.

Due to practical considerations, there often is the possibility to pause an
interview or to break it off. While pausing has no implications for the structure,
a break-off means that any item can be an end item or has a connection to an
end item.

The normal flow through a BQ should not result in a dead end. A dead end
is an item that was not considered to be an end item. Other requirements are
more on the semantic side. Each possible question sequence has to make sense
semantically. On the other hand, each desired or planned sequence has to be
possible, e.g. by entering appropriate answers.

1 The work was done in the international consortium responsible for implementing,
deploying, and analyzing the study, led by ETS [3] in Princeton, USA. Most of
the implementation work on the BQ was done by the CRP Henry Tudor [2] in
Luxembourg.
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1.2 Overview

The rest of the paper is structured as follows: In Section 2 we give an overview
on the BQ of the PIAAC study. We also give examples of the format in that
the BQ is defined. Following up on that we develop first simple models for the
PIAAC BQ in Section 3. The models are put into practice in Section 4. They
are used to gain quite some insight and find errors, but are not sufficiently
powerful to represent all important aspects of our application. So we carry on in
Section 5 with more powerful Petri net models that allow for more sophisticated
analysis. We conclude in Section 6 with an outlook on further work and possible
generalizations.

2 The PIAAC Background Questionnaire

The PIAAC study mainly consists of two important parts: a background ques-
tionnaire (BQ) and cognitive tests (cognitive items, CI). Both parts are embed-
ded into an overall workflow that controls all parts of the survey. This workflow
is implemented in the same way as the BQ.

The PIAAC BQ starts with general questions about the interviewee to find
out whether he is suited to take part in the survey or not. Afterwards questions
in different categories are asked, grouped together in blocks. Examples for such
blocks are questions about the educational background, skills needed in everyday
work, and questions about private life related to work skills. In order to shorten
the overall interview time, parts of the blocks are arranged in a rotated design
so that not all interviewees are asked the same questions. Another example of
inter-block routing is that certain blocks are not administered if the requirements
for asking these questions are not fulfilled, e.g. questions about current work in
case of an unemployed interviewee.

In addition to the inter-block routing, complex routing is used within blocks
to administer the right questions. A good example for such a routing are ques-
tions about the education of an interviewee: If an interviewee has never been to
an university it is useless to ask questions about academic degrees. Respective
questions should be skipped. Another typical situation includes loops: One might
be interested in the degree of skills related to foreign languages. To accommodate
speakers fluent in multiple languages, some kind of cycle or loop is needed.

The code example in Figure 1 shows an example of a questionnaire item with
a free text entry. The XML syntax is not important here.2 The item group that is
defined in the code snipped defines a single item, i.e. one question is administered.
The item has a unique identifier (ID), instruction text and answering possibilities.
In this case a free text entry of length 12.

The second code example in Figure 2 shows a routing with two possible tar-
gets. This is a hidden item, i.e. an item that is not displayed but used internally.

2 The XML syntax of the PIAAC BQ has been specially designed for this purpose.
At the time of writing of this paper only limited support like editors or visualizers
is available.
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<itemGroup id="CI_PERSID" responseCondition="ALL" layout="list">

<item id="CI_PERSID">

<instruction>Please enter the sampled person ID</instruction>

<responses layout="radioButton">

<response code="00" freeTextEntry="true"

freeTextEntrySize="12" > Sampled Person ID:[FTE]</response>

</responses>

</item>

</itemGroup>

Fig. 1. BQ code example: free text entry

<itemGroup id="CI_skip-C-200Rule" layout="list"

responseCondition="ALL" hidden="true">

<item id="CI_skip-C-200Rule"/>

<routing>

<condition>

<operator type="equal">

<variable name="CI200Rule"/>

<constant>NI</constant>

</operator>

</condition>

<then>

<goto itemGroup="CI200Rule"/>

</then>

<else>

<goto itemGroup="CI_start"/>

</else>

</routing>

</itemGroup>

Fig. 2. BQ code example - conditional routing
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The routing is conditional. It is based on the value of the variable CI200Rule.
Based on this variable, the BQ jumps to item CI200Rule or CI_start.

Each variable can only be written once. There is a one-to-one relationship
between an item and a variable. The variable has the same name as the item
where it is initialized and written. Afterwards the variable can only be read, not
changed or deleted. There is a notable exception to this rule: It is possible to go
back in the questionnaire, for example in case of an error noticed later on. If this
is done, the variables connected to the items eventually asked again can also be
written again.

The PIAAC BQ together with the overall survey workflow contains more than
600 items. It has one single start item and one single end item. It is possible to
break-off the interview at many items, but not all. Break-off leads to a special
item that asks for the reason for the break-off.

3 BQ Modeling

A basic modeling strategy for background questionnaires is relatively straight-
forward. Items (and/or item groups) can be modeled for example as states of
a finite automata. Going from one question to the other is a matter of transi-
tion from one state the the next. Routing can be modeled as conflicting state
transitions. We will now have a closer look at this idea and discuss whether it is
sufficient below.

3.1 Automata models

CI200Rule

CI_start

CI_skip-C-200Rule

VAR CI200Rule not set

VAR CI200Rule set

Fig. 3. Finite automata for code in Fig. 2

Figure 3 illustrates the idea of an automata model for the BQ. The automata
implements the BQ code example of Figure 2. State CI_skip-C-200Rule is con-
nected to the states CI200Rule and CI_start. The actual transition depends
on the variable CI200Rule as described above. This data dependency causes
problems with this basic model. We will come back to this problem later on.

The benefit even of such a simple formal model is twofold: Once a ques-
tionnaire is transformed to a finite automaton, automatic as well as manual
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inspection is possible. Automatic inspection can check important properties like
connectedness and reachability of the final state(s). Manual inspection is enabled
by using a graphical tool that displays the complete BQ. This allows for a much
more convenient way of getting an overview of the BQ. It is nearly impossible to
follow all routings in the sequential XML format, even if this is supported by an
appropriate style sheet (XSLT, see [19]) using links and an overview frame. See
Figure 8 to get an idea of the complexity of the BQ. Note that this figure only
shows a small part of the overall questionnaire. The model shown in the figure
is implemented as a Petri net, not an automaton.

s1 s2 s3

s4

s5

store v1

v1 = 1

v1 = 2

Fig. 4. Data dependent routing

Figure 4 illustrates a general problem with the simple modeling approach.
In state s1 the variable v1 is written. Afterwards another state (s2) is reached
and then s3. Only in this state the value of v1 is read again to determine which
state (s4 or s5) should be reached next. This means that the variable is used
non-locally. While such a situation is common in questionnaires, it is not possible
to model a non-local usage of a variable in an ordinary finite automata.3

3.2 Petri net models

To overcome the problem of non-local variable usage illustrated above, we re-
model the very same BQ part as a Petri net.4 This can be seen in Figure 5.

As we can see in the figure, the problem can easily be overcome. Items,
previously modeled as states in the automaton, are now modeled as places of
the Petri net. Transitions have been introduced between the states/places. The
places can be seen as the static part, e.g. question or instruction. The transitions
are the dynamic part, e.g. the answer given to the respective question and/or the
stored variable. Depending on the values stored and retrieved in the variables,
the resulting net can be a Place-/Transition net or a colored Petri net.

Place-/Transition nets are possible for variables with restricted (=finite) do-
mains. Luckily, this type is most commonly used in BQs. The vast majority of

3 This is not completely true, because for variables with finite domains it would be
possible to enumerate all reachable states for all values of all variables. Nevertheless,
such a model would be hard to read and not very useful.

4 Petri nets are not an arbitrary choice. They offer various advantages: graphical rep-
resentation, formal analysis, tool support.
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questions is of a single or multiple-choice type. Such a question is illustrated in
Figure 6. The first question in this example is about the gender of the inter-
viewee. Only two answers are possible. This can be modeled by a refinement of
the net of Figure 5, as shown above. The resulting net is a P/T-net and can be
analyzed using the respective tools.

For free text variables or numbers such a modeling would not be possible.
Instead, we can use colored nets that support high-level data structures for places
and variables directly. While such models are more difficult to analyze they offer
other advantages. We will stick to P/T-nets for the moment and come back to
the advanced net models later on in Section 5.

4 Modeling and Analysis for PIAAC

The definition, implementation, national adaptation, and deployment of the
PIAAC BQ was driven by a high time pressure. Pre-existing questionnaire parts
had to be combined and extended. A compromise had to be found that was (a)
not too long, (b) implementable world-wide - both a cultural and a political
challenge, and (c) able to gather enough data to give answers to the ground-
ing questions of PIAAC. Therefore the work on the BQ started using a semi-
structured approach (printable and human-readable Excel sheets), to be able to
quickly disseminate all intermediate versions and get feedback. Only late in the
process, this was transformed to a well-defined XML format. Therefore also the
work on the formal analysis of the BQ started late and is not completely done
yet.

The first attempt to get some insight into the BQ structure handled the BQ as
a graph. Only an internal model was built, without any graphical representation.
Variables were neglected, only the control flow was mapped. From this simple
model some important insights were possible: We found dangling routings (jumps
to undefined items, e.g. due to spelling mistakes), duplicate item names and
isolated nodes - items that could never be reached. On the other hand, it turned
out to be quite tedious to verify and analyze the error reports of the first analyzer
because of the lack of a graphical representation.

Therefore we implemented another approach targeting on Petri nets. This
formalism was chosen to be able to benefit from the advanced set of tools avail-
able, allowing to visually inspect a net and formally analyse it at the same time.
Our work greatly benefited from the existence and widespread support of the
PNML standard - see [8] for an overview or the web site [16] for more informa-
tion. The usage of PNML allowed to implement the modeling process – modeling
a Petri net that represents a specific BQ – as an XSLT transformation.

The first attempt to do so replicated the graph analyzer mentioned above.
Variables were neglected, all routing possibilities were handled equally without
interpreting the routing conditions. This resulted in a PNML net definition file
only containing places, transitions, and arcs. An example can be found in Fig-
ure 7. Note that [...] means the omitting of plenty of PNML code.
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<?xml version="1.0" encoding="UTF-8"?>

<pnml>

<net id="piaac-BQ-DE-001" type="piaac-analyse">

[...]

<place id="B_C02b1DE2b">

<name>

<text>B_C02b1DE2b</text>

</name>

</place>

[...]

<transition id="t_B_C02b1DE2b_B_Q02b2DE2_32">

<name>

<text>t_B_C02b1DE2b_B_Q02b2DE2_32</text>

</name>

</transition>

[...]

<arc id="B_C02b1DE2b_t_B_C02b1DE2b" source="B_C02b1DE2b"

target="t_B_C02b1DE2b">

<inscription>

<text>1</text>

</inscription>

</arc>

[...]

</net>

</pnml>

Fig. 7. Example PNML Code
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Our modeling approach does not generate any graphical information. There-
fore a tool had to be found that is able to import PNML files, construct a
graphical representation automatically, and analyse the P/T-net. We chose the
ProM tool for this purpose. For more information on ProM, see [18] and [17].
ProM especially well supports the handling of large nets and arranges the net
elements in a way that is very well readable for the human eye.

Fig. 8. BQ part as a P/T-net

In Figure 8 a small part of the complete BQ net is shown. As said before this
is a simple model in the sense that the variables have been omitted. The figure
is presented here just for illustration purposes. It serves to get an impression of
the complexity of the overall BQ model. The complete model is way too big to
be presented here. The layout of the example net has been done automatically
by ProM.

Once available as a P/T-net in ProM, the build-in analysis means can be
used. The PIAAC BQ has a single start item and a single end item. All items
should be reachable and there may not be a dead end. The resulting BQ net
therefore has to be a net with workflow properties. This is easily analyzable in
ProM and gives good insight into the BQ definition. Doing so, we were able to
find all the error types mentioned above with the big advantage of directly seeing
the problems in the net graph. It now is way simpler to find fixes for the errors.

5 Advanced Net Models

In this section, we discuss experimental models that have not been used so far
for the complete BQ. Nevertheless, as this is ongoing work, this will change soon.

To get deeper insight into the formal properties of a BQ, factoring in the
variables and (routing) conditions is necessary. However, this may lead to way
more complicated models, as we can see from a simple example. For this, we
extend the example of Figure 6 to four possible answer categories on item s1,
two answer categories on item s2 and three conditional routings after s3 relying
on the variables v1 and v2:
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– s4, if v1 = 1 and v2 = 1

– s5, if v1 = 2

– s6, if v1 > 2 or v2 = 2
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Fig. 9. Additional net elements for variables and conditions

Even this mild extension leads to a more complicated net model. Especially
the last routing condition (leading to s6) is interesting, as it has to be unfolded
to three transitions: two for the ”greater-than”and and extra for the ”or”-part. In
real settings, this can easily grow to huge amounts of transition. As an example,
in the German BQ there are routing conditions combining 5 variables, each
enclosing up to 16 possible values, to route to more than 10 targets.

Another possibility is to model colored Petri nets instead of P/T-nets. Col-
ored Petri nets directly support high-level data structures and variables. Never-
theless, they still allow for analysis, the necessary unfolding process is done inside
the tool, for example the CPN Tools [4,10]. This option is under investigation.

In the moment, the PIAAC BQ is defined by means of writing XML code.
This is tedious and error-prone work. The direct syntax can be checked relatively
easily, but syntactical errors like missing routing targets are harder to detect.
Semantic errors like dead ends even harder. Parts of these problems could be
overcome by using a high-level Petri net formalism like Workflow Nets [9,15]
as a means for rapid prototyping and/or adding small changes and corrections.
Workflow Nets are directly executable, so that changes can be tried out eas-
ily. The graphical modeling permits typical errors mentioned above and gives a
good overview on what one is doing. To support large BQ models, means for
abstraction and rapid modeling are necessary. Workflow Nets offer such means.
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Abstraction is possible in form of object tokens of the underlying reference net
formalism [12,13,14] and by dynamic transition refinement [11]. Rapid modeling
is facilitated by workflow patterns, a special form of net components - see [1] for
an overview.

6 Conclusions and Outlook

We found a way of making use of well-known and well-understood formalisms
and tools for a new domain. While some good results have already been achieved,
several ways of extending the work are possible:

– The BQ analysis should be integrated into the normal BQ definition and
release process. In the moment, it still requires manual work. It has been
done completely only for the German version of the BQ.

– While the single steps of the analysis approach are rather straightforward,
the combination still requires some manual work. This should be simplified
to allow non-expert users to do the analysis on their own.

– The advanced models of Section 5 can be used directly for analysis of the
BQ. This is still in an experimental state. We try to partition the BQ net
into independent sub-nets to circumvent the net size explosion.

– In the moment, the BQ definition and especially the national adaptation
process has long turn-around times. Countries request changes without the
possibility to try them out beforehand. Using the rapid prototyping idea of
Section 5 they could first try out the changes themselves and only request
approval afterwards, once the changes are stable and working on the national
level.

The examples and the analysis shown in this paper could partly be modeled
using a sequential modeling formalism. However, Petri nets offer big advantages
when it comes to non-local dependencies. For example, in the PIAAC BQ, some
of the questions should only be asked a limited number of times in a country. This
is straightforward to model in PN but maybe more difficult in other modeling
formalisms.

The analysis of background questionnaires could benefit a lot from a sound
formalization of what a BQ is. As mentioned early in the paper, no such definition
exists so far. This question needs further research. Especially the similarity of
BQs and workflows should be analyzed more deeply.
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Abstract. Workflow verification has attracted a lot of attention, especially control 

flow aspect. However, little research has been carried out on data verification in 

workflow literature although data is one of the most important aspects of 

workflow. This paper proposes an approach for detecting and repairing 

Unintentional Change in In-use Data (UCID) in a Concurrent Workflow 

Management System at build time. We define UCID as a situation in which some 

data values are lost or some data elements are assigned values different from the 

intentions of workflow designers due to non-deterministic access to shared data by 

different activities. Differently from previous studies, we consider UCID in two 

different ways: between concurrent activities in a single workflow (intra-UCID) 

and between activities in different concurrent workflows (inter-UCID). In this 

paper, we first investigate UCID situations in a workflow management system, and 

then we define a Time Data Workflow, an extension of the WF-Nets with time and 

data factors, with many attributes supporting UCID detection and correction. 

Based on these definitions, we develop an algorithm which helps to detect 

potential intra/inter-UCID at build time, along with algorithm evaluation and 

UCID resolution methods. Finally, we introduce a concrete project on building a 

change support environment for cooperative software development using UCID 

theory.  

Keywords: Unintentional Change in In-use Data, Time Data Workflow, 

concurrent workflows, algorithm, Workflow Nets 

1 Introduction 

Correctness of a workflow model is very important, because any errors in workflow can 

lead to execution failure of the corresponding process. Therefore, workflow should be 

verified carefully before execution to reduce risks to the target process. Workflow 

verification has received a lot of attention since the birth of the workflow concept. 

However, researchers have only focused on structure verification, temporal verification 

and resource verification [2] [4] [7] [9]. Most verification techniques ignore data aspect 

and there is little support for data flow verification. Previous works on the data flow 

aspect have concentrated on detecting common data flow errors such as missing data, 
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redundant data, inconsistent data, garbage data, etc. Among them, Unintentional Change 

in In-use Data (UCID) is perhaps one of the most dangerous and common problems. We 

define UCID as a situation in which some data values are lost or some data elements are 

assigned values different from the intentions of workflow designers due to non-

deterministic access to shared data by different activities. Assuming that workflow is 

free of control errors, and activities in workflow can be scheduled within temporal 

constraint, we aim to support data verification in the workflow model by concentrating 

on UCID detection and correction.  

Existing approaches have addressed this problem by detecting potential UCID 

patterns, limited to concurrent activities of a single workflow. Unfortunately, this error 

can cross a single workflow boundary. In a Workflow Management System (WFMS), in 

fact, there exist many workflows executing at the same time, which we call Concurrent 

Workflows, and they may be correlated if two activities from different workflows use 

shared data. Even if the data flow of each workflow is correct, we cannot ensure 

correctness of the whole system because of the mutual interactions among workflows. 

The problem is how to detect non-deterministic access to shared data of activities 

belonging to not only the same workflow but also different workflows and how to repair 

this kind of data abnormality.  

Reference [19] is our first efforts in handling the UCID problem. Potential UCID 

situations, Time Data Workflow (TDW) concepts, along with two algorithms for 

detecting intra-UCID and inter-UCID have been introduced in [19]. This paper is a 

refined and extended version of the [19]. In this paper, we redefine TDW as an extension 

of Workflow Nets (WF-Nets) [8] instead of Petri Nets as before. Based on these 

definitions and two algorithms for detecting intra/inter-UCID in [19], a revised version 

of UCID detection algorithm is built. Compared with the previous ones, this revised 

algorithm is more accurate and useful. Furthermore, some heuristics for making the 

algorithm more flexible and effective are discussed. UCID resolution methods are also 

proposed in this paper. Then, we illustrate this theory in practice by using it in designing 

workflows which represent change activities in a software change process. 

Our approach in UCID detection is to observe behaviors of concurrent activities 

having data relation. In the case of activities in the same workflow, their total orders can 

be decided based on control flow. However, control flow does not help in the case of 

activities in different workflows. Therefore, we must use activities’ execution time 

attribute to identify their total orders. Regarding UCID resolution, we take advantage of 

composition features of the Petri Nets to create new workflows with UCIDs removed.  

The rest of this paper is organized as follows. Section 2 discusses the motivation of 

our research. Section 3 defines the Time Data Workflow (TDW), an extension of the 

Workflow Net with time and data factors. Section 4 introduces UCID situations caused 

by concurrent activities in the same workflow (intra-UCID) or activities in different 

concurrent workflows (inter-UCID) [19]. An algorithm for detecting potential UCID in 

both cases of intra/inter-UCID at build time, along with algorithm evaluation, is given in 

Section 5. Section 6 presents UCID resolution methods. Section 7 introduces our project 

on building a change support environment for cooperative software development. 

Theory about UCID problem is employed in this project to detect and repair data 

abnormalities among concurrent Change Support Workflows. Section 8 reports on 

332 Petri Nets & Concurrency Huyen and Ochimizu



related work and finally, Section 9 concludes the paper and discusses points to future 

work.  

2 Motivation  

Let’s take an example. We have two workflows W1 and W2, which are being executed 

independently. Workflow activities are modeled by rectangles, and data modified by an 

activity are written inside the corresponding rectangle. A small arrow is attached to a 

rectangle to denote an activity which is being executed. Data of the system are stored in 

a central repository. W1 has five activities which modify A, X, B, C and D respectively. 

B and D are modified based on the value of X created by A12. W2 also has five activities 

which modify E, X, F, G and H respectively. Both A12 and A22 will modify X, but 

designers of W1 and W2, who don’t have a comprehensive view of the whole system, 

may not recognize this problem. This is a common problem, especially in a big system 

with many workflows. 

 

Fig. 1. Motivating example 
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Figure 1 describes some snapshots of the system at different time. For simplicity, we 

concentrate on describing the change in value of data elements relating to shared data X. 

In snapshot 1, A12 changes value of X to X1. In snapshot 2, A13 changes value of B based 

on the value of X, X1.  In the next snapshot, A22 changes value of X from X1 to X2. In the 

last snapshot, A15 changes value of D based on the current value of X which is X2. If X1 

is different from X2, there are two problems in this scenario: X1 is lost and D is assigned 

an unexpected value because D is modified based on the value X2 instead of the value 

created by activity A12, X1. This is different from the intentions of the designers of the 

workflow W1 and may cause an inconsistency between B and D. Regarding our 

definition of UCID, these errors are categorized into inter-UCID errors.  

The first problem is similar to the lost update problem in database theory. Lost update 

problem occurs when two transactions that access the same database items have their 

operations interleaved in a way that makes the value of some database item incorrect 

[20].  In this case, version control systems (VCSs) can be used if data of the system are 

individual artifacts like documents, source codes, etc. Version control is the management 

of changes to documents, programs, and other information stored as computer files. 

Changes are usually identified by a number or letter code, termed the "revision number". 

Each revision is associated with a timestamp and the person making the change. 

Revisions can be compared, restored, and with some types of files, merged. 

 Unfortunately, VCS cannot help to avoid the second problem. In this situation, if data 

of the system are stored in a central database, the database management system (DBMS) 

can provide some concurrency control techniques, which are used to ensure the 

noninterference or isolation property of concurrently executing transactions such as 

locking techniques, timestamp ordering based techniques, etc. A database transaction is a 

transaction which satisfies the ACID (atomicity, consistency, isolation and durability) 

properties. These properties should be enforced by the concurrency control and recovery 

methods of the DBMS [20]. However, in this method, we must specify the boundary of 

each transaction. This requirement is difficult to implement because there are many 

people involved in a workflow and people in a workflow may know nothing about other 

workflows. If the whole workflow is considered as a unique database transaction, it is 

impractical because a workflow may use many data elements and may happen for a long 

time. 

If this type of errors is discovered at runtime, a recovery mechanism must be 

performed to ensure the correctness of the whole system. However, recovery is a rather 

expensive work, especially in a cooperative environment with many concurrently 

executing workflows. Therefore, detecting these errors as soon as possible is necessary 

to reduce risk to the target process. 

This paper examines UCID situations in a general basic system without concerning 

which type of workflow data is stored in the central repository of the system and the 

implementation of the central repository as well.  

Regarding inter-UCID, our problem domain is workflows whose data and estimated 

execution time can be decided at the design phase, for example workflows in the 

software evolution process. In these cases, an early UCID detection will help workflow 

designers to have a more comprehensive view of the system, and make timely 

adjustments to the original workflows to avoid error at runtime. We assume that the 
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following steps are conducted before workflow execution: identifying workflow 

activities and their orders, assigning activity properties (data, time…), and checking 

error using UCID detection and correction theory. If some potential UCID errors are 

detected, the first and second steps should be re-executed, based on suggested solutions 

given by UCID detection system.   

With reference to workflows in which estimated execution time is not available at 

design time, UCID patterns and detection method will be used to detect UCID errors 

from workflow execution histories. However, this is out of the scope of this paper.  

3 Time Data Workflow (TDW) 

There are many ways to model a workflow, such as directed graphs, UML activity 

diagram, PERT, etc. In this paper, we chose the WF-Nets based approach to model 

workflow process, because it has many useful features needed in the area of business 

process modeling besides the mathematical nature of the underlying Petri Nets 

formalism [17].  

WF-Nets is a subclass of Petri Nets dedicated for process/workflow modeling and 

analysis. Petri Nets is a popular graphical and mathematical modeling language in 

describing and analyzing systems which are characterized as concurrent, asynchronous, 

distributed, parallel, nondeterministic and/or stochastic [17]. Formally, Petri Nets is a 

tuple PN = (P, T, F) where P is a finite set of places, T is a finite set of transitions (P ∩ T 

= ∅) and F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation) [8]. A Petri Nets PN = 

<P, T, F> is a WF-Nets  if and only if  there is one source place i ∈ P, one sink place o 

∈ P such that •i = ∅, o• = ∅, and every node x ∈ P ∪ T is on a path from i to o [8].   

Our Time Data Workflow (TDW) is an extension of WF-Nets with time and data 

factors. Time and data are represented as attributes of transitions in a TDW. In this 

paper, we consider two types of relationships between an activity and a data element. 

First, an activity may read a particular data element as its input data. Second, an activity 

may write a particular data element as its output data. This means that this data element 

is assigned a new value. Inside an activity, read always happens before write. Assuming 

that durations of activities can be estimated at build time, we augment each activity A 

with two time values min(A), max(A) which describe the minimum and maximum 

execution durations of A respectively. The time unit is selected depending on specific 

workflow applications. Based on reference point P, which is the start time of its 

corresponding workflow, we can infer the Earliest Start Time, EST(A), and the Latest 

Finish Time, LFT(A), of A at run time. If S(A), F(A) are the Start Time and Finish Time 

of this activity at run time respectively, we can conclude that the Active Interval of A, 

[S(A), F(A)], is within its Estimated Active Interval, [EST(A), LFT(A)], that is, [S(A), 

F(A)] ⊆[EST(A), LFT(A)] [19]. 

In a TDW, activities are modeled by transitions, and causal dependencies are modeled 

by places and arcs, as shown in Figure 2 [19]. Building blocks such as the AND-split, 

AND-join, OR-split, OR-join are used to model sequential, conditional, parallel and 

iterative control structures of workflows. AND-split and OR-split transition correspond 

to transitions with two or more output places, while AND-join and OR-join transition 
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correspond to transitions with multiple incoming arcs. Different symbols are attached to 

original rectangles to distinguish normal transitions from transitions containing 

branching conditions. Figure 2a illustrates a typical transition in a TDW, with execution 

duration ranging from d1 to d2; data elements a, b are inputs and c, d, e are outputs. The 

other parts of Figure 2 show how basic constructions of a workflow are represented by 

TDW’s notations [19]. For the sake of simplicity, each activity is represented by a 

transition. Therefore, the terms ‘activity’ and ‘transition’ are interchangeably used in this 

paper. 

 

Fig. 2. Workflow primitives specified by TDW 

As an extension of WF-Nets, TDW specifies the time and data properties of a single 

case in isolation, assuming that different cases are completely independent from each 

other. Therefore, UCIDs are caused by activities in a single TDW instance or activities 

belonging to workflow instances of different TDWs. Without the loss of generality, we 

assume that each TDW has one instance only. 
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Definition 1 (Time Data Workflow – TDW) A TDW, w, is a tuple <P, T, F, id, D, 

R, DE, TI > where: 

─ <P, T, F> is a WF-Nets with places P, transitions T and arcs F 

─ id is the workflow identifier. 

─ D is a set of data elements. 

─ R = {r, w, u} is a set of possible access rights to data elements (r: read, w: write, u: 

use (either read or write)). 

─ DE: T x R→ 2
D
 is a function that returns a set of data elements associated with a 

transition and an access right. 

─ TI: T → R
+
 x (R

+
 x ∞) is a time interval function that returns minimum and 

maximum execution durations of a transition.   

Definition 2 (Concurrent Time Data Workflow Model) A Concurrent TDW Model 

cwm = (W, Twm) is a collection of TDWs which have overlapping execution times 

(concurrent TDWs): 

─ W = {w1, w2… wn} is a set of concurrent TDWs, where wi = < P, T, F, id, D, R, 

DE, TI >. 

─ Tcwm = T(w1) ∪T(w2) ∪ …∪T(wn) is the  set of all transitions (activities) in cwm. 

Given a TDW w as in Definition 1, we have the following definitions [19]: 

Definition 3 (Path) A Path is a sequence of consecutive arcs. 

A sequence p = (xo, x1, …, xk) is  a Path  iff ∀i, 0 < i < k – 1: (xi, xi+1) ∈F  

Definition 4 (Transition Path) A sequence p = (t0, p1, t1,… , tk) is a Transition Path 

iff it is a path and  t0, tk ∈ T. 

Definition 5 (Transition Reachability) Transition ti is reachable from tj if there 

exists a transition path (ti,... , tj) on wm. 

Reachable (ti, tj) = true iff ∃transition path p = (ti,... , tj) 

Definition 6 (Transition Distance) Given two transitions ti, tj where Reachable (ti, tj) 

= true or where Reachable (tj, ti) = true, the Transition Distance between ti, tj is the 

length of the shortest path between them. 

Definition 7 (Nearest Common Transition) Given two transitions ti, tj where 

Reachable (ti, tj) = false and where Reachable (tj, ti) = false, their Nearest Common 

Transition is the common transition which has the shortest distances to both of them, 

denoted as tnct. 

Definition 8 (Closest Data Relation Transition) Given two transitions ti, tj, where 

their nearest common transition is not an OR-split transition, tj is called the Closest Data 

Relation Transition of ti on data element d if tj just precedes ti in terms of time, and both 

tj and ti use (read/write) d, denoted as tcdrt. 

4 UCIDs in a Concurrent TDW Management System 

A Concurrent TDW Management System is a workflow management system which is 

responsible for TDW construction and management.  A module of UCID detection and 

correction is also integrated into this system. 
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Data flow can be implemented explicitly as a part of the workflow model by using a 

separate channel to pass data from one activity to another. Otherwise, it can also be 

implemented implicitly through a control flow or process data store [3]. The process data 

store is basically a central repository where all workflows’ activities can access or 

update their data. We choose implicit data flow through the process data store as a basis 

for our approach. In this implementation model, UCID may occur, particularly in cases 

involving concurrent execution paths.  

Given a Concurrent TDW Model cwm as in Definition 2, we have the following 

definitions: 

Definition 9 (Data Relation) Two activities ai, aj (i ≠ j) have data relation if DE(ai, 

u)∩ DE(aj, u) ≠ ∅ [19]. 
Definition 10 (Concurrent activities) Two activities are called concurrent activities 

iff they belong to two parallel branches of a TDW or they are in different TDWs and 

have overlapping Active Intervals.  

Definition 11 (Unintentional Change in In-use Data) A situation in which some 

data values are lost or some data elements are assigned values different from the 

intentions of workflow designers due to non-deterministic access to shared data by 

different activities [19].  

Here we distinguish two kinds of UCID: intra-UCID and inter-UCID. The former 

considers UCID situations concerning concurrent activities in the same workflow, while 

the latter is related to concurrent activities in different workflows. Definition 12, 13 are 

based on definitions of read-write conflict and write-write conflict in [1]. 

Definition 12 (RW Intra-UCID) A situation in which an activity A tries to read data 

from a shared variable x and an activity B tries to write data to the same shared variable 

x and vice versa, where A, B are concurrent activities in the same workflow.  
Definition 13 (WW Intra-UCID) A situation in which two concurrent activities in 

the same workflow, A and B, try to write data to the same shared variable. 

 

Fig. 3. Inter-UCIDs 

Definition 14 (RW Inter-UCID) A situation in which an activity A tries to read data 

from a shared variable x and an activity B tries to write data to the same shared variable 

x and vice versa, where A, B are in different concurrent workflows and have overlapping 

Active Interval ([S(A), F(A)] ∩  [S(B), F(B)] ≠ ∅). 
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Definition 15 (WW Inter-UCID) A situation in which two activities A and B try to 

write data to the same shared variable, where A, B are in different concurrent workflows 

and have overlapping Active Interval ([S(A), F(A)] ∩  [S(B), F(B)] ≠ ∅). 
Definition 16 (UWU Inter-UCID) A situation in which there are inconsistent views 

of shared data by two activities in the same workflow, because their shared data are 

written externally by an activity in a different concurrent workflow.  

As depicted in Figure 3, two activities ami, amj of TDW wm use (read or write) data 

element t, where amj is the closest to ami in terms of time and F(amj) < S(ami), which 

means tcdrt(ami, t) = amj. A UWU Inter-UCID happens because activity ank of a different 

workflow wn writes to t within the time interval [F(amj), S(ami)]. RW Inter-UCID and 

WW Inter-UCID also happen between activity A and activity B, activity C and activity 

D respectively. 

5 Detection of Potential UCID in a Concurrent TDW Management 

System 

Regarding UCID definitions, inter-UCIDs are identified based on the Active Interval 

of activities having data relation. However, Active Interval of an activity can only be 

determined at runtime when it has finished its execution, and hence Estimated Active 

Interval is used instead of Active Interval to find potential UCID at build time, before a 

new TDW is put into the Concurrent TDW Management System to start. 

5.1 Calculation of Estimated Active Interval [19] 

Designating the start time of a TDW w as a reference point, Pw, we can infer the 

Estimated Active Interval of an activity A [EST(A), LFT(A)] with respect to its 

minimum and maximum executing durations {min(A), max(A)} and basic control 

structures.  

Let us say that As is the Start activity of a TDW w, then we have EST(As) = Pw and 

LFT(As) = Pw + max(As). For executing activity A, EST(A) = S(A) and LFT(A) = F(A) 

if A has been completed. 

Sequential Connection (Figure 2b) 

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj) 

AND-Split Connection (Figure 2c) 

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj) 

EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak) 

AND-joint Connection (Figure 2d) 

EST(Ak) = MAX{EST(Ai) + min(Ai); EST(Aj) + min(Aj)} 

LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak) 

OR-Split Connection (Figure 2e) 

EST(Aj) = EST(Ai) + min(Ai); LFT(Aj) = LFT(Ai) + max(Aj) 

EST(Ak) = EST(Ai) + min(Ai); LFT(Ak) = LFT(Ai) + max(Ak) 

OR-joint Connection (Figure 2f) 

EST(Ak) = MIN{EST(Ai) + min(Ai); EST(Aj) + min(Aj)} 
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LFT(Ak) = MAX{ LFT(Ai), LFT(Aj)} + max(Ak) 

5.2 Potential UCID Detection Algorithm  

Given a Concurrent TDW Model cwm = (W, Tcwm), where W = {w1, w2, …, wk} and 

Tcwm = T(w1) ∪T(w2) ∪ …∪T(wk), w = <P, T, F, id, D, R, DE, TI>. The main idea of 

this algorithm is to select one activity and compare it with the other activities. If two 

activities have data relation, we will check if there is a potential UCID. In the case of 

concurrent activities in the same workflow, potential intra-UCIDs can be detected with 

respect to Definitions 12, 13. If two compared activities are in different workflows and 

have overlapping Estimated Time Intervals, there is a possibility of an RW/WW inter-

UCID occurrence (Definitions 14, 15). If only the data relation exists and one activity 

occurs before the other, we will compare this situation with the definition 16 and the 

pattern in Figure 3 to find out a potential UWU inter-UCID. 

Step 1: Initialization: 

1.1 Let S be a set of unchecked activities. S is initialized with all unfinished activities of 

Tcwm; 

1.2 Calculate Estimated Active Interval for all activities in S; 

1.3 flag = TRUE is a Boolean variable; 

Step 2: For every pairwise of activities (ami, ank) in S, execute the following steps: 

2.1 Check their Data Relation 

Let Umnik be the set of shared data between ami and ank: Umnik = DE(ami, u) ∩ DE(ank,u); 

2.1.1 If Umnik = ∅, ami and ank do not have data relation. Therefore UCID cannot 

happen between ami and ank;  

2.1.2 If Umnik≠ ∅, ami and ank have data relation. Take the next step. 

2.2 If ami and ank in the same workflow, check intra-UCID possibility. Otherwise, check 

inter-UCID possibility; 

2.2 Check intra-UCID possibility 

2.2.1 If ami and ank belong to two parallel branches of a workflow, this means that their 

Nearest Common Transition, denoted as tnct (ami, ank), is an AND-split transition, they 

are concurrent activities. Take the next step; 

2.2.2 For every data element, denoted as dmnikl, in Umnik, check the access right to 

dmnikl of ami and ank: 

2.2.2.1 If both of them have write access right to dmnikl, this means that  dmnikl∈
DE(ami, w) and dmnikl∈DE(ank, w), then flag = FALSE. There is a potential WW 

Intra-UCID between ami, ank on dmnikl; 

2.2.2.2 If one activity has write access right to dmnikl and the other has read access 

right to dmnikl, this means that  (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or 

(dmnikl∈DE(ami, r) and dmnikl∈DE(ank, w)), then flag = FALSE. There is a 

potential RW Intra-UCID between ami, ank on dmnikl; 

2.3 Check inter-UCID possibility /* Figure 3*/ 

2.3.1 If ami and ank have overlapping Estimated Active Interval, this means that 

[EST(ami), LFT(ami)] ∩  [EST(ank), LFT(ank)] ≠  ∅, they are potential concurrent 

activities: check RW/WW inter-UCID possibility. Otherwise, check UWU inter-UCID 

possibility; 
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2.3.2 Check potential RW/WW inter-UCID  

For every data element, denoted as dmnikl, in Umnik, check the access right to dmnikl of 

ami and ank: 

2.3.2.1 If both of them have write access right to dmnikl, this means that  dmnikl∈
DE(ami, w) and dmnikl∈DE(ank, w), then flag = FALSE. There is a potential WW 

Inter-UCID between ami, ank on dmnikl; 

2.3.2.2 If one activity has write access right to dmnikl and the other has read access 

right to dmnikl, this means that  (dmnikl∈DE(ami, w) and dmnikl∈DE(ank, r)) or 

(dmnikl∈DE(ami, r) and dmnikl∈DE(ank, w)), then flag = FALSE. There is a 

potential RW Inter-UCID between ami, ank on dmnikl; 

2.3.3 Check potential UWU inter-UCID  

Assume that LFT(ank) < EST(ami). For each data element, denoted as dmnikl, in Umnik 

where ank has write access right to dmnikl: dmnikl ∈DE(ank, w), perform the following 

steps: 

2.3.3.1 Find out the Closest Data Relation Transition of ami on dmnikl, denoted as 

amj: amj = tcdrt(ami, dmnikl). If amj = ∅, UWU inter-UCID may not happen; 

2.3.3.2 If [EST(ank), LFT(ank)] ⊂[LFT(amj), EST(ami)], then flag = FALSE. There 

is a potential UWU Inter-UCID among ami, amj, ank on dmnikl; 

Step 3: Return flag. 

5.3 Algorithm Evaluation 

Let’s say n is the number of unfinished activities in a Concurrent TDW Model cwm. In 

general, we must inspect n
2
 combinations of any two unfinished activities to find out 

some potential UCIDs. This approach allows us to detect not only potential UCID at 

build time of pre-executed TDWs, but also potential UCID at run time of running TDWs 

by recalculating the Estimated Active Intervals of their unfinished activities more 

accurately based on the Active Interval of finished activities. However, depending on 

applications, we can reduce the number of checking steps by considering some of the 

following heuristics: 

─ A two dimensional table can be used to record the access right on data elements of 

activities in a Concurrent TDW Model cwm. Figure 4 describes an example of data 

flow matrix of a Concurrent TDW Model with three TDWs W1, W2 and W3. 

{D1,…, D10} is the data set of the Concurrent TDW Model. Parallelization can be 

applied here to reduce execution time. For each element in the data set of cwm, 

there is a thread being responsible for checking potential UCID caused by activities 

using this data element.  

─ After designing a new TDW, UCID check is conducted to find potential UCIDs 

before this TDW is put into the Concurrent TDW Management System for 

execution.  Let’s say m, k, l are the number of unfinished activities in the being 

considered pre-executed TDW, other pre-executed TDWs, running TDWs 

respectively, we have n = m + k + l. Because the other pre-executed TDWs have 

been checked in previous examinations, we can skip combinations of two activities 

in these TDWs to reduce the number of inspected combination to n
2
 – k

2
. If we just 

want to detect UCIDs caused by activities in the being considered TDW, we will 
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verify m x n activity combinations only. A parallel solution in this case is to create 

m threads. Each thread will be responsible for one activity in this TDW and will 

verify potential UCIDs on combinations created by this activity with the others in 

different TDWs. 

─ Because potential UCIDs just occur in activities that have shared data, we will 

verify activities having shared data only. Each data element will store 

identifications of unfinished activities using it. Therefore, the set of checked 

activities can be limited to unfinished activities having data relation in the 

Concurrent TDW Model. If the number of data elements is small, we can start from 

data elements of the being considered pre-executed TDW to pick out unfinished 

activities in the Concurrent TDW Model having data relations and use UCID 

patterns to find out potential errors. 

 

 
Fig. 4. Data flow matrix example  

6  Potential UCID Resolution 

In general, if potential UCIDs happen, there may be some abnormalities in data flows 

or control flows of the concerned workflows. A review on the workflow design should 

be conducted to make sure that this situation is not made on purpose.  

Our given solutions in which some of them will change the workflow structure are 

simply reference models. The final decision will depend on workflow designers to 

perform modifications that actually lead to a resolved model.  

33

A11 A21 A12 A13 A31 A22 A32 A14 A23 A33
D1 W R R

D2 R

D3 W R

D4 W R R R

D5 W R

D6 W R

D7 W R W R R

D8 W R

D9 W R

D10 W

W1 W2 W3
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6.1 Potential Intra-UCID Resolution 

Potential Intra-UCID may be caused by a mistake of workflow designers in designing 

parallel branches of a workflow. Therefore, our solution for Intra-UCID is to change the 

workflow structure by sequentializing or combining error-related activities. Two 

activities causing potential WW Intra-UCID are merged into one by place/transition 

fusion (Figure 5a). For RW Intra-UCID, sequentialization is applied to the related 

activities. One option is that read activity happens before write activity and the other is 

that write activity happens before read activity (Figure 5b). Resolution order will begin 

from WW Intra-UCID cases to RW Intra-UCID cases. With regard to potential UCIDs 

belonging to the same group, the priority is the happening order. 

 

Fig. 5. Potential Intra-UCID resolution 

6.2 Potential Inter-UCID Resolution 

Resolving potential inter-UCID is more complex because workflows are designed for 

different purposes by different designers and a designer may know nothing about the 

work of the others. To resolve inter-UCID, the cooperation of different designers is 

necessary and the result will highly depend on the willingness of designers to 

communicate with each other.  

A method which does not affect the workflow structures is to adjust the workflow 

schedule by modifying the workflow start time, maximum and minimum execution 

durations of activities in workflows so that inter-UCID patterns do not occur. Another 

solution is to change the workflow structure.  
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(b) RW Intra-UCID Resolution by sequentialization

(a) WW Intra-UCID Resolution by place/ transition fusion
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Fig. 6. Potential Inter-UCID resolution 

First, we will combine related TDWs into one workflow. In order to preserve the 

structure of the original TDWs, in the new TDW, the Start place connects to an AND-

Split transition and the End place is connected to an AND-join transition. Each merged 
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TDW corresponds to a subnet starting from the AND-split transition and ending at the 

AND-join transition. Because the merged TDWs are started at different times, we insert 

a Time Start transition between the Start place of each merged TDW and the AND-split 

transition, a Time End transition between the End place of each merged TDW and the 

END-join transition. Time activities are just null activities with some duration and they 

help to merge TDWs without modifying the workflow’s schedule seriously. The AND-

split transitions, AND-join transitions, Time Start transitions, Time End transition, 

places and arcs connecting the related workflows together represent the dependency 

relationships between different workflows which play an important role in the recovery 

process in the case of workflow failure. They will not be used to identify the total order 

of activities in detecting potential intra-UCID in the synthesis TDW. In the case of a 

running TDW, we can create a new TDW from the original workflow by removing its 

finished activities, and this new TDW will be combined with other TDWs in a normal 

way. Another simpler way is to combine the pre-executed TDWs only. After that, 

workflow designers can adjust the Estimated Active Interval of activities in the new 

TDW by modifying workflow start time, maximum and minimum execution duration of 

its activities so that UCID related activities happen after related activities of the running 

TDW.  

Next, we will deal with activities causing potential Inter-UCID. The mechanism to 

handle potential WW/RW Intra-UCID is applied to WW/RW Inter-UCID cases (Figure 

6a, 6b). Regarding UWU potential UCID, three activities related to this error are 

connected as shown in Figure 6c. If there are many potential Inter-UCIDs between the 

same two TDWs, the priority is Inter-UCID types (WW > RW > UWU) and occurring 

time of activities respectively.  

As mentioned earlier, inter-UCID resolution is very complex, especially UWU inter-

UCID. Currently, our proposed solution is just a reference model which helps workflow 

managers to have a more comprehensive view of data related workflows. We will try to 

improve them in the future work. 

7 Application 

In this section, we present a project on building a change support environment for 

cooperative software development. UCID theory is used in this project to detect potential 

UCID between concurrent workflows.  

Software systems must be changed under various circumstances during development 

and after delivery, such as for new requirement, error correction, performance 

improvement, etc. However, software change is not an easy task, especially in a 

cooperative environment where software artifacts with very complex dependency 

relationships are created based on the cooperation of many people. Besides, other 

problems such as concurrency of works, synchronization of changes on shared artifacts, 

etc. also make this task more difficult. Therefore, a change support environment is 

strongly demanded. 

In order to help change workers to perform change activities safety and efficiently in 

a cooperative environment, we use workflow to represent activities needed to implement 
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a change request. We define Change Support Workflow (CSW) as a sequence of 

activities required to implement a change. Activities in CSW are responsible for creating 

new software artifacts or modifying exiting ones. This means that data elements of CSW 

are software artifacts which need to be read, modified or created in the change 

implementation process.  

 

 

Fig. 7. Example of Relationships between UML Artifacts created during a software 

development process 

In the first phase of the project, a method for automatically generating dependency 

relationships among UML elements was given [22]. Change impact analysis which 

identifies potential consequences of a change can be realized by tracing the generated 

dependency relationships. Result of this process will be used to generate CSW.  

In large and cooperative system, there may be hundreds of CSWs executed at the 

same time to react to change requirements quickly. However, when there are many 

CSWs running on the same system, that UML artifacts are shared by different CSWs is 

unavoidable. If CSWs having shared artifacts are executed at the same time, 

inconsistencies among their data (UML artifacts) can happen. A version control system 

is used in our change support environment to deal with data loss; however this system 

does not help in this situation. Therefore, UCID theory is employed in this project to 

deal with this problem. Potential UCID can be detected automatically at build time to 

help workflow designers make timely adjustments to original workflows. 

Our project supports constructing CSW based on the relationships between impacted 

UML model elements which are extracted from the result of impact analysis. CSW is 

modeled by TDW as follows. Each transition corresponds to an activity which creates or 

modifies at least one UML artifact. Total order of two transitions is identified by 

examining the dependency relationships between the artifacts modified by these 

transactions. Access role write is assigned to the artifacts which need to be modified or 

created; the artifacts for reference only are labeled with read access role. This draft of 

CSW will help workflow designers in developing the schedule of the change process. 
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The other steps in developing change schedule such as estimating activity resources and 

activity durations will be performed by workflow designers. From Activity Duration 

Estimates in the schedule, minimum and maximum execution durations of transitions in 

this CSW can be inferred. To reduce risks at runtime, UCID check on this CSW will be 

conducted. If some potential UCIDs are reported, data and control structure of this CSW 

should be adjusted in responding to suggested solutions of the change support system.  

 

Fig. 8. Example of CSWs created based on the relationships between UML Artifacts  

Table 1. Time aspect of activities in CSWs described in Figure 7 

CSW 

ID 

Start 

time Pw 

 

Activity Name Activity 

Duration 

Estimates 

(days) 

Minimum 

and 

Maximum 

execution 

duration 

Estimated 

Active 

Interval 

W1 5 Activity 1 7.5 ± 0.5 {7,8} [5,13] 

Activity 2 5.5 ± 0.5 {5,6} [12,19] 

Activity 3 11 ± 1 {10,12} [17,31] 

Activity 4 6 ± 1 {5,7} [27,38] 

Activity 5 7 ± 1 {6,8} [27,39] 

AND-joint  0 {0,0} [33,39] 

W2 15 Activity A 6 ± 1 {5,7} [15,22] 

Activity B 5 ± 1 {4,6} [20,28] 

Activity C 5 ± 1 {4,6} [20,28] 

Activity D 10 ± 1 {9,11} [24,39] 

Activity E 5.5 ± 0.5 {5,6} [24,34] 

Activity F 6 ± 1 {5,7} [29,41] 

AND-joint 0 {0,0} [34,41] 

 

Because CSW is constructed based on relationships between software artifacts, 

potential Intra-UCIDs seldom happen. Besides, if potential UCIDs are reported, the 
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possibility of control flow errors is low too. In this case, workflow designers should 

review data flow and pay attention to shared data elements among concurrent CSWs. 

With reference to potential inter-UCID, Estimated Active Intervals of activities play a 

very important role; therefore a change on project schedule may help overcome this 

error.  

 

Fig. 9. Modified CSW with potential UCID corrected 

Let’s have an example. Figure 7 describes an example of relationships between UML 

artifacts created in different phases of a software development process. If we change 

UML Artifact 1, we need to change UML Artifacts 4, 5, 8, 9 because of the relationships 

between them. Similarly, if we change UML Artifact 2, we need to change UML 

Artifacts 5, 6, 9, 10, 11. By tracing the relationships starting from UML Artifact 1 and 

UML Artifact 2, we can create two CSWs to respond to change requirements on UML 

Artifact 1 and UML Artifact 2 respectively (Figure 8). Based on the generated 

workflows, project manager can conduct other steps in project time management such as 

estimating activity resources, estimating activity durations, etc. Information about 

activity duration is used to detect potential UCIDs.  In Table 1, the minimum and 

maximum execution durations of each activity in CSWs described in Figure 8 are 

calculated from the Activity Duration Estimate, quantitative assessment of the likely 

number of work periods that will be required to complete an activity [18], of the 

corresponding activity in the project time management. Based on these values and the 

start time of the corresponding workflow, we can calculate the Estimated Active 

Intervals according to the formulas given in Section 5.1. After using the Inter-UCID 

detection algorithms, the following potential Inter-UCIDs are reported: WW Inter-UCID 

between activity 3 and activity B on artifact 5, WW Inter-UCID between activity 5 and 

activity D on artifact 9, RW Inter-UCID between activity 3 and activity A on artifact 2, 
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RW Inter-UCID between activity 5 and activity B on artifact 5. By applying the second 

Inter-UCID resolution method, modifying workflow structure, we get the synthesis CSW 

as described in Figure 9. 

Because detecting potential UCIDs at build time is limited to workflows in which 

Estimated Active Intervals can be given before execution, solving this problem at 

runtime will be our next step. The model versioning system AMOR [21] offers some 

methods to resolve collaborative conflict in model versioning. Regarding this approach, 

all people who performed the changes are involved in eliminating the conflicts to obtain 

one consistent model version. We will consider applying this approach in our 

environment to increase the flexibility of the system. 

8 Related Work 

Workflow verification has attracted a lot of attention, especially control flow aspect. 

However, little research has been carried out on data verification in the workflow 

literature.  

Reference [3] was one of the first studies to mention the importance of data-flow 

verification, and identified possible errors in the data-flow, like missing data, redundant 

data, conflict data, etc. Some general discussions on data flow modeling, specifications 

and verifications have been given, but without any detailed solution. The authors in [12] 

used data flow matrix and UML activity diagram to specify data flow. Based on this 

specification, an algorithm for detection of some data anomalies, such as missing data, 

redundant data, and potential data conflicts, was given [3]. In [11], a new workflow 

model, named Dual Workflow Nets, was defined to explicitly describe both control flow 

and data flow. A graph traversal approach was used in [10] to build an algorithm for 

detecting lost data, missing data and redundant data. More data flow errors were 

recognized and conceptualized as data flow anti-patterns and expressed in terms of 

temporal logic CTL
*
 [5, 6]. By using temporal logic, available model checking 

techniques can be applied to discover these anti-patterns. 

Nevertheless, all of these studies consider data flow errors in a single workflow only 

and no error removal method is given at all. In contrast to previous work, we address not 

only the interactions of concurrent activities inside a single workflow, but also the 

mutual influences between concurrent workflows, which are the sources of data flow 

errors. In [19], we focused on identifying UCID situations and defining a new workflow 

model as an extension of Petri Nets. Two algorithms for detecting intra-UCID and inter-

UCID were also given in this work. However, there are still many unsolved problems in 

[19] and this paper is its refined and extended version. In this paper, TDW is defined as 

an extension of Workflow Nets (WF-Nets) instead of Petri Nets. Because the two 

algorithms in [19] had many common steps, if we use them separately, execution cost 

would be high. Therefore, these two algorithms are combined to reduce the cost and to 

form a more accurate and useful algorithm. Algorithm evaluation is also included in this 

version. Besides, some heuristics are provided to make the algorithm more flexible and 

effective. After that, some UCID resolution methods are proposed to help remove UCID 
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errors. Finally, building a change support environment for cooperative software 

development is introduced as an application domain for our work. 

Concerning the mutual influences of the concurrent workflows approach, the research 

closest to us is [7]. However [7] addressed the verification of workflow resource 

constraints, and in this work, by nature, handling the resource problem is simpler than 

the data problem. A Time Constraint Workflow Net was defined to model workflow. 

Then, they identified the problem of resource constraints in WFMS and proposed a 

pseudocode algorithm which checked the resource dependency between every two 

activities. Reference [4] used hybrid automata to model the influences between 

concurrent workflows, and adopted a model checking technique to detect resource 

conflict problems. 

9 Conclusion and Future Work 

In this paper, we have presented Unintentional Change in In-use Data (UCID) concept 

and classified types of UCID which can occur, between activities in a single workflow or 

in different concurrent workflows. We have also proposed a Time Data Workflow based 

on the WF-Nets with many attributes supporting UCID estimation. An algorithm which 

helps detect intra/inter-UCIDs in a Concurrent TDW Management System has been 

developed too. After that, algorithms evaluation and some solutions to resolve UCID 

problem are given. Finally, we have introduced a concrete project supporting software 

change development process in a cooperative software environment as an application 

using UCID theory to verify change processes at build time.   

As future work, we will implement a prototype of Concurrent TDW Management 

System and evaluate the effectiveness of UCID detection algorithm by runtime analysis. 

Then, we will improve inter-UCID resolutions and refine the generated TDW after 

applying UCID resolution methods in the Concurrent TDW Management System. 

Detecting and correcting UCID at runtime are our next targets. We also plan to 

investigate formal verification methods to verify the correctness of our model and 

method. Finally, we will integrate our system into the open source WoPeD [17]. Another 

direction of our research is to extend the TDW and improve UCID detection algorithms 

to address errors in resource and access control constraints. 
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Abstract. Model transformations play a key role in the vision of Model-
Driven Engineering (MDE) whereby the overcoming of structural hetero-
geneities, being a result of applying different meta-modeling constructs
for the same semantic concept, is a challenging, recurring problem, ur-
gently demanding for reuse of transformations. In this respect, an ap-
proach is required which (i) abstracts from the concrete execution lan-
guage allowing to focus on the resolution of structural heterogeneities, (ii)
keeps the impedance mismatch between specification and execution low
enabling seamless debuggability, and (iii) provides formal underpinnings
enabling model checking. Therefore, we propose to specify model trans-
formations by applying a set of abstract mapping operators (MOPs),
each resolving a certain kind of structural heterogeneity. For specifying
the operational semantics of the MOPs, we propose to use Transforma-
tion Nets (TNs), a DSL on top of Colored Petri Nets (CPNs), since it
allows (i) to keep the impedance mismatch between specification and
execution low and (ii) to analyze model transformations by evaluating
behavioral properties of CPNs.

Key words: Model Transformation Reuse, Hierarchical CPNs, Struc-
tural Heterogeneities, Mapping

1 Introduction

MDE is a current trend in software engineering where models are used as first-
class artifacts throughout the software lifecycle [2], which are then systemati-
cally transformed to concrete implementations. In this respect, model transfor-
mations play a vital role, representing the key mechanism for vertical transfor-
mations like the generation of code and horizontal transformations like model
exchange between different modeling tools, to mention just a few. In the con-
text of transformations between different metamodels and their corresponding

∗ This work has been funded by the Austrian Science Fund (FWF) under grant
P21374-N13.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 353–368.



models, the overcoming of structural heterogeneities, being a result of applying
different meta-modeling constructs for the same semantic concept [11, 13] is a
challenging, recurring problem, urgently demanding for reuse of transformations.

In this respect, reusable transformations should abstract from a concrete
transformation language, allowing to (preferably graphically) specify transfor-
mations in an explicit specification view without having to struggle with the
intricacies of a certain transformation language. Secondly, for being able to de-
bug and comprehend resulting specifications, the impedance mismatch between
the specification view and the executable formalism needs to be minimized, de-
manding for a debugging view which retains the structure of the specification
view, i.e., components used in the specification view should not get scattered in
the debugging view. Finally, since debugging can only provide limited evidence
of correctness by means of a set of test runs, the underlying executable formalism
for the execution view should provide means to enable model checking [3].

We therefore propose to specify horizontal model transformations by means
of abstract mappings representing a set of reusable transformation components,
called mapping operators (MOPs), to resolve recurring structural heterogeneities.
These MOPs operate on different levels of granularity, i.e., we provide a set of
kernel MOPs representing the basic functionality needed for resolving structural
heterogeneities and a set of composite MOPs encapsulating several kernel MOPs,
thus enhancing scalability of our approach. In order to specify the operational
semantics of the MOPs, we propose to use TNs [23], a DSL on top of CPNs [9],
since TNs allow to keep the impedance mismatch between specification view and
debugging view low by encapsulating the transformation logic of a single MOP
together with the metamodels and the models. Thereby debuggability and com-
prehensibility are fostered, i.e., the ability of finding and reducing the number
of bugs. Moreover, the underlying CPNs allow to specify reusable components
in the form of modules, which can be nested in a hierarchical way, allowing to
accordingly represent composite MOPs. Therefore the main contribution of this
paper is to enable reuse also on the execution level, i.e., the Petri Net layer.
Finally, the formal underpinnings of CPNs allow the application of generally
accepted behavioral properties to analyze the transformation specification. The
whole framework is called TROPIC – TRansformations On Petri nets In Color.

The remainder of this paper is structured as follows. Section 2 introduces a
motivating example, Section 3 concentrates on the specification of a transfor-
mation and Section 4 deals with the debugging thereof. The subsequent Section
5 shows how TNs are represented in standard CPNs and how behavioral prop-
erties are exploited to analyze the transformation specification. Lessons learned
are discussed in Section 6 and related work is surveyed in Section 7. Finally,
Section 8 concludes the paper with an outlook on future work.

2 Motivating Example

Structural heterogeneities between different metamodels occur due to the fact
that semantically equivalent concepts can be expressed by different metamod-
eling concepts, e.g., explicitly by classes or only by attributes. Fig. 1 shows an
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Fig. 1. Metamodels and Models of the Running Example

example used throughout the rest of the paper which exhibits common structural
heterogeneities between metamodels, applying different modeling constructs to
represent relationships as can be found e.g., in Ecore3 or in Entity-Relationship
Models. The ClassDiagram shown on the left side of Fig. 1, only provides uni-
directional references, thus bidirectionality needs to be modeled by a pair of
opposite references. In contrast to that, the ERDiagram explicitly represents bidi-
rectionality, allowing to express relationships in more detail, e.g., using roles.

In the following, the main correspondences between the ClassDiagram and
the ERDiagram are shortly described. On the level of classes, three main corre-
spondences can be recognized, namely 1:1 correspondences, 1:n correspondences
and n:1 correspondences, which are also indicated by dotted lines in Fig. 1. 1:1
correspondences can be found (i) between the root classes ClassDiagram and
ERDiagram as well as (ii) between Class and Entity. Regarding 1:n correspon-
dences, again two cases can be detected, namely (i) between the class Property
and the classes Attribute and Type and (ii) between the class Reference and
the classes Role and Cardinality. Although these are two occurrences of a 1:n

3 http://www.eclipse.org/modeling/emf/
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correspondence, there is a slight difference between them, since in the first case
only for distinct values of the attribute Property.type, an instance of the class
Type should be generated. Finally, there is one occurrence of a n:1 correspon-
dence, namely between the class Reference and the class Relationship. It is
classified as n:1 correspondence, since for every pair of References, that are op-
posite to each other, a corresponding Relationship has to be established. Con-
sidering attributes, only 1:1 correspondences occur, e.g., between Class.name

and Entity.name, whereas regarding references, 1:1 correspondences and 0:1
correspondences can be detected. Concerning the first category, one example
thereof arises between ClassDiagram.classes and ERDiagram.entities. Re-
garding the latter category, e.g., the relationship ERDiagram.types exists in the
target without any corresponding counterpart in the source.

3 Specification View

As mentioned before, the actual specification of a transformation problem should
abstract from a concrete transformation language allowing the transformation
designer to focus on the resolution of structural heterogeneities without having to
struggle with the intricacies of a certain transformation language. Therefore we
propose to specify model transformations by means of abstract mappings being
a declarative description of the transformation, as known from the area of data
engineering [1]. For this we provide a library of composite MOPs [21]. Thereby
we identified typical mapping situations being 1:1 copying, 1:n partitioning, n:1
merging, and 0:1 generating of objects, for which different MOPs are provided.
In this respect, reuse is leveraged as the proposed MOPs are generic in the sense
that they abstract from concrete metamodel types since they are typed by the
core concepts of current meta-modeling languages like Ecore or MOF (i.e., class,
attributes, references). To further structure the mapping process we propose to
specify mappings in two steps.

In a first step, composite MOPs, describing mappings between classes are
applied, providing an abstract blackbox-view (cf. Fig. 2). Every composite MOP
consists of so-called kernel MOPs, thus the composite behavior is realized by
a set of basic building blocks. These kernel MOPs are responsible for resolving
structural heterogeneities and therefore they have to be able to map classes, at-
tributes, and references in all possible combinations and mapping cardinalities.
In this respect, MOPs are provided for copying exactly one object, value, or link
from source to target, respectively (denoted as C(lass)2C(lass), A(ttribute)2A(ttri-
bute), and R(eference)2R(eference)). Moreover, MOPs are needed for merging
objects, values, and links (denoted as Cn

2C, An
2A, and Rn

2R) resolving the struc-
tural heterogeneity that concepts in the source metamodel are more fine-grained
than in the target metamodel. Finally, MOPs are needed for generating a target
element without an obvious source element (denoted as 02C, 02A, and 02R) to
resolve heterogeneities resulting from expressing the same modeling concept with
different meta-modeling concepts – a situation which often occurs in metamod-
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Fig. 2. Solution of the Running Example

eling practice.4 In a second step, the composite MOPs, which solely describe a
mapping between classes at first, have to be refined to also map attributes and
references in the so-called whitebox-view by the usage of kernel MOPs (cf. ex-
panded Copier (b) in Fig. 2). Furthermore, kernel MOPs can be used to assemble
new, user-defined composite MOPs.

As a concrete syntax for MOPs we are using a subset of the UML 2 com-
ponent diagram concepts enabling the specification of model transformations in
a plug & play manner. With this formalism, every MOP is defined as a dedi-
cated component, representing a modular part of the transformation specifica-
tion which encapsulates an arbitrary complex structure and behavior, providing
well-defined interfaces. Every MOP has input ports with required interfaces (left
side of the component) as well as output ports with provided interfaces (right
side of the component), typed to classes (C), attributes (A), and relationships
(R) (cf. Copier (b) in Fig. 2). Since there are dependencies between MOPs,
e.g., a value can only be set after the owning object has been created, MOPs
dealing with the transformations of classes additionally offer a trace port (T)
at the bottom providing context information, indicating which target object has
been produced from which source object(s). This port can be used by depen-
dent MOPs to access context information via required context ports (T). In case
of MOPs dealing with the mapping of attributes the corresponding interface is
shown via one port on top, or in case of MOPs dealing with the mapping of ref-

4 Please note, that although composite MOPs for 1:n partitioning are provided, no
additional kernel MOps are needed, since such situations can be simulated by n x 1:1
MOps.
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Table 1. Overview of Composite MOPs used in the Example

1:1 - copying Copier creates exactly one target object per 
source object Copier: C2C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

1:n - partitioning VerticalPartitioner splits one source object into several 
target objects VerticalPartitioner: Copier { ObjectGenerator | Copier }

n:1 - merging VerticalMerger merges several source objects to one 
target object VerticalMerger: Cn

2C { A2A | An
2A | 02A |R2R | Rn

2R | 02R }

0:1 - generating ObjectGenerator generates a new target object without 
corresponding source object ObjectGenerator: 02C { A2A | An

2A | 02A | R2R | Rn
2R | 02R }

Composition of Kernel MOPs (EBNF)Correspondence MOP Description

erences via two ports, whereby the top port depicts the required source context
and the bottom port the required target context (cf. Copier (b) in Fig. 2).

For solving the running example, several composite MOPs have been applied
as can be seen in Fig. 2. Table 1 presents an overview of the used composite
MOPs to solve the example as well as their composition of kernel MOPs. For a
detailed classification and description of all available kernel as well as composite
MOPs we refer to [21]. To resolve the 1:1 correspondences between ClassDiagram

and ERDiagram as well as between Class and Entity in our example we ap-
plied two Copiers since for every source object a corresponding target object
should be generated (cf. MOPs (a) and (b) in Fig. 2)). The whitebox-view of
the Copier (b) thereby shows the mapping of class Class to class Entity using
a C2C MOP. Moreover, the attribute Class.name is mapped to the attribute
Entity.name by using an A2A MOP. Finally, the reference Class.properties

is mapped to the reference Entity.attribute using a R2R MOP. To split the
attributes of the class Reference to the target classes Role and Cardinality a
VerticalPartitioner is applied (cf. MOP (d) in Fig. 2). Besides this default
behavior, aggregation functionality is sometimes needed as is the case when split-
ting the Property concept into the Attribute and Type concepts, since a Type

should only be instantiated for distinct Property.type values (cf. MOP (c) in
Fig. 2). To merge two Reference objects to a single Relationship object a
VerticalMerger is applied (cf. MOP (e) in Fig. 2).

4 Debugging View

In the previous section we showed how structural heterogeneities can be resolved
by applying MOPs resulting in a declarative mapping specification. In order
to execute this specification it has to be translated into an executable formal-
ism, i.e., every MOP has to be assigned an operational semantics. Thereby, the
impedance mismatch between the declarative specification and the actual oper-
ational semantics should be minimized in order to foster comprehensibility and
debuggability. Since current transformation languages (cf. [4] for an overview)
provide only a limited view on a model transformation problem, i.e., they do not
visualize the actual metamodel and model being transformed, we proposed the
TN formalism [23], being a DSL on top of CPNs [9]. The basic idea of TNs is to
represent the transformation logic together with the metamodels and the models,
whereby metamodel elements are represented by places, model elements by the
according markings and the actual transformation logic by a system of transi-
tions. Thus, an explicit runtime model is provided which can be used to observe
the runtime behavior of a certain transformation. In the following we describe
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the core concepts of TNs as well as the adaptations introduced in comparison
to standard CPNs to better suit the domain of model transformations.

Representation of Metamodels and Models. Since we rely on the core
concepts of an object-oriented meta-metamodel the graph which represents the
metamodel consists of classes, attributes, and references which are represented
by according places in TNs. Therefore Fig. 3 depicts a place for the class Class
as well as one place for the attribute Class.name and one place for the reference
Class.properties. The graph which represents a conforming model consists of
objects, data values and links which are represented by tokens in the according
places. For every object that occurs in a model a one-colored ObjectToken is
produced, which is put into a place that corresponds to the respective class in
the source metamodel, e.g., the token C1 in the Class place and the tokens P1 and
P2 in the place Property, representing the objects of the source model depicted
at the bottom of Fig. 1. The color is realized through a unique value that is
derived from the object id (OID). For every value, two-colored AttributeTokens
are produced whereby the upper color represents the object and the lower color
the actual value, e.g., the C1|Person token represents the value “Person” of
the attribute Class.name for the object C1 in Fig. 3. Finally, for every link a
two-colored ReferenceToken is produced. The outer color refers to the color of
the token that corresponds to the owning object. The inner color is given by
the color of the token that corresponds to the referenced target object, which is
depicted by the corresponding tokens in the Class.properties place in Fig. 3.

Specification of Transformation Logic. The actual transformation logic
is specified by means of a system of transitions and additional places, so-called
trace places storing context information which reside in-between those places
representing the original input and output metamodels. Transitions consist of
so-called query tokens (LHS of the transition) representing the pre-condition of
a certain transition, whereas production tokens (RHS of the transition) depict its
postcondition. Thereby different query and production tokens for objects, values,
links and context information are provided whose colors represent variables that
are bound during execution, i.e, colors of query tokens are not the required colors
for input tokens, instead they describe configurations that have to be fulfilled by
input tokens. In the copying sceanrio the color of the production tokens depend
on the color of the query tokens, e.g., the production token and the query token
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of the C2C transition exhibit the same color and therefore the source and the
target object tokens exhibit the same color (cf. Fig. 3). However, it is also possible
to produce a token of a not yet existing color if a target object is needed which
does not directly correspond to a source object, e.g., in case a Cn

2C MOP which
merges several source objects to a single new target object. Furthermore, to
represent trace ports of MOPs, trace places containing context tokens indicate
which target object has been created from which source object(s). Thereby the
color(s) of the slot (left side) indicate(s) the used source object(s) whereas the
generated target object is represented by the color of the remaining slice (right
side of token). Since object tokens are simply copied in case of the depicted C2C
transition source and target context tokens exhibit equal colors (cf. Fig. 3(a)).
Only if context information is available in a trace place, dependent transitions,
e.g., the A2A and R2R transitions, are able to fire. For this, they query the
context tokens in order to add a value or a link to the target object acquired
from the context token (cf. Fig. 3(b)). Please note that in case of creating a
new target object, source and target color of the context tokens differ from each
other. Thus, dependent transitions must be able to cope with differently colored
context tokens and therefore the context query tokens of the dependent A2A
and R2R transitions in Fig. 3 show different colors (which are only variables and
are therefore also able to match for same colored tokens).

Adaptations of Standard CPNs. In contrast to standard CPNs, TNs ex-
hibit a different default firing behavior, i.e., tokens are not consumed per default
(therefore source tokens are preserved in their corresponding source places). This
is since all possible token combinations must be taken into account. For example,
if the R2R transition would consume Class tokens and Property tokens from
the trace places (cf. Fig. 3), the transition could fire only once although multiple
Properties would be available, since there is a 1:n relationship between Class

and Property. Moreover, if more than one transition accesses a certain place,
consuming firing behavior would lead to erroneous race conditions.

Summarizing, TNs provide a formalism to specify the operational seman-
tics of the provided MOPs. Thereby TNs reduce the impedance mismatch be-
tween the abstract declarative mapping specification and the actual operational
semantics since there is a 1:1 correspondence between kernel MOPs and tran-
sitions. Additionally, all artifacts in a model transformation, i.e., metamodel,
transformation logic and the involved models are represented in a homogenous
view. Furthermore, as query and production tokens are only typed to the core
concepts of object-oriented metamodels (class, attributes and references) the
specified transformation logic can be reused between arbitrary metamodels (as
intended by the MOPs). Due to the fact that every MOP is realized by an
independent set of transitions every MOP can be debugged individually, thus
enabling a component-oriented debugging approach.

5 Execution View

Since TNs represent a DSL on top of CPNs they can be fully translated into exist-
ing CPN concepts to make use of efficient execution engines and their properties

360 Petri Nets & Concurrency Wimmer et al.



to analyze model transformations [20]. The actual translation is transparent to
the user since a TN is automatically converted to an according CPN using the
ASAP platform [19]. The ASAP platform provides an EMF-based implementa-
tion of the PNML standard5 for CPNs. The CPN model can then be used to
check the syntax of the corresponding TN, to simulate the TN and to calcu-
late behavioral properties for the specified model transformations. Since every
MOP is realized by an independent set of TN transitions we provide pre-defined
hierarchical CPNs for kernel and composite MOPs, detailed in the following.
Furthermore, the application of behavioral properties for analyzing model trans-
formations is shown.

5.1 Representation of Kernel MOPs

Kernel MOPs and their respective operational semantics in TNs can be repre-
sented by means of modules or so-called substitution transitions in hierarchical
CPNs whereby the ports of the substitution transitions are only typed by classes,
attributes, and references. The ports are then bound to the corresponding socket
places being the places derived from the source and target metamodel. In the
following we show how to realize the non-consuming behavior in CPNs as well
as the translation of kernel MOPs to hierarchical CPNs.

Adaptations of Standard CPNs. To realize the non-consuming firing be-
havior, a so-called history place is introduced for every transition. It stores all
token combinations that have already been fired by this transition in a sorted
list in order not to blow up the state space, i.e., there is no difference if token P1

or token P2 has been transformed first in our scenario. The history place is con-
nected to the corresponding transition whereby a guard condition prevents the
transition from firing a certain token combination twice. Moreover, the standard
arcs are replaced by so-called test arcs, which do not consume tokens from the
connected input places. For further details on the translation of TNs to CPNs
we refer the interested reader to [23].

MOPs mapping Classes. In case of kernel MOPs dealing with the map-
ping of classes, e.g., a C2C MOP as depicted in Fig. 4(a), the in- and outports
have to be typed to the colorset Class (colset Class = record object :

INT * name : STRING). As a C2C MOP simply copy tokens, the same arc in-
scription can be found on the in- and outgoing arcs (represented by the same
colors of query and production token in TNs). Furthermore, kernel MOPs map-
ping classes provide context information stored in the context port6. The col-
orset Context thereby defines a record consisting of a list of classes (since more
than one class can be used to enable the transition in case of a Cn

2C) and a
target class (colset Context = record source:SourceContext * target :

Class; colset SourceContext = list Class;).

5 http://www.pnml.org/
6 Note that ports providing context information in MOPs and CPNs are used to

enable dependent MOPs or transitions, i.e, they provide required tokens to enable a
transition, whereas the history concepts solely hinders multiple firings of transition
in CPNs
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MOPs mapping Attributes or References. In case of kernel MOPs
dealing with the mapping of attributes or references, e.g., an A2A MOP or
R2R MOP as depicted in Fig. 4(b) and (c), the ports have to be typed to the
colorset Attribute and Reference respectively (colset Attribute = record

object:INT * name:STRING * valueId : INT * value : STRING; colset

Reference = record source:INT * sname: STRING * target:INT * tname:

STRING;). Since attributes and references should only be transformed if the own-
ing object of an attribute or the source and target objects of a reference have
already been transformed, the guard condition of the transition not only prevents
the multiple firing but additionally checks if the context place already contains
the necessary context information. If the condition is fulfilled, an attribute or
reference token is produced whereby the new owning object tid is acquired from
the context tokens (cf. arc inscription at the in- and outgoing arcs from context
places Fig. 4(b) and (c)). These hierarchical CPNs can then be assembled to
more coarse-grained hierarchical CPNs to represent, e.g., a Copier as shown in
Fig. 4(d). In the following, composite MOPs are elaborated in more detail.

5.2 Representation of Composite MOPs

Specification View. In Section 3 we introduced coarse-grained composite MOPs
which encapsulate several kernel MOPs, e.g., a Copier consists of exactly one
C2C, and several MOPS for mapping attributes or references. As can be seen in
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Table 1, composite MOPs can not only consist of kernel MOPs but might encom-
pass composite ones themselves, e.g., VerticalPartitioner which consists of
a Copier and an ObjectGenerator (cf. Fig. 5(a)). In our running example this
MOP was used to split the source concept Property into the concepts Attribute
(achieved by the contained Copier) and Type, whereby a Type should only be in-
stantiated for distinct Property.type values overcoming the heterogeneity that
a concept is expressed as an attribute in the source metamodel and as a class in
the target metamodel (achieved by the contained ObjectGenerator).

Debugging View. The relation between composite and the kernel MOPs
can be seen in the debugging view (cf. Fig. 5(b)). First, the C2C transition of the
copier streams the corresponding object tokens, thus creating an Attribute for
every Property. The thereby generated context information enables the A2A
transition in order to set the Attribute.name values. Second, the A2C tran-
sition generates a Type object token for distinct Property.type values, which
is indicated by the distinctInputValue annotation on the transition meaning
that only context information in the according trace place is generated but no
new target token in case that a value occurs several times. Therefore, the trace
place of the ObjectGenerator composite MOP contains two Property.type to-
kens which both have been mapped to the same Type object (depicted by the
equal target color of the context tokens) since both source tokens have the same
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value ‘‘String’’. In order not to produce too many attribute tokens the de-
pendent A2A MOP has to match only for distinct target colors of context tokens
resulting in distinct output values (indicated by the according annotation in (cf.
Fig. 5(b)). Finally, the generated Attribute and Type objects have to be accord-
ingly linked by the reference Attribute.type. Since there is no according source
reference available we have to generate this reference by applying a 02R MOP.
Nevertheless, the transformation designer has to define during specification how
the generated target objects are related to each other in the source model. In
our example the intention is to generate a reference for every Attribute object
having set an according Attribute.type value. In order to get this input the
InputGen transition collects the tokens and thereby generates (self) references.
These references can then be processed by the Linker component which finally
produces the according Attribute.type references.

Execution View. In order to represent the different levels of granularity, the
corresponding hierarchical CPN again consists of several nested ones, thus lead-
ing to multi-level hierarchical CPNs. As shown in Fig. 5(c) the VerticalParti-

tioner consists of two substitution transitions, being a Copier and an ObjectGen-

erator. As already shown in the debugging view (cf. Fig. 5(b)), the main part of
an ObjectGenerator is an A2C kernel MOP. Since only for distinct values a new
target object should be generated, an additional values place containing a list
of records (colset A2CList = list A2C; colset A2C = record value:INT

* target:Class), expressing which values have already been converted to a
certain class token, is introduced (cf. Fig. 5(d)). The conditions on the outgoing
arcs to the target place and to the values places ensure that a token is only
created if the value has not been contained in the values list before. In contrast
to that, context information is produced for any firing of the transition whereby
the source object is connected to an already existing class target token if the
values list contains an according entry, i.e., if a Type has already been created
for a certain Property.type value. To represent the fact that a Type object has
no according counterpart in the source model, we generate a new object id which
is the task of the (fusion) place NewColPlace and the according arc inscriptions
represented by a newly colored object production token in TNs.

5.3 Behavioral Properties to Analyze Mappings

Although the operational semantics of MOPs is predefined, configuration errors
might occur when applying the MOPs in the specification phase leading to an
erroneous interplay between MOPs. In the following we show how typical errors
can be detected by means of behavioral properties of the underlying CPNs [20].

Model Comparison using Boundedness Properties. Typically, the first
step in analyzing the correctness of a transformation is to compare the generated
target model to an expected target model. To identify wrong or missing target
elements in terms of tokens automatically, Boundedness properties can be ap-
plied. An example thereof could be the A2C MOP in the above example which
creates target tokens for distinct values only. Therefore dependent transitions
need to generate a distinct output as well, e.g., to set the Type.name value only
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once. If this is not specified by the user accordingly, too many Type.name tokens
are generated which can be detected by comparing the Boundedness properties
of the according place of the generated model to the expected target model.

Checking Interplay of MOPs using Liveness Properties. Another
source of error during the refinement of composite MOPs by kernel MOPs is
the mapping of dependent attributes and references. In case that MOPs dealing
with attributes and references are connected to wrong source or target context
ports the corresponding transition is not able to fire which can be detected by
Liveness Properties such as Dead Transition Instances or L0-Liveness.

Termination and Confluence Analysis using Dead and Home Mark-
ings. A transformation specification must always terminate, thus the state space
has to contain at least one Dead Marking, which is typically ensured by the his-
tory concept. Moreover, it has to be ensured that a dead marking is always
reachable, meaning that a transformation specification is confluent, which can
be checked by the Home Marking. Furthermore, it is possible to check if a cer-
tain marking, i.e., the target marking derived from the expected target model, is
reachable. If this marking is equal to the Dead and Home Marking it is ensured
that the specified mapping always generates the expected target model.

6 Lessons Learned

This section presents lessons learned and discusses key features of our approach.
Kernel MOPs Enable Extensibility. Kernel MOPs form the basis for

overcoming structural heterogeneities and thereby have to exhibit a well-defined
operational semantics. Since composite MOPs are solely based on kernel MOPs,
the composite operational semantics results from the operational semantics of the
kernel MOPs. Therefore, the library of composite MOPs can be easily extended
on basis of the kernel MOPs without the need of adapting the compilation to
TNs and CPNs, respectively.

CPNs Allow for Parallel Execution. As CPNs exhibit an inherent con-
currency, parallel execution of transformation logic is possible thereby increasing
the efficiency of a transformation execution. In particular, mappings between
classes are independent from each other and therefore the transformation of ob-
jects can be fully parallelized. The same is true for depending attributes and
references which can also be transformed in parallel after the owning objects
have been created and thus the needed context tokens are available.

Visual Formalism Eases Debugging and Understandability. TNs pro-
vide a visual formalism for defining model transformations which is especially
useful for debugging purposes, since the actual execution of a certain model
transformation can be simulated. In this respect, the transformation of model
elements can be directly followed by observing the flow of tokens and therefore
undesired results can be detected easily.

History Ensures Termination. As mentioned above, TNs introduce a
specific firing behavior in that transitions do not consume the source tokens
satisfying the precondition but hold them in a history. Thus, a transition can
only fire once for a specific combination of input tokens prohibiting infinite loops,
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even for test arcs or cycles in the net. Only if a transition occurs in a cycle
and if it produces new objects every time it fires, the history concept can not
ensure termination. Such cycles, however, can be detected at design time and are
automatically prevented for TNs. In contrast to model transformation languages
based on graph grammars, where termination is undecidable in general [14], TNs
ensure termination already at design time.

State Space Explosion Limits Model Size. A known problem of model
checking and thus also of behavioral properties of Petri Nets is that the state
space might become very large. Currently, the full occurrence graph is con-
structed to calculate properties leading to memory and performance problems
for large source models and transformation specifications. Often a marking M
has n concurrently enabled, different binding elements leading all to the same
marking. Nevertheless, the enabled markings can be sorted in n! ways, resulting
in an explosion of the state space. As model transformations typically do not
care about the order how certain elements are bound, the number of bindings
can be reduced to 2n bindings, thus enhancing scalability of our approach.

7 Related Work

In the following, related work is summarized according to the proposed views.
Specification View. In the area of model engineering only the ATLAS

Model Weaver (AMW) [7] provides a dedicated mapping tool allowing the def-
inition of model transformations independent of a concrete transformation lan-
guage. By extending the weaving metamodel, one can define the abstract syntax
of new weaving operators which roughly correspond to our MOPs. The semantics
of weaving operators is determined by a higher-order transformation [16], taking
a model transformation as input and generating another model transformation
as output. Compared to our approach, the weaving models are compiled into
low-level ATL [10] transformation code which is in fact a mixture of declarative
and imperative language constructs. Thus, this solution exhibits an impedance
mismatch, hindering the understanding and debugging of the resulting code.

Debugging View. Concerning model transformations in general, there is
little debugging support available. Most often only low-level information avail-
able through the execution engine is provided, but traceability according to the
higher-level correspondence specifications is missing. For example, in the Fujaba
environment, a plugin called MoTE [18] compiles TGG rules [12] into Fujaba
story diagrams that are implemented in Java, which obstructs a direct debug-
ging on the level of TGG rules. In [8], the generated source code is annotated
accordingly to allow the visualization of debugging information in the generated
story diagrams, but not on the TGG level. Concerning the understandability of
model transformations in terms of a visual representation and a possibility for
a graphical simulation, only graph transformation approaches like Fujaba allow
for a similar functionality. However, these approaches neither provide an inte-
grated view on all transformation artifacts nor do they provide an integrated
view on the whole transformation process in terms of the past state, i.e., which
rules fired already, the current state, and the prospective future state, i.e., which
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rules are now enabled to fire. Therefore, these approaches provide snapshots of
the current transformation state, only.

Execution View. Current transformation languages provide only limited
support to analyze transformation specifications as summarized in the follow-
ing. In the area of graph transformations some work has been conducted that
uses Petri Nets to check properties of graph production rules. Thereby, the ap-
proach proposed in [17] translates individual graph rules into a Place/Transition
Net and checks for its termination. Another approach is described in [6], where
the operational semantics of a visual language in the domain of production sys-
tems is described with graph transformations. The production system models as
well as the graph transformations are transformed into Petri Nets in order to
make use of analysis techniques for checking properties of the production system
models. Finally, a recent work by de Lara and Guerra [5] proposes to translate
QVT-Relations into CPNs - on the one hand to provide a formal semantics for
QVT Relations and on the other hand to analyze QVT Relations specifications -
pursuing similar ideas as followed in our previous work [22]. Nevertheless, these
approaches are using Petri Nets only as a back-end for analyzing properties of
transformations, whereas we are using a DSL on top of CPNs as a front-end for
model transformations, thereby fostering debuggability.

8 Future Work

Currently, only the most important concepts of modeling languages, i.e., classes,
attributes and relationships have been considered by our MOPs. It would be
desirable, however, to extend our MOP library to be able to deal also with
concepts such as inheritance or complex mathematical operations. Furthermore,
only a basic prototype of the proposed debugging view is available. We therefore
focus on improving our prototype, e.g., by accordingly visualizing the findings
of the formal properties. Concerning verification support, we focused on small
mapping scenarios up to now only, not least due to the state space explosion
problem. Nevertheless the ASAP platforms provides the possibility to specify
own algorithms to explore the state space which could additionally be adopted
to the domain of model transformation to enable verification support for larger
scenarios. To further support the transformation designer in complementing the
mapping in the whitebox-view, auto-completion strategies should be incorpo-
rated. In this respect, we will investigate on matching strategies [15] which may
be applied to automatically derive attribute and relationship mappings.
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(UK) for his Keynote talk entitled ”Unbounded is back”.

The workshops organizers would also like to thank the authors of submitted papers
for their interest in SUMo/APNOC. We also thank the program committee members
and the external reviewers for their outstanding work during the reviewing process.

Last but not least, we thank the authors of the EasyChair conference management
system which made the practical organization of the reviewing process considerably
easier.

Didier Buchs (General chair SUMo)
Fabrice Kordon (General chair SUMo)

Alexander Serebrenik (PC chair APNOC)
Natalia Sidorova (PC chair APNOC)
Jeremy Spronston (PC chair SUMo)

Yann Thierry-Mieg (PC chair SUMo)





 

On Persistent Reachability in Petri Nets* 
 
 

Kamila Barylska1, Łukasz Mikulski1, Edward Ochmanski1,2 
 

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Torun 
2 Institute of Computer Science, Polish Academy of Sciences, Warszawa, Poland 

{khama,frodo,edoch}@mat.uni.torun.pl 
 
 

Abstract. The notion of persistency, based on the rule “no action can disable 
another one” is one of the classical notions in concurrency theory. In this paper, 
we deal with arbitrary place/transition nets, but concentrate on their persistent 
computations. It leads to an interesting decision problem: Is a given marking 
reachable with a persistent run? In order to study the persistent-reachability 
problem we define a class of nets, called nonviolence nets. We show that 
inhibitor nets can be simulated by the nonviolence nets, and that reachability 
and coverability problems are undecidable in the class of the nonviolence nets. 
Then we prove more: nonviolence nets can be simulated by the inhibitor nets, 
thus they are computationally equivalent to Turing machines.  

 
 

1 Introduction 
 

An action of a concurrent system is said to be persistent if, whenever it becomes 
enabled, it remains enabled until executed. This classical notion, introduced by 
Karp/Miller [9], is one of the most frequently discussed issues in the Petri net theory 
(papers [1,2,3,6,8,11,12] a.m.o.). A net is said to be persistent if each of its actions is 
persistent. And most of the papers about persistency deal with this subclass of 
place/transition nets). In this paper, we deal with arbitrary place/transition nets, but 
concentrate on their persistent computations. It leads to an interesting persistent-
reachability problems: Is a given marking reachable (coverable) with a persistent run?  
 It is well known that the classical versions of the problems (Is a given marking 
reachable (coverable) in a given place/transition net?) are decidable (coverability: 
Karp/Miller [9], Hack [8]; reachability: Mayr [13], Kosaraju [10]). In order to study 
the persistent-reachability problem we introduce a class of nets, called nonviolence 
nets (Definition 3.1). They differ from place/transition nets only by the execution rule. 
Namely, only persistent executions are permitted. We show that inhibitor nets can be 
simulated by nonviolence nets (Proposition 4.4). Using this fact we prove that the 
reachability and coverability problems are undecidable in the class of the nonviolence 
nets (Propositions 4.5 and 4.7, respectively). Then we prove more: nonviolence nets 
can be simulated by the inhibitor nets (Proposition 4.8), thus the both are 
computationally equivalent to Turing machines.  
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 Many extensions of Petri nets are known to be Turing powerful: inhibitor nets, 
priority nets (Hack [7]), self-modifying nets (Valk [17]), for instance. There is also  
a Turing powerful model restricting the standard execution rules to maximal 
concurrent steps (Burkhard [4], see also Starke [16]). But all the models allow a fight 
for sharing resources (tokens), whereas our model works in a completely peaceful 
way. 
 In the concluding section we notice that the free-choice nonviolence nets are 
easy transformable to place/transition nets (not necessarily free-choice ones). Hence, 
the coverability and reachability problems are decidable in the class of the free-choice 
nonviolence nets.  
 
 

2 Petri Nets – Basic Definitions 
 
The set of non-negative integers is denoted by . Given a set X, the cardinality 
(number of elements) of X is denoted by |X|, the powerset (set of all subsets) by 2X, the 
cardinality of the powerset is 2|X|. Multisets over X are members of X, i.e. functions 
from X into . For convenience, if the set X is finite, multisets of X will be 
represented by vectors of |X|. 
 
2.1 Petri Nets and Their Computations 
 
The definitions concerning Petri nets are mostly based on Desel/Reisig [5]. 
 
Net is a triple N = (P,T,F), where: 
• P and T are finite disjoint sets, of places and transitions, respectively; 
• F ⊆ P×T ∪ T×P is a relation, called the flow relation. 
For all a∈T we denote: •a =  {p∈P | (p,a)∈F}  −  the set of entries to a 
 a• =  {p∈P | (a,p)∈F}  −  the set of exits from a 
Petri nets admit a natural graphical representation. Nodes represent places and 
transitions, arcs represent the flow relation. Places are depicted by circles, and 
transitions by boxes. The set of all finite strings of transitions is denoted by T*, the 
empty string is denoted by ε, the length of w∈T* is denoted by |w|, number of 
occurrences of a transition a in a string w is denoted by |w|a. 
 
Place/transition net (shortly, p/t-net) is a quadruple S = (P,T,F,M0), where: 
• N =  (P,T,F) is a net, as defined above; 
• M0∈ P is a multiset of places, named the initial marking; it is marked by tokens 

inside the circles, capacity of places is unlimited. 

Multisets of places are named markings. In the context of place/transition nets, they 
are mostly represented by nonnegative integer vectors of dimension |P|, assuming that 
P is strictly ordered. The natural generalizations, for vectors, of arithmetic operations 
+ and −, as well as the partial order ≤, all defined componentwise, are well known and 
their formal definitions are omitted.  
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A transition a∈T is enabled in a marking M whenever •a≤M (all its entries are 
marked). If a is enabled in M, then it can be executed, but the execution is not forced. 
The execution of a transition a changes the current marking M to the new marking 
M'= (M−•a)+a• (tokens are removed from entries, then put to exits). We shall denote: 
Ma for “a is enabled in M ” and MaM' for “a is enabled in M and M' is the resulting 
marking”. Then we say that MaM' is a step. This denotation we extend to strings of 
transitions: the empty string ε is enabled in any marking (always MεM), a string w=au 
(a∈T, u∈T*) is enabled in a marking M whenever MaM' and u is enabled in M'. 
Predicates Mw and MwM' are defined like those for single transitions. If MwM' then 
we say that MwM' is a computation from M to M'. Note that any computation MwM' 
unambiguously defines all intermediate markings between M and M'.  
 
If  MwM', for some w∈T*, then M' is said to be reachable from M. The set of all 
markings reachable from M is denoted by [M〉. Given a place/transition net 
S=(P,T,F,M0), the set [M0〉 of all markings reachable from the initial marking M0 is 
called the reachability set of S, and markings in [M0〉 are said to be reachable in S.  
 
We assume that the notions of reachability and coverability graphs are known to the 
reader. Their definitions can be found in any monograph or survey about Petri nets 
(see [5,16] or arbitrary else). Let us recall only that reachability graphs represent 
completely behaviours of nets, but are mostly infinite, while coverability graphs 
represent behaviours only partially, but are always finite. In Examples 2.2 and 2.3 we 
also use a notion of persistency graph – the reachability graph restricted to persistent 
steps. 
 
2.2 Persistent Computations of Place/Transition Nets 
 
The notion of persistency, proposed by Karp/Miller [9], belongs to the most important 
notions in concurrency theory. It is based on the behaviourally oriented rule “no action 
can disable another one”, and generalizes the structurally defined notion of conflict-
freeness. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M be a marking. The step MaM' is 
persistent  iff  (∀b≠a) if Mb then M'b. The empty computation MεM is persistent; the 
computation MaM'uM" is persistent iff the step MaM' is persistent and the 
computation M'uM" is persistent. [In words: A computation is said to be persistent if 
any transition once enabled during this computation remains enabled until executed.] 
A p/t net is said to be persistent if it admits only persistent computations.  
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Example 2.1.  Non-persistent and persistent nets 
 
 
 
 
 
 
 

 
Fig. 1. A non-persistent (left) and persistent (right) place/transition nets 

 
 
2.3 Persistent Reachability Problem 
 
The problem of persistency (“Is a place/transition net persistent?”), raised by 
Landweber and Robertson in [11], has been proved to be decidable by Grabowski [6] 
and Mayr [12]. Most of p/t-nets, however, are not persistent, but some of their 
computations are persistent. In this paper, we are interested in markings that are 
reachable with persistent computations. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M∈ P be a marking.  

Reachability Problem: Is there a computation M0wM?  
In other words: Is the marking M reachable in the net S? 
 
The Reachability Problem has been proved to be decidable by Mayr [13] and 
Kosaraju [10], after years of many author’s efforts. A broad discussion, with a detailed 
proof, can be found in the book [15] of Reutenauer. 
 

Let S=(P,T,F,M0) be a place/transition net, and let M∈ P be a marking.  

Persistent-Reachability Problem: Is there a persistent computation M0wM?  
In other words: Is the marking M reachable in the net S with a persistent run? 
 
Obviously, if a p/t-net is persistent, then the persistent-reachability problem is 
equivalent to the classical one, thus decidable. We shall study the problem in general, 
for arbitrary p/t-nets. The following examples show difference between complete 
behaviours and persistent behaviours. 
 

c a c a b 
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Example 2.2.  Comparison of the complete and persistent behaviours 

 
 
 
 
 
 

 

Fig. 2. A place/transition net and its reachability and persistency graphs 
 
The above net is bounded (i.e. its reachability set is finite) and has infinite set of 
persistent computations. The example below shows an unbounded net (i.e. with 
infinite reachability set) with finite set (a singleton) of persistent computations. 
 
 
Example 2.3.  Unbounded p/t-net with finite persistency graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. A place/transition net and its reachability, coverability and persistency graphs 

 
 
 

3 Nonviolence Petri Nets 
 
In this section, we introduce the notion of nonviolence Petri nets. They differ from 
place/transition nets only by the execution rule. Namely, an enabled transition can be 
executed only if it is executable persistently (i.e. if its execution does not disable any 
other enabled transition). Therefore, we have to distinguish the notion “enabled” and 
“executable”, that are synonymic in place/transition nets, but not in nonviolence nets. 
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Definition 3.1.  Nonviolence Petri Nets 
Nonviolence net is a quadruple S = (P,T,F,M0), exactly the same as in definition of 
place/transition nets. It differs from p/t-net by execution rules: A transition a∈T is 
enabled in a marking M whenever •a≤M (all its entries are marked). A transition a∈T 
is executable in M if it is enabled in M, and moreover the step MaM' is persistent. The 
execution of a leads to the resulting marking M'= (M−•a)+a• (exactly same as in p/t-
nets). We shall denote: Ma for “a is executable in M” and MaM' for “a is executable 
in M and M' is the resulting marking”. Then we say that MaM' is a nonviolent step. 
This denotation is naturally extended to strings w∈T*. If MwM' then we say that 
MwM' is a nonviolent computation. Only nonviolent steps and computations are 
permitted in the nonviolence nets.  
 
And now we can formulate the reachability and coverability problems for the 
nonviolence nets. 

Let S = (P,T,F,M0) be a nonviolence net, and let M∈ P be a marking.  

NV-Reachability Problem:   
Is there a nonviolence computation M0wM in S?  

NV-Coverability Problem:    
Is there a marking M' ≥ M and a nonviolence computation M0wM' in S? 
 
 
3.2 From Place/Transition Nets to Nonviolence Nets 
 
We shall show that every p/t-net can be simulated by a nonviolence net. It will be 
done by joining an external control to each transition of the net.  
 
Let us consider an arbitrary p/t-net S. We transform it to the nonviolence net S' in the 
following way. To each transition a in the net S we join a switching transition a' and 
two new places pa and qa. We add the place qa to the set of entries to a and to the set 
of exits from a'. We also add the place pa to the set of exits from a and to the set of 
entries to a'. In initial marking we add one token to the place pa. One can treat the 
constructed loop as a preparation of the transition a to execution. 
 
 
 Net S: Net S': 
 
 
 
 
 

 Fig. 4. Transforming a place/transition net into a nonviolence net 
 
Let us also define, for every marking M in the net S, the marking 10M in the net S' as 
follows. For each place p in the net S we set 10M(p)=M(p), for each new place pa we 

a 

pa 

qa 

a' a 
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set 10M(pa)=1 and for each new place qa we set 10M(qa)=0. With such definition, the 
initial marking in the net S' is 10M0, where M0 is the initial marking in S. An obvious 
observation is that if transition a is executable in a marking M in the net S, then the 
sequence a'a is executable in the marking 10M in the net S'. 
 
Proposition 3.2. A marking M is reachable in a place/transition net S if and only if the 
marking 10M is reachable in the nonviolence net S'. 
Proof. (⇒) Let M0wM be a computation in S. Then replacing each a in w by a'a we 
get a computation 10M0w'10M in the nonviolence net S'.  
(⇐) Let 10M0w'10M in the nonviolence net S'. The only difference between 
behaviours of S and S' is that before every transition a a transition a' must be 
executed. Subsequent execution of two (or more) primed actions may sometimes 
disable the nonviolence execution of actions that were executable in S. However, it 
would not make any new action executable. Therefore, erasing all primed actions in 
w', we get a computation w such that M0wM is a computation in the p/t-net S. � 
 
 

4 Comparison of Nonviolence Nets and Inhibitor Nets 
 
In this section, we recall the notion of inhibitor nets and some of their properties 
(undecidability of the the reachability and coverability problems). Then we show that 
their computational power is equal to that of the nonviolence nets.  
 
Definition 4.1.  Inhibitor Petri Nets 
Inhibitor net is a quintuple S = (P,T,F,I,M0), where (P,T,F,M0) is a place/transition net 
and I ⊆ P×T is the set of inhibitor arcs (depicted by edges ended with a small empty 
circle). Sets of entries and exits are denoted by •a and a•, as in p/t-nets; the set of 
inhibitor entries to a is denoted by °a={ p∈P | (p,a)∈I}.  

A transition a∈T is enabled in a marking M whenever •a≤M (all its entries are 
marked) and (∀p∈°a) M(p)=  0 – all inhibitor entries to a are empty. And 
“executable” means “enabled”, like in p/t-nets. The execution of a leads to the 
resulting marking M'= (M−•a)+a•.  
 
It is known that the inhibitor nets are computationally equivalent to Turing machines 
and the reachability problem in them is undecidable (Minsky [14], Hack [7]).  
 
Fact 4.2.  Reachability Problem is undecidable in the class of inhibitor nets. 
 
Also the coverability problem is known to be undecidable in the class of inhibitor 
nets. We recall here the proving construction. 
 
Let S = (P,T,F,I,M0) be an arbitrary inhibitor net with P =  {p1, … , pk}, and let  
M = [i1, … , ik] be a marking to be checked to be reachable. We extend it to an 
inhibitor net S', as follows: We add three new places p0, pk+1, pk+2 and two new 
transitions x, y, connected p0→x→pk+1→y→pk+2 (see figure 5). Moreover, we join the 
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place p0 with every transition of the net S by a self-loop (it is depicted symbolically on 
Figure 5), we add the arcs from pn to x, weighted by in (for n=1,…,k), [We use here 
the weighted arcs; see remark below.] and the inhibitory arcs from all original places 
of S to y. And the initial marking M'0 in S' is the following: M'0(p0)=1, M'0(pn)=M0(pn) 
for n=1,…,k and M'0(pk+1)=M'0(pk+2)=0. 
 
 Net S:  Net S': 
 
 
 
 
 
 
 
 
 
 

 Fig. 5. Checking reachability with coverability in inhibitor nets 
 
Remark. In this construction, we have used weighted (multiple) arcs. They are not 
mentioned, for simplicity, in our definitions; we assume that the notion is commonly 
known. Moreover, (place/transition or inhibitor) nets with multiple arcs can be 
transformed to the equivalent nets without them (Hack [8], Starke [16]). 
 
Clearly, the marking M = [i1, … , ik] is reachable in S if and only if the marking 
M'(p0)=M'(p1)=…=M'(pk)=M'(pk+1)=0 and M'(pk+2)=1 is coverable in S'. Hence, 
because of Fact 4.2, we have got  
 
Fact 4.3.  Coverability Problem is undecidable in the class of inhibitor nets. 
 
 
4.1 From Inhibitor Nets to Nonviolence Nets 
 
Let us consider an arbitrary inhibitor net S. In the transformation to the nonviolence 
net S' we will use the same idea as in the previous transformation. Like in that one, to 
each transition a, we add a transition a' and places pa and qa. Moreover, to each place 
p, in the net S, belonging to °a (i.e. being an inhibitor entry to a), we add a new 
transition ap. Both places, p and qa, are joined by self-loops with the new transition ap. 
Finally, we remove all inhibitor arcs. 
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 Net S:  Net S': 
 
 
 
 
 
 
 
 
 
 

 Fig. 6. Transforming an inhibitor net into a nonviolence net 
 
Similarly to the construction of figure 4, for every marking M in the net S we define 
the marking 10M in the net S', in the same way. And the initial marking in the net S' is 
10M0, where M0 is the initial marking in the net S. In the same manner as in the 
previous case, if the transition a is executable in the marking M in the inhibitor net S, 
then the computation a'a is executable in the marking 10M in the nonviolence net S'. 
 
Proposition 4.4. The marking M is reachable in the inhibitor net S if and only if the 
marking 10M is reachable in the nonviolence net S'. 
Proof. The proof is similar to that of Proposition 3.2. Remark that if an action a' is 
executed while a token resides in the place p (so a is not enabled in S), then a token 
will stuck in the place qa and no marking of the form 10M will be reachable. � 
 
Corollary 4.5. The NV-Reachability Problem is undecidable. 
Proof. Directly from Proposition 4.4 and Fact 4.2.  � 
 
Proposition 4.6. The marking M is coverable in the inhibitor net S if and only if the 
marking 10M is coverable in the nonviolence net S'. 
Proof. (⇒) If M is coverable in S then there is a marking M' ≥ M reachable in S. 
Hence, by Proposition 4.4, the marking 10M' is reachable in the nonviolence net S'. 
And clearly, 10M' covers 10M.  
(⇐) Notice that any marking (reachable in S') covering 10M is of the form 10M'. And 
then M' ≥ M and M' is reachable in S (Proposition 4.4). So M is coverable in S. � 
 
Corollary 4.7. The NV-Coverability Problem is undecidable. 
Proof. Directly from Proposition 4.6 and Fact 4.3.  � 
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4.2 From Nonviolence Nets to Inhibitor Nets 
 
The inverse construction, transforming a nonviolence net into an inhibitor net, is more 
involved. Once more, we use the idea of predicting an executablement of transitions.  
 
 
  Net S:   Net S': 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Transforming a nonviolence net into an inhibitor net 
 
Let S be a nonviolence net; we extend it to an inhibitor net S', as follows. First, we add 
one global place s, called the switch, which is an exit from every transition of the net 
S. Then, for every transition a of the net S, we add a transition a'; the switch place s is 
an entry to each of these primed transitions. An execution of a transition a' means a 
belief in the executablement of transition a in the nonviolence net S. After executing 
the transition a', the net S' checks, if the transition a was really executable in the 
nonviolence net S. It means that transition a is enabled and no other transition blocks 
its execution. In order to check it, we add, for every pair (p,b) such that b≠a and the 
place p is a common entry to the transitions a and b, the places xapb and yapb and the 
transition tapb, as depicted on figure 7 above. The transition tapb is able to move the 
token from xapb to yapb only if at least two tokens reside in the place p. [We use here 
the weighted arcs; see remark after figure 5.] By the nonviolence rules, a transition b 
blocks nothing if it is not enabled; it means that one of its entries is empty. In order to 
check it, we add the transitions taqb, for every entry q to transition b, different from p. 
Each of the transitions has one entry xapb, one exit yapb and one inhibitor arc from the 
place q, checking if q is empty. This construction allows to check, whether the 
transition b blocks the execution of a or not. If not, then a token moves from xapb to 
yapb, enabling a in S' if and only if it was executable in S. 
 
For every marking M in the nonviolence net S we define a marking 10M in the 
inhibitor net S' as follows. For each place p inside the net S we set 10M(p)=M(p). For 
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additional switch place s we set 10M(s)=1 and for every place r added by the 
construction (i.e. for all places xapb and yapb) we set 10M(r)=0. Directly from our 
construction, if a transition a is executable in a marking M in nonviolence net S then it 
is potentially executable in the marking 10M in inhibitor net S' (before executing a 
transition a we execute a transition a' and positively check all conditions to fill all 
places yapb). The initial marking of S' is assumed to be 10M0. 
 
Proposition 4.8.  The marking M in the nonviolence net S is reachable if and only if 
the marking 10M is reachable in the inhibitor net S'. 
Proof. (⇒) In the net S' we can reach marking 10M, from the initial marking 10M0, by 
executing a transition a' before each transition a and checking the conditions. 
(⇐) Executing any transition a from the original net S is possible only by predicting 
this execution by executing the transition a'. If we do a mistake, making wrong 
prediction, our net S' would reach a dead marking and stops. It means that if a marking 
10M in the inhibitor net S' is reachable, then the only scenario of reaching that 
marking is correctly predicting and executing transitions from the net S. The 
correctness of our process of predicting means that we could just execute these 
transitions in the original, nonviolence net S, reaching marking M. Finally, marking M 
is reachable in the nonviolence net S, which ends the proof. � 
 
 

Conclusions 
 
We have proved (Propositions 4.4 + 4.8) that nonviolence nets are equivalent (in the 
marking reachability sense) to inhibitor nets. As the latter are Turing powerful, one 
can say that the former allow to do everything what possible without any fight. It is 
quite surprising, because persistent executions are only a part of arbitrary executions. 
But the price for the peace is undecidability. We have shown (Corollary 4.7) that even 
coverability, decidable in many extensions of place/transition nets, is undecidable in 
the class of the nonviolence nets.  
 
Notice that free-choice (if •a∩•b ≠ ∅ then •a = •b) nonviolence nets can be simulated 
by place/transition nets (Figure 8), thus the classical decision problems (reachability, 
coverability) are decidable in the class of free-choice nonviolence nets.  
 
 Net S:  Net S': 
 
 
 
 

Fig. 8. Transforming a free-choice nonviolence net into a place/transition net 
 
Let S be a free-choice nonviolence net. We replace every arc from a place, being  
a common entry of two (or more) transitions and is not a part of a self-loop, by two 
arcs: an arc from the place to the transition, weighted with 2, and an arc from the 

a b 

2 

b a 
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transition to the place, weighted with 1. And self-loops remain not changed. And the 
initial marking remains the same. Clearly, the place/transition net S' built this way 
works exactly as the free-choice nonviolence net S. A case of the free-choice 
nonviolence net is shown by Example 2.2. The above construction does not work for 
non-free-choice nonviolence nets, see Example 2.3, for instance. 
 
It would be interesting to study some other subclasses of the class of nonviolence nets. 
Especially, to find a subclass of the class of nonviolence nets, computationally 
equivalent to the class of place/transition nets. 
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Abstract. We propose a framework for the specification of infinite state
systems based on Petri nets with distinguished may- and must-transitions
(called modalities) which specify the allowed and the required behavior
of refinements and hence of implementations. Formally, refinements are
defined by relating the modal language specifications generated by two
modal Petri nets according to the refinement relation for modal language
specifications. We show that this refinement relation is decidable if the
underlying modal Petri nets are weakly deterministic. We also show that
the membership problem for the class of weakly deterministic modal
Petri nets is decidable. As an important application of our approach we
consider I/O-Petri nets which are obtained by asynchronous composition
and thus exhibit inherently an infinite behavior.

Key words: Modal language specification and refinement, modal Petri
net, weak determinacy, asynchronous composition, infinite state system.

1 Introduction

Specification in component-based software products. In component based
software development, specification is an important phase of the components’
life cycle. It aims to produce a formal description of the component’s desired
properties and behavior. A behavior specification can be presented either in
terms of transition systems or in terms of logic, which both cannot be processed
by a machine. Thus an implementation phase is required to produce concrete
executable programs.

Modal specifications. Modal specifications have been introduced in [11] as a
formal model for specification and implementation. A modal specification explic-
itly distinguishes between required actions and allowed ones. Required actions,
denoted with the modality must, are compulsory in all possible implementations
while allowed actions, denoted with the modality may, may happen but are not
mandatory for an implementation. An implementation is seen as a specific spec-
ification in which all actions are required. Modal specifications are adequate for

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 385–401.
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loose specifications as decisions can be delayed to later steps of the component’s
life cycle. Two different modal formalisms have been adopted in the literature,
the first one, introduced in [8], is based on transition systems while the sec-
ond one, introduced in [16], is a language-based model defining modal language
specifications.

Modal refinement. A transformation step from a more abstract specification
to a more concrete one is called a refinement. It produces a specification that is
more precise, i.e. has less possible implementations. It follows that the set of im-
plementations of a refinement is included in the set of possible implementations
of the original specification.

Computational issues. While dealing with modal specifications, three main
decision problems have been raised:

– (C) Consistency problem: Deciding whether a modal specification is con-
sistent, i.e deciding whether it admits an implementation. Consistency is
guaranteed for modal transition systems by definition [11] as every required
transition is also an allowed one. In the case of mixed transition systems,
i.e. if must-transitions are not necessarily may-transitions, the consistency
decision problem is EXPTIME-complete in the size of the specification [2].
A better result is obtained with modal language specifications since a poly-
nomial time algorithm has been proposed in [16].

– (CI) Common implementation: Deciding whether k > 1 modal specifica-
tions have a common implementation. Deciding common implementation of
k modal transition systems is PSPACE-hard in the sum of the sizes of the
k specifications [1] while it is EXPTIME-complete when dealing with mixed
transition systems [2].

– (TR) Thorough refinement: Deciding whether one modal specification S
thoroughly refines another modal specification S ′, i.e deciding whether the
class of possible implementations of S is included in the class of possible
implementations of S ′. The problem is also PSPACE-hard if S and S ′ are
modeled with modal transition systems and it is EXPTIME-complete when
they are modeled with mixed transition systems.

Limits of the existing formalisms. Both formalisms consider finite state sys-
tems. This restriction limits the existing approaches to synchronous composition.
In fact asynchronous composition introduces a delay between the actions of send-
ing and receiving a message between the communication partners. For instance,
if a sender is always active while a receiver is always blocked, we naturally obtain
an infinite state system.

Our contribution. We aim in this paper to deal with asynchronous composi-
tion of modal specifications while keeping most of the problems decidable. Petri
nets seem to be an appropriate formalism to our needs since they allow for a
finite representation of infinite state systems. Automata with queues might be
another alternative for modeling infinite state systems, but all significant prob-
lems (e.g. the reachability problem) are known to be undecidable while they are
decidable when considering deterministic Petri nets. In our approach we consider
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Petri nets with silent transitions and we define the generalized notion of a weakly
deterministic Petri net, as a variant of deterministic Petri nets that keeps decid-
ability for our targeted decision problems. We also follow a language approach
and use weakly deterministic Petri nets as a device to generate languages in the
same way as Raclet et. al. use deterministic finite transition systems as a device
to generate regular languages. Moreover, we extend Petri nets by modalities for
the transitions. In this setting, we are mainly interested in the following decision
problems:

1. Decide whether a given Petri net is weakly deterministic.
2. Decide whether a given language generated by a Petri net N is included in

the language generated by a given weakly deterministic Petri net N ′.
3. Decide whether a given modal Petri net is (modally) weakly deterministic.
4. Given two modal language specifications S(M) and S(M) generated by

two weakly deterministic modal Petri nets M and M′ respectively, decide
whether S(M′) is a modal language specification refinement of S(M).

We show that all the above mentioned problems are decidable. As a particular
important application of our approach we consider I/O-Petri nets which are
obtained by asynchronous composition and thus exhibit an infinite behavior.
Since transitions with internal labels, in particular those obtained by internal
communications, are not relevant for refinements we abstract them away by a
general abstraction operator on modal I/O-Petri nets.

Outline of the paper. We proceed by reviewing in Sect. 2 modal language
specifications and the associated notion of refinement. In Sect. 3 we summarize
basics of Petri net theory and introduce weakly deterministic Petri nets. We
then introduce modal Petri nets, their generated language specifications and
we extend the concept of weak determinacy to Petri nets with modalities. In
Sect. 4, we consider modal Petri nets over an I/O-alphabet (with distinguished
input, output, and internal labels) and define their asynchronous composition.
We also define the abstraction of an I/O-Petri net by relabeling internal labels
to the empty word. In Sect. 5 we present the decision algorithms of the issues
mentioned above. Finally we conclude in Sect. 6.

2 Modal Language Specifications

Modal specification was first introduced by Larsen and Thomsen in [11] with
finite state modal transition systems by defining restrictions on specifications
transitions by the mean of may (allowed) and must (required) modalities. This
notion has then been adapted by Raclet in his PhD thesis who applied it to reg-
ular languages. Finite transition systems are low level models based on states,
which limits the level of abstraction of the specification. They also lead to state
number explosion while composing systems with an important number of states.
Moreover, the complexity of the decision problems discussed above are better
with modal languages than with modal transition systems. Besides, modal re-
finement is sound and complete with the language-based formalism while it is
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non-complete with transition system based formalism [9]. So a language approach
is more convenient to deal with modal specification issues. Next we review the
definition of modal language specification and refinement between specifications
as introduced in [16].

Definition 1 (Modal language specification). A modal language specifi-
cation S over an alphabet Σ is a triple 〈L, may, must〉 where L ⊆ Σ∗ is a
prefix-closed language over Σ and may, must : L → P (Σ) are partial functions.
For every trace u ∈ L,

– a ∈ may(u) means that the action a is allowed after u,
– a ∈ must(u) means that the action a is required after u,1

– a /∈ may(u) means that a is forbidden after u.

The modal language specification S is consistent if the following two conditions
hold:
(C1) ∀ u ∈ L must(u) ⊆ may(u)
(C2) ∀ u ∈ L may(u) = {a ∈ Σ | u.a ∈ L}

Example 1. Let us consider the example of a message producer and a message
consumer represented in figure 1.

s0

s1

inm

s0

s1

mout

(a) (b)

Fig. 1. Modal transition systems for a producer (a) and a consumer (b)

In the producer system, transition s0

in
→ s1 is allowed but not required

(dashed line) while transition s1

m
→ s0 is required (continuous line). In the con-

sumer model, all transitions are required. The languages associated with the the
producer is L ≡ (in.m)∗ + in.(m.in)∗. The associated modal language specifica-
tion is then 〈L, may, must〉 with:

– ∀ u ∈ (in.m)∗ must(u) = ∅ ∧ may(u) = {in}

1 If must(u) contains more than one element, this means that any correct imple-
mentation must have after the trace u (at least) the choice between all actions in
must(u).
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– ∀ u ∈ in.(m.in)∗ must(u) = may(u) = {m}

Similarly, the modal language specification associated with the consumer is
〈(m.out)∗ + m.(out.m)∗, may, must〉 with:

– ∀ u ∈ (m.out)∗ must(u) = may(u) = m
– ∀ u ∈ m.(out.m)∗ must(u) = may(u) = out

Modal language specifications are related by a refinement relation that trans-
lates the degree of specialization. One can obtain a possible refinement by either
removing some allowed events or changing them to required events. So we review
the formal definition of modal language specification refinement.

Definition 2 (Modal language specification refinement).
Let S = 〈L, may, must〉 and S ′ = 〈L′, may′, must′〉 be two consistent modal
language specifications over the same alphabet Σ. S ′ is a modal language speci-
fication refinement of S, denoted by S ′ ⊑ S, if:

– L′ ⊆ L,
– for every u ∈ L′, must(u) ⊆ must′(u), i.e every required action after the

trace u in L is a required action after u in L′.

3 Modal Petri Nets

In contrast to modal language specifications, Petri nets provide an appropriate
tool to specify the behavior of infinite state systems in a finitary way. Therefore
we are interested in the following to combine the advantages of Petri nets with the
flexibility provided by modalities for the definition of refinements. Of particular
interest are Petri nets which support silent transitions and hence are able to
characterize observable system behaviors. In the following we will consider such
Petri nets and extend them by modalities. Then we will use modal Petri nets as
a device to generate modal language specifications as the basis for refinement.
First, we review basic definitions of Petri net theory and we will introduce weakly
deterministic Petri nets.

3.1 Basics of Petri Nets

Definition 3 (Labeled Petri Net). A labeled Petri net over an alphabet Σ
is a tuple N = (P, T, W−, W+, λ, m0) where:

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– W− (resp. W+) is a matrix indexed by P × T with values in N;

W− (resp. W+) is called the backward (forward) incidence matrix,
– λ : T → Σ ∪ {ǫ} is a transition labeling function where ǫ denotes the empty

word, and
– m0 : P 7→ N is an initial marking.
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A marking is a mapping m : P 7→ N. The labeling function is extended
to sequences of transitions σ = t1t2...tn ∈ T ∗ where λ(σ) = λ(t1)λ(t2)...λ(tn).
For each t ∈ T , •t (t• resp.) denotes the set of input (output) places of t. i.e.
•t = {p ∈ P | W−(p, t) > 0} (t• = {p ∈ P | W+(p, t) > 0} resp.). Likewise
for each p ∈ P , •p (p•) denotes the set of input (output) transitions of p i.e.
•p = {t ∈ T | W+(p, t) > 0} (p• = {t ∈ T | W−(p, t) > 0} resp.). The input
(output resp.) vector of a transition t is the column vector of matrix W− (W+

resp.) indexed by t.
In the sequel labeled Petri nets are simply called Petri nets. We have not

included final markings in the definition of a Petri net here, because we are in-
terested in potentially infinite system behaviors. We now introduce the semantic
of a net.

Definition 4 (Firing rule). Let N be a Petri net. A transition t ∈ T is firable
in a marking m, denoted by m[t〉, iff ∀p ∈ •t, m(p) ≥ W−(p, t). The set of firable
transitions in a marking m is defined by firable(m) = {t ∈ T | m[t〉}. For a
marking m and t ∈ firable(m), the firing of t from m leads to the marking m′,
denoted by m[t〉m′, and defined by ∀p ∈ P, m′(p) = m(p)−W−(p, t)+ W+(p, t).

Definition 5 (Firing sequence). Let N be a Petri net with the initial marking
m0. A finite sequence σ ∈ T ∗ is firable in a marking m and leads to a marking
m′, also denoted by m[σ〉m′, iff either σ = ǫ or σ = σ1.t with t ∈ T and there
exists m1 such that m[σ1〉m1 and m1[t〉m

′. For a marking m and σ ∈ T ∗, we
write m[σ〉 if σ is firable in m. The set of reachable markings is defined by
Reach(N , m0)= {m | ∃σ ∈ T ∗such that m0[σ〉m}.

The reachable markings of a Petri net correspond to the reachable states of
the modeled system. Since the capacity of places are not restricted, the set of the
reachable markings of the Petri nets considered here may be infinite. Thus, Petri
nets can model infinite state systems. Now, let us define the language generated
by a labeled Petri net.

Definition 6 (Petri net language). Let N be a labeled Petri net over the
alphabet Σ. The language generated by N is:

L(N ) = {u ∈ Σ∗ | ∃σ ∈ T ∗ and m such that λ(σ) = u and m0[σ〉m} .

A particular interesting class of Petri nets are deterministic Petri nets as
defined, e.g., in [14]. Since in our approach we also deal with silent transitions,
which are not taken into account for the generated languages, we are interested
in a more general notion of determinacy which allows us to abstract from silent
transitions. This leads to our notion of weakly deterministic Petri net. We call a
Petri net weakly deterministic if any two firing sequences σ and σ′ which produce
the same word u can be mutually extended to produce the same continuations
of u. In this sense our notion of weak deterministic Petri net corresponds to
Milner’s (weak) determinacy [13] and to the concept of a weakly deterministic
transition system in [5]. It is also related to to the notion of output-determinacy
in [7].
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Definition 7 (Weakly Deterministic Petri net). Let N be a labeled Petri
net with initial marking m0 and labeling function λ : T → Σ ∪ {ǫ}. For any
marking m, let

maymk(m) = {a ∈ Σ | ∃σ ∈ T ∗ such that λ(σ) = a and m[σ〉}

N is called weakly deterministic, if for each σ, σ′ ∈ T ∗ with λ(σ) = λ(σ′) and
for any markings m and m′ with m0[σ〉m and m0[σ

′〉m′, we have maymk(m) =
maymk(m′).

Since weakly deterministic Petri nets play an important role in our further
development it is crucial to know, whether a given Petri net belongs to the class
of weakly deterministic Petri nets. This leads to our first decision problem stated
below. Our second decision problem is motivated by the major goal of this work
to provide formal support for refinement in system development. Since, in a
simple form, refinement can be defined by language inclusion, we want to be
able to decide this. Unfortunately, it is well-known that the language inclusion
problem for Petri nets is undecidable [4]. However, in [14] it has been shown
that for languages generated by deterministic Petri nets the language inclusion
problem is decidable. Therefore we are interested in a generalization of this
result for languages generated by weakly deterministic Petri nets which leads to
our second decision problem. Observe that we do not require N ′ to be weakly
deterministic.

First decision problem. Given a labeled Petri net N , decide
whether N is weakly deterministic.

Second decision problem. Let L(N ) and L(N ′) be two lan-
guages with the same alphabet Σ such that L(N ) is generated
by a weakly deterministic Petri net N and L(N ′) is generated
by a Petri net N ′. Decide whether L(N ′) is included in L(N ).

3.2 Modal Petri Nets

In the following we introduce modal Petri nets which extend, similarly to modal
language specifications, Petri nets with modalities may and must on its transi-
tions.

Definition 8 (Modal Petri net). A modal Petri net M over an alphabet Σ
is a pair M = (N , T�) where N = (P, T, W−, W+, λ, m0) is a labeled Petri net
over Σ and T� ⊆ T is a set of must (required) transitions. The set of may
(allowed) transitions is the set of transitions T .

Example 2. Let us consider the same example of a message producer and a
message consumer (see Fig. 2). The consumer may receive an input in (white
transition) but must produce a message m (black transition). The consumer
must receive a message m and produce an output out.
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• •

(a) (b)

in m m out

Fig. 2. Modal Petri nets for a producer (a) and a consumer (b)

Any modal Petri net M = (N , T�) gives rise to the construction of a modal
language specification (see Def. 1) which extends the language L(N ) by may
and must modalities. Similarly to the construction of L(N ) the definition of the
modalities should abstract from silent transitions in an appropriate way. While
for the may modality this is rather straightforward, special care has to be taken
for the definition of the must modality. For this purpose, we introduce the follow-
ing auxiliary definition which expresses, for each marking m, the set mustmk(m)
of all labels a ∈ Σ which must be produced by firing (in m) some silent must-
transitions succeeded by a must-transition labeled by a. This means that the
label a must be produced as the next visible label by some firing sequence of m.
Formally, for any marking m, let

mustmk(m) = {a ∈ Σ | ∃σ ∈ T ∗
�
, t ∈ T� such that λ(σ) = ǫ, λ(t) = a and m[σt〉}

On this basis we can now compute for each word u ∈ L(N ) and for each marking
m reachable by firing a sequence of transitions which produces u (and which
has no silent transition at the end2), the set mustmk(m). Then the labels in
mustmk(m) must be the possible continuations of u in the generated modal
language specification.

Definition 9 (Modal Petri Net Language Specification). Let M = (N , T�)
be a modal Petri net over an alphabet Σ such that λ : T → Σ∪{ǫ} is the labeling
function and m0 is the initial marking of N . M generates the modal language
specification S(M) = 〈L(N ), may, must〉 where:

– L(N ) is the language generated by the Petri net N ,
– ∀u ∈ L(N ), may(u) =

{a ∈ Σ | ∃σ ∈ T ∗ and m such that λ(σ) = u, m0[σ〉m and a ∈ maymk(m)},
– ∀u ∈ L(N ), x ∈ Σ,

• must(ǫ) = mustmk(m0),
• must(ux) = {a ∈ Σ | ∃σ ∈ T ∗, t ∈ T and m such that λ(σ) = u, λ(t) =

x, m0[σt〉m and a ∈ mustmk(m)}.

2 We require it to avoid false detection of must transitions starting from intermediate
markings.
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Remark 1. Any modal language specification generated by a modal Petri net is
consistent.

Example 3. Let us consider the modal Petri net in Fig. 3.

•

ǫ

a b

ǫ

Fig. 3. Modal Petri net with silent transitions

The modal language specification generated by this net consists of the lan-
guage L presented by the regular expression (a∗b∗)∗ and of the modalities may(u) =
{a, b}, and must(u) = {a} for u ∈ L. Note that b is not a must as it is preceeded
by a silent may-transition (which can be omitted in a refinement).

The notion of weakly deterministic Petri net can be extended to modal Petri
nets by taking into account an additional condition for must-transitions. This
condition ensures that for any two firing sequences σ and σ′ which produce
the same word u, the continuations of u produced by firing sequences of must-
transitions after σ and σ′ are the same.

Definition 10 (Weakly Deterministic Modal Petri Net). Let M = (N , T�)
be a modal Petri net over an alphabet Σ such that λ : T → Σ∪{ǫ} is the labeling
function of N . For any marking m, let

mustmk(m) = {a ∈ Σ | ∃σ ∈ T ∗
�
, t ∈ T� such that λ(σ) = ǫ, λ(t) = a and m[σt〉}

M is (modally) weakly deterministic, if

1. N is weakly deterministic, and
2. for each σ, σ′ ∈ T ∗ with λ(σ) = λ(σ′) and for any markings m and m′ with

m0[σ〉m and m0[σ
′〉m′, we have mustmk(m) = mustmk(m′).

Remark 2. For any weakly deterministic modal Petri net M = (N , T�) the def-
inition of the modalities of its generated modal language specification L(M) =
〈L(N ), may, must〉 can be simplified as follows:

– ∀u ∈ L(N ), let σ ∈ T ∗ and let m be a marking such that λ(σ) = u and
m0[σ〉m, then may(u) = maymk(m).
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– ∀u ∈ L(N ), x ∈ Σ, let σ ∈ T ∗, t ∈ T and let m be a marking such that
λ(σ) = u, λ(t) = x and m0[σt〉m, then must(ux) = mustmk(m). Moreover,
must(ǫ) = mustmk(m0).

Example 4. Let us consider the modal Petri net in Fig. 4.

•
a

ǫ

a

ǫ

b

Fig. 4. Non weakly deterministic modal Petri net

Let tl (tr resp.) be the left (right resp.) transition labeled with a and let
ml (mr resp.) be the marking obtained by firing the transition tl (tr resp.).
Obviously, both transitions produce the same letter but must(ml) = {b} while
must(mr) = ∅ (since the silent transition firable in mr is only a may-transition).

The two decision problems of Sect. 3.1 induce the following obvious exten-
sions in the context of modal Petri nets and their generated modal language
specifications. Observe that for the refinement problem we require that both
nets are weakly deterministic.

Third decision problem. Given a modal Petri net M, decide
whether M is (modally) weakly deterministic.

Fourth decision problem. Let S(M) and S(M′) be two
modal language specifications over the same alphabet Σ such
that S(M) (S(M′) resp.) is generated by a weakly determinis-
tic modal Petri net M (M resp.). Decide whether S(M′) is a
modal language specification refinement of S(M).

4 Modal I/O-Petri Nets

In this section we consider modal Petri nets where the underlying alphabet Σ
is partitioned into disjoint sets in, out, and int of input, output and internal
labels resp., i.e Σ = in ⊎ out ⊎ int. Such alphabets are called I/O-alphabets and
modal Petri nets over an I/O-alphabet are called modal I/O-Petri nets. The
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discrimination of input, output and internal labels provides a means to specify
the communication abilities of a Petri net and hence provides an appropriate
basis for Petri net composition. A syntactic requirement for the composability
of two modal I/O-Petri nets is that their labels overlap only on complementary
types, i.e. their underlying alphabets must be composable. Formally, two I/O-
alphabets Σ1 = in1 ⊎ out1 ⊎ int1 and Σ2 = in2 ⊎ out2 ⊎ int2 are composable if
Σ1 ∩ Σ2 ⊆ (in1 ∩ out2) ∪ (in2 ∩ out1).

3

Definition 11 (Alphabet Composition). Let Σ1 = in1 ⊎ out1 ⊎ int1 and
Σ2 = in2 ⊎ out2 ⊎ int2 be two composable I/O-alphabets. The composition of Σ1

and Σ2 is the I/O-alphabet Σc = inc ⊎ outc ⊎ intc where:

– inc = (in1 \ out2) ⊎ (in2 \ out1),
– outc = (out1 \ in2) ⊎ (out2 \ in1),
– intc = {∗a | ∗ ∈ {!, ?}, a ∈ Σ1 ∩ Σ2} ⊎ int1 ⊎ int2.

The input and output labels of the alphabet composition are the input and
output labels of the underlying alphabets which are not used for communica-
tion, and hence are “left open”. The internal labels of the alphabet composition
are obtained from the internal labels of the underlying alphabets and from their
shared input/output labels. Since we are interested here in asynchronous com-
munication each shared label a is duplicated to !a and ?a where the former
represents the asynchronous sending of a message and the latter represents the
receiption of the message (at some later point in time). We are now able to de-
fine the asynchronous composition of composable modal I/O-Petri nets. For the
realization of the asynchronous communication, for each shared label a a new
place pa is introduced in the composition.

Definition 12 (Asynchronous Composition). Let M1 = (N1, T1�
), N1 =

(P1, T1, W
−
1 , W+

1 , λ1, m10
) be a modal I/O-Petri net over the I/O-alphabet Σ1 =

in1 ⊎ out1 ⊎ int1 and let M2 = (N2, T2�
), N2 = (P2, T2, W

−
2 , W+

2 , λ2, m20
) be a

modal I/O-Petri net over the I/O-alphabet Σ2 = in2 ⊎ out2 ⊎ int2. M1 and M2

are composable if P1 ∩ P2 = ∅, T1 ∩ T2 = ∅ and if Σ1 and Σ2 are composable.
In this case, their asynchronous composition Mc, also denoted by M1 ⊗as M2,
is the modal Petri net over the alphabet composition Σc, defined as follows:

– Pc = P1 ⊎ P2 ⊎ {pa | a ∈ Σ1 ∩ Σ2} (each pa is a new place)
– Tc = T1 ⊎ T2 and Tc,� = T1�

⊎ T2�

– W−
c (resp. W+

c ) is the Pc × Tc backward (forward) incidence matrix defined
by:

• for each p ∈ P1 ∪ P2, t ∈ Tc,

W−
c (p, t) =







W−
1 (p, t) if p ∈ P1 and t ∈ T1

W−
2 (p, t) if p ∈ P2 and t ∈ T2

0 otherwise

3 Note that for composable alphabets in1 ∩ in2 = ∅ and out1 ∩ out2 = ∅.
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W+
c (p, t) =







W+

1 (p, t) if p ∈ P1 and t ∈ T1

W+

2 (p, t) if p ∈ P2 and t ∈ T2

0 otherwise

• for each pa ∈ Pc \ {P1 ∪ P2} with a ∈ Σ1 ∩ Σ2 and for each t ∈ Ti with
i ∈ {1, 2},

W−
c (pa, t) =

{

1 if a = λi(t) ∈ ini ∩ outj with i 6= j
0 otherwise

W+
c (pa, t) =

{

1 if a = λi(t) ∈ inj ∩ outi with i 6= j
0 otherwise

– λc : Tc → Σc is defined, for all t ∈ Tc and for i ∈ {1, 2}, by

λc(t) =







λi(t) if t ∈ Ti, λi(t) /∈ Σ1 ∩ Σ2

?λi(t) if t ∈ Ti, λi(t) ∈ ini ∩ outj with i 6= j
!λi(t) if t ∈ Ti, λi(t) ∈ inj ∩ outi with i 6= j

– mc0
is defined, for each place p ∈ Pc, by

mc0
(p) =







m10
(p) if p ∈ P1

m20
(p) if p ∈ P2

0 otherwise

Proposition 1. The asynchronous composition of two weakly deterministic modal
I/O-Petri nets is again a weakly deterministic modal I/O-Petri net.

We will not give a proof of this fact here, since it is not a main result of this
work.

Example 5. We consider the two modal producer and consumer Petri nets of
Fig. 2 as I/O-nets where the producer alphabet has the input label in, the
output label m and no internal labels while the consumer has the input label
m, the output label out and no internal labels as well. Obviously, both nets are
composable and their asynchronous composition yields the net shown in Fig. 5.
The alphabet of the composed net has the input label in, the output label
out and the internal labels ?m and !m. The Petri net composition describes
an infinite state system and its generated modal language specification has a
language which is no more regular.

When studying refinements it is crucial to rely on the observable behavior
specified by a requirements specification while one can abstract from internal
actions performed by a more concrete specification or an implementation. An
important case is the situation where the concrete specification is given by the
composition of (already available) specifications of single components. Then their
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• •

(a) (b)

out
!m ?m

in

Fig. 5. Composition of the producer and consumer Petri nets

in out

Fig. 6. Requirements specification for an infinite state producer/consumer system

composition must exhibit the required observable behaviour of a given abstract
specification.

As an example we consider the requirements specification for an infinite state
producer/consumer system presented by the modal I/O-Petri net in Fig. 6. Ob-
viously, the asynchronous composition of the single producer and consumer nets
in Fig. 5 is not (yet) a correct refinement since there are still the internal labels
which do not correspond to silent transitions (yet) and therefore must be taken
into account when comparing the two generated modal language specifications.
However, since internal lables describe internal actions which are invisible from
the outside, we can apply an abstraction to the composition which relabels all
internal actions to the empty word ǫ. In the example the internal label are just
the labels !m and ?m used for the communication but, in general, transitions
with internal labels may also describe internal computation steps of an imple-
mentation and then its is also meaningful to abstract them away. Hence we define
a general abstraction operator which can be applied to any (modal) I/O-Petri
net.

Definition 13 (Abstraction). Let M = (N , T�) be a modal I/O-Petri net
over the I/O-alphabet Σ = in ⊎ out ⊎ int with underlying Petri net N =
(P, T, W−, W+, λ, m0). Let α(Σ) = in⊎out⊎∅ and let α : Σ∪{ǫ} → α(Σ)∪{ǫ}
be the relabeling defined by α(a) = a if a ∈ in⊎out, α(a) = ǫ otherwise. Then the
abstraction from M is the modal I/O-Petri net α(M) = (α(N ), T�) over the
I/O-alphabet α(Σ) with underlying Petri net α(N ) = (P, T, W−, W+, α◦λ, m0).
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Coming back to our example the “abstract” Petri net in Fig. 6 is obviously
modally weakly deterministic. For the abstraction of the composed Petri nets in
Fig. 5 this is not obvious but, according to the results of the next section, we
can decide it (and get a positive answer). Note, however, that in the case where
one of the transitions used for the communication would not be a “must” the
abstraction of the Petri net composition would not satisy the second condition of
modal weak determinacy. The next problem is to decide whether the refinement
relation holds between their generated modal language specifications. Again,
according to the results of the next section, we can decide this (and also get a
positive answer).

5 Decision Algorithms

We begin this section by some recalls about semi-linear sets and decision proce-
dures in Petri nets.

Let E ⊆ N
k, E is a linear set if there exists a finite set of vectors of N

k

{v0, . . . , vn} such that E = {v0 +
∑

1≤i≤n λivi | ∀i λi ∈ N}. A semi-linear set
is a finite union of linear sets; a representation of it is given by the family of
finite sets of vectors defining the corresponding linear sets. Semi-linear sets are
effectively closed by union, intersection and complementation. This means that
one can compute a representation of the union, intersection and complementation
starting from a representation of the original semi-linear sets. E is an upward
closed set if ∀v ∈ E v′ ≥ v ⇒ v′ ∈ E. An upward closed set has a finite set of
minimal vectors denoted min(E). An upward closed set is a semi-linear set which
has a representation that can be derived from the equation E = min(E) + N

k if
min(E) is computable.

Given a Petri net N and a marking m, the reachability problem consists in
deciding whether m is reachable from m0 in N . This problem is decidable [12].
Furthermore this procedure can be adapted to semi-linear sets. Given a semi-
linear set E of markings, in order to decide whether there exists a marking of
E which is reachable, we proceed as follows. For any linear set E′ = {v0 +
∑

1≤i≤n λivi | ∀i λi ∈ N} associated with E we build a net NE′ by adding
transitions t1, . . . , tn. Transition ti has vi as input vector and the null vector as
output vector. Then one checks whether v0 is reachable in NE′ . E is reachable
from m0 iff one of these tests is positive.

In [18] given a Petri net, several procedures have been designed to compute
the minimal set of markings of several interesting upward closed sets. In par-
ticular, given a transition t, the set of markings m from which there exists a
transition sequence σ with m[σt〉 is effectively computable.

Now we solve the decision problems stated in the previous sections.

Proposition 2. Let N be a labeled Petri net, then it is decidable whether N is
weakly deterministic.

Proof. First we build a net N ′ defined as follows.
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– Its set of places is the union of two disjoint copies P1 and P2 of P .

– There is one transition (t, t′) for every t and t′ s.t. λ(t) = λ(t′) 6= ε. The input
(resp. output) vector of this transition is the one of t with P substituted by
P1 plus the one of t′ with P substituted by P2.

– There are two transitions t1, t2 for every t s.t. λ(t) = ε. The input (resp.
output) vector of t1 (resp t2) is the one of t with P substituted by P1 (resp.
P2).

– The initial marking is m0 with P substituted by P1 plus m0 with P substi-
tuted by P2.

Then for every a ∈ Σ, we compute a representation of the set Ea from which,
in N a transition labelled by a is eventually fireable after the firing of silent
transitions (using results of [18]) and a representation of its complementary set
Ea. Afterwards we compute the representation of the semi-linear set Fa whose
projection on P1 is a vector of Ea with P substituted by P1 and whose projection
on P2 is a vector of Ea with P substituted by P2. Let F =

⋃

a∈Σ Fa then N is
weakly deterministic iff F is not reachable which is decidable.

Proposition 3. Let N be a weakly deterministic labeled Petri net and N ′ be a
labeled Petri net then it is decidable whether L(N ) ⊆ L′(N ′).

Proof. W.l.o.g. we assume that P and P ′ are disjoint. First we build a net N ′′

defined as follows.

– Its set of places is the union of P and P ′.

– There is one transition (t, t′) for every t ∈ T and t′ ∈ T ′ s.t. λ(t) = λ(t′) 6= ε.
The input (resp. output) vector of this transition is the one of t plus the one
of t′.

– Every transition t ∈ T ∪ T ′ s.t. λ(t) = ε is a transtion of N ′′.

– The initial marking is the m0 + m′
0.

Then for every a ∈ Σ, we compute a representation of the set EN ,a (resp.
EN ′,a) from which in N a transition labelled by a is eventually fireable preceeded
only by silent transitions and a representation of its complementary set EN ,a

(resp. EN ′,a). Afterwards we compute the representation of the semi-linear set Fa

whose projection on P is a vector of EN ,a and whose projection on P ′ is a vector
of EN ′,a. Let F =

⋃

a∈Σ Fa then L(N ) ⊆ L′(N ′) iff F is not reachable. This
procedure is sound. Indeed assume that some marking (m, m′) ∈ Fa is reachable
in N ′′ witnessing that after some word w, some firing sequences σ ∈ N , σ′ ∈ N ′

s.t. m0[σ〉m, m′
0[σ

′〉m′ and λ(σ) = λ′(σ′) from m one cannot “observe” a and
from m′ one can “observe” a. Then due to weak determinism of N for every m∗

s.t. there exists a sequence σ∗ with m0[σ
∗〉m∗ and λ(σ∗) = λ(σ), m∗ is also in

EN ,a.

Proposition 4. Let M be a modal Petri net, then it is decidable whether M is
(modally) weakly deterministic.
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Proof. Observe that the first condition for being weakly deterministic is decid-
able by proposition 2. In order to decide the second condition, we build as in the
corresponding proof the net N ′. Then we build representations for the following
semi-linear sets. Ga is the set of markings m of N such that from m a transi-
tion of T� labelled by a is eventually fireable after firing silent transitions of T�.
Afterwards we compute the representation of the semi-linear set Ha whose pro-
jection on P1 is a vector of Ga with P substituted by P1 and whose projection
on P2 is a vector of Ga with P substituted by P2. Let H =

⋃

a∈Σ Ha then M
fulfills the second condition of weak determinism iff H is not reachable.

Proposition 5. Let M,M′ be two weakly deterministic modal Petri nets then
it is decidable whether the modal specification S(M) refines S(M′).

Proof. Observe that the first condition for refinement is decidable by proposi-
tion 3. In order to decide the second condition, we build as in the corresponding
proof the net N ′′. Then we build representations for the semi-linear sets Ga (as
in the previous proof) and similarly G′

a in the case of N ′. Afterwards we compute
the representation of the semi-linear set Ha whose projection on P is a vector
of Ga and whose projection on P ′ is a vector of G′

a. Let H =
⋃

a∈Σ Ha then
the second condition for refinement holds iff H is not reachable. This procedure
is sound. Indeed assume that some marking (m, m′) ∈ Ha is reachable in N ′′

witnessing that after some word w, some firing sequences σ ∈ N , σ′ ∈ N ′ s.t.
m0[σ〉m, m′

0[σ
′〉m′ and λ(σ) = λ′(σ′) = w and from m one can “observe” b by a

“must” sequence and from m′ one cannot observe a by a must sequence. Then
due to (the second condition of) weak determinism of N ′ for every m∗ s.t. there
exists a sequence σ∗ with m′

0[σ
∗〉m∗ and λ′(σ∗) = λ′(σ′), m∗ is also in G′

a.

6 Conclusion

In the present work, we have introduced modal I/O-Petri nets and we have
provided decision procedures to decide whether such Petri nets are weakly de-
terministic and whether two modal language specifications generated by weakly
deterministic modal Petri nets are related by the modal refinement relation. An
important role has been played by the notion of modal weak determinacy and by
the abstraction operator which considers internal transitions to be silent. Since,
in general, the abstraction operator does not preserve modal weak determinacy,
we are interested in the investigation of conditions which ensure this preser-
vation property. This concerns also conditions for single components such that
the abstraction of their composition is modally weakly deterministic. Another
direction of future research concerns the study of compatibility of component
behaviours represented by modal I/O-Petri nets and the establishment of an
interface theory for this framework along the lines of [3].
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Abstract. The quality of algorithms is often determined by benchmark-
ing, i.e., testing the algorithm on a predetermined data set. In contrast to
traditional benchmarking, with fixed data set, we present a way to gen-
erate random sets of test data. In this paper we present random classes
of Petri nets and a method to generate finite samples from such a class.
The classes may contain infinitely many Petri nets, each net with its own
probability to be generated. This generation method is based on stepwise
application of construction rules such as refinement rules. Each random
class of Petri nets has a probability distribution for each of its charac-
teristics. We illustrate the approach by estimating this distribution for
some simple characteristics.
Keywords: Petri nets, benchmarking, random graphs

1 Introduction

In computer science research we often lack a method to evaluate the quality of
an algorithm in an analytical way. The quality may concern the efficiency of the
algorithm (how fast is a solution found) or the effectiveness (how good is the
solution found). Although it is sometimes possible to give bounds for the worst
case behavior, it is seldom possible to determine the average-case behavior an-
alytically. What we normally do is fixing a set of test data as benchmark and
then we test the algorithm on that set, which is called benchmarking. Generally
a benchmark is either pre-defined or generated. Both have disadvantages [15].
Pre-defined datasets are designed to be representative examples in a particu-
lar domain. Researchers evaluate new algorithms with respect to such a fixed
benchmark, but how good are they if applied to other test data? In order to in-
crease the quality of benchmarking we will consider methods to generate random
benchmarks, which are samples from an infinite set of tests, each having its own
probability of being selected for a sample. Note that it is impossible to have an
infinite set of tests each having the same probability, so the probabilities of the
tests have to be non-uniform. Due to the fast increasing computing power we
are able to generate samples that are so big that all non-selected tests together
have a probability below some chosen bound. This allows us to obtain statistical
statements of the quality of an algorithm.

Recent Advances in Petri Nets and Concurrency, S. Donatelli, J. Kleijn, R.J. Machado, J.M. Fernandes
(eds.), CEUR Workshop Proceedings, volume 827, ISSN 1613-0073, Jan/2012, pp. 403–417.



In this paper we focus on Petri nets and algorithms to compute their char-
acteristic properties. Hence we define random classes of Petri nets. Such a class
contains Petri nets with some structural property, like free choice nets. There
may be infinite number of nets in one class. Each net in a class has its own
probability of being selected for a benchmark. Petri nets are used to model
complex processes [11], for example computational processes in a computer sys-
tem or business processes within or between enterprises. These models are often
produced by a stepwise refinement process (top-down approach) or by gluing to-
gether existing components (bottom-up approach). The generation method uses
two kinds of construction rules, refinement rules and bridge rules. The refine-
ment rules were firstly studied by Berthelot in [5] and Murata in [18] as reduction
rules, in this paper we use them in the inverse direction to expand Petri nets
by refinement. The bridge rules connect a pair of nodes in a Petri net, so we
can use them to glue components. In most cases these construction rules pre-
serve some property which means that if the initial Petri net has that property,
then all elements of the class have the same property. The generation method
determines, in a random way, (1) which construction rule will be applied in the
current Petri net, (2) to which part of the net and (3)if we continue or stop. So
the construction rules have weights. Rephrasing what we are doing, we define a
graph grammar with weights on the construction rules, such that each graph of
the graph language has a certain probability of occurring.

Although our generation method for benchmarks can be applied to all kinds
of algorithms on Petri nets, we use it here to determine characteristics of the
random classes of Petri nets. Simple examples of such characteristics are the
number of nodes, and the average fanin and fanout of nodes. More complicated
ones are the occurrence (or the number) of deadlocks or livelocks. Each charac-
teristic of a Petri net is expressed by a real number. In some cases we consider
only 0 and 1 and we consider them as ’false’ and ’true’. Since every Petri net in a
class has a certain probability of being selected in a benchmark, we may consider
every characteristic as a random variable having a probability distribution over
the class. For the given examples, we can speak of the expectation and variance
of the number of nodes in a class, or the probability of having a deadlock. We
have developed a software tool in the form of a plugin for ProM (cf [16]) to
realize our approach.

The rest of this paper is organized as follows. Section 2 introduces the neces-
sary preliminaries. In Section 3 we represent our construction rules and discuss
our methodology of generating Petri nets. Section 4 presents some characteris-
tics. The software tool is introduced in Section 5 with characteristic examples.
Related work is discussed in Section 6. Finally Section 7 concludes this paper
and discusses some of our future researches on identifying class parameters.

2 Preliminaries

Let S be a set. With |S| we denote the number of elements in S. The empty set,
e.g., the set without any elements is denoted by ∅. Two sets S and R are disjoint
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if S ∩ R = ∅. We denote the set of all natural numbers as N = {0, 1, 2, · · ·}. A
sequence σ of length l ∈ N over S is a function σ : {1, · · ·, l} → S. We denote a
sequence by σ =< σ(1), σ(2), ···, σ(l) >, such that ∀i(1 ≤ i < l) : σ(i) ∈ •σ(i+1).

We write here this as n1
σ−→ nl. We denote the length of a sequence by |σ|. The

set of all finite sequences over S is denoted as Σ. Let ν, γ ∈ Σ be two sequences.
Concatenation, denoted by σ = ν ◦γ, is defined as σ : {1, · · ·, |ν|+ |γ|} → S, such
that for 1 ≤ i ≤ |ν| : σ(i) = ν(i), and for |ν|+1 ≤ i ≤ |ν|+ |γ| : σ(i) = γ(i−|ν|).
The Parikh vector of a sequence σ, denoted by −→σ , is a bag representing the
number of occurrences of each element in σ. A bag m (multiset) over S is a
function m : S → N. For s ∈ S, m(s) denotes the number of occurrences of s in
m. We denote a bay by square brackets. e.g., in a bag [a, b2, c], element a occurs
once, element b twice, and element c once. All other elements have a multiplicity
of 0. ≺ is the prefix operator, such that σ

′ ≺ σ if and only if ∃σ′′
: σ = σ′ ◦ σ′′ .

A Petri net is a tuple N = (P, T, F ) where P is the set of places, T is the
set of transitions, P and T are disjoint, and F ⊆ (P × T )∪ (T ×P ) is the set of
arcs. An element of P ∪ T is called a node. We call an element of P ∪ T ∪ F is
an element of N . A path in N is a sequence σ over the set P ∪ T . Graphically,
we denote places by circles, transitions by squares, and arcs as arrows between
places and transitions. The state of a Petri net, called a marking is a bag over
the places P of N . A marking is graphically represented by placing tokens in
each place. A marked Petri net is a pair (N,m0), where N is a Petri net and
m0 is a marking of N . A transition t ∈ T is enabled in (N,m0), denoted by

(N : m0
t−→) if •t ≤ m0. An enabled transition in (N,m0) can fire resulting in a

new marking m
′

= m0 − •t+ t•, denoted by (N : m0
t−→ m

′
).

A special class of Petri nets are workflow nets. A workflow net is a 5-tuple
W = (P, T, F, i, f) where (P, T, F ) is a Petri net, i ∈ P is the initial place, such
that •i = ∅, f ∈ P is the final place, such that f• = ∅, in graph of W each node
n ∈ P ∪ T is on a directed path from i to f . If for a workflow net W , we have
∀p ∈ P \ {i, f}, |p • | = | • p| = 1, |i • | = | • f | = 1, the workflow net is a T-net,
also called a marked graph workflow net. If ∀t ∈ T, |t • | = | • t| = 1, then it is
a S-net, also called a state machine workflow net. In a workflow net, two places
p, s ∈ P , if either p• = s• or p • ∩s• = ∅, then this workflow net is a free-choice
workflow net. A firing sequence or a trace is a sequence σ over T such that all
the transitions of σ can fire in that order starting from the initial marking. A
trace for a workflow net is complete if it leads to the final marking with only f
marked.

A workflow net is k sound, for k ∈ N if for each marking m that is reachable
from an initial marking m0 with only k tokens in the initial place i, the final
marking with only k tokens in the final place f can be reached. A workflow net
is generalized sound if it is k-sound for all k ≥ 1 ([14]). Note that 1-sound is
usually called sound ([1]). Soundness can be considered as a general sanity check
for workflow nets.
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3 Net Generation

In this section we firstly define the construction rules. The rules enable us to
generate all Petri nets, here we focus upon workflow nets. Moreover, we show that
different subclasses of workflow nets can be generated by different construction
rules. Finally, we discuss our method of randomly generating Petri nets.

3.1 Construction Rules

Based upon how they can modify the structure of Petri nets, the construction
rules are divided into two classes, refinement rules and bridge rules. The refine-
ment rules ([5], [8], [12], and [18]) were firstly studied by Berthelot and Murata
as abstraction rules to reduce Petri nets, here we use them in the inverse direc-
tion to expand Petri nets. The bridge rules connect a pair of nodes in Petri nets,
so we can use them to glue components. Let N be the original net and R be one
of the construction rules. If we apply R to N then we get the generated net N

′
.

If we use R in the opposite direction, then we can get N again by reducing N
′
.

In such a case we say (N,N
′
) ∈ ϕR. Based upon such a relationship, we define

the rules as follows.
Refinement rules. Figure 1 is an example of the refinement rules.

Fig. 1. Refinement Rules

Definition 1 (Place refinement rule R1). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR1

if and only if there exist
places s, r ∈ P

′
, s 6= r and a transition t ∈ T

′
such that: •t = {s}, t• = {r},

s• = {t}, •s 6= ∅, •s 6⊆ •r. The net N satisfies: P = P
′ \ {s}, T = T

′ \ {t},
F = (F

′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•s× t•).
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Definition 2 (Transition refinement rule R2). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR2

if and only if there exist
a place s ∈ P ′

and transitions t, u ∈ T ′
, t 6= u such that: •s = {u}, s• = {t},

•t = {s}, t• 6= ∅, u• 6⊆ t•. The net N satisfies: P = P
′ \ {s}, T = T

′ \ {u},
F = (F

′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•u× s•).

Definition 3 (Arc refinement rule R3). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR3

if and only if there ex-
ist two nodes m,n ∈ P

′ ∪ T ′
, such that: | • m| = 1, m• = {n}, |n • | = 1,

•n = {m}, (•m×n•)∩F ′
= ∅. The net N satisfies: P ∪T = (P

′ ∪T ′
) \ {m,n},

F = (F
′ ∩ ((P × T ) ∪ (T × P ))) ∪ (•m× n•).

Note that in Figure 1, R3 shows only one instance of the arc refinement rule.
We can also refine any arc with a place as its source node and a transition as its
target node. This case is not shown in Fig 1.

Definition 4 (Place duplication rule R4). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR4 if and only if there exist

two places s, r ∈ P
′
, s 6= r such that: •s = •r, s• = r•. The net N satisfies:

P = P
′ \ {s}, T = T

′
, F = F

′ ∩ ((P × T ) ∪ (T × P )).

Definition 5 (Transition duplication rule R5). Let N = (P, T, F ) and
N

′
= (P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR5

if and only if there
exist two transitions t, u ∈ T

′
, t 6= u such that: •t = •u, t• = u•. The net

P = P
′
, T = T

′ \ {u}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Definition 6 (Loop addition rule R6). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR6

if and only if there exists a place s ∈ P ′

and a transition t ∈ T
′

such that: •t = {s}, t• = {s}. The net N satisfies:
P = P

′
, T = T

′ \ {t}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Bridge rules. Figure 2 is an example of the bridge rules.

Definition 7 (Place bridge rule R7). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR7 if and only if there exist one place

s ∈ P ′
and two transitions u, t ∈ T ′

such that: •s = {u}, s• = {t}. The net N
satisfies: P = P

′ \ {s}, T = T
′
, F = F

′ ∩ ((P × T ) ∪ (T × P )).

Definition 8 (Transition bridge rule R8). Let N = (P, T, F ) and N
′

=
(P

′
, T

′
, F

′
) be two Petri nets. We say (N,N

′
) ∈ ϕR8 if and only if there exist

one transition t ∈ T ′
and two places s, r ∈ P ′

such that: •t = {s}, t• = {r}.
The net N satisfies: P = P

′
, T = T

′ \ {t}, F = F
′ ∩ ((P × T ) ∪ (T × P )).

Definition 9 (Arc bridge rule R9). Let N = (P, T, F ) and N
′

= (P
′
, T

′
, F

′
)

be two Petri nets. We say (N,N
′
) ∈ ϕR9

if and only if there exist two nodes
s, r ∈ P

′ ∪ T ′
, such that (s, r) ∈ F

′
. The net N satisfies: P = P

′
, T = T

′
,

F = F
′ \ {(s, r)}.
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Fig. 2. Bridge Rules

Note that in Figure 2, R9 merely shows one instance of the arc bridge rule.
We can also bridge a place and a transition with an arc. This case is not shown
in Figure 2.

In R8, if s and r are the same place, it becomes R6. Thus the loop addition
rule R6 is a special case of the transition bridge rule R8. All the refinement rules
(R1,...,R6) preserve liveness and boundedness properties of Petri nets (with re-
spect to a given marking) (proofs can be found in [12]). Although without formal
proof, it is still easy to observe that all the bridge rules (R7,...,R9) generally do
not preserve those properties. In fact, the bridge rules can break any good struc-
tures. For instance, the transition bridge rule can model the goto structure in
programming languages, and the danger of such a structure is discussed in [9].

3.2 Structural Classes of Generated Nets

In this part we study different classes of the generated Petri nets based on their
structures. We focus on workflow nets and their subclasses, namely, Jackson
nets, state machine workflow nets, marked graph workflow nets, and free-choice
workflow nets. These workflow nets without Jackson nets are defined in Section
2, so firstly we define a Jackson net as follows. For a formal description and
analysis of Jackson nets see [12].

Definition 10 (Jackson net). A Jackson net is a workflow net that can be
generated, from one single place, by applying the rules R1, R2, R4, R5, and R6
recursively. However, only the rule R1 can be applied in the first step, and no
rules can be applied to the initial place and the final place after the first step.

6
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In order to generate all workflow nets (starting with two places), it is sufficient
to use the arc refinement rule R3 and the bridge rules R7, R8, R9 only. To prove
that, we give the following definition.

Definition 11 (Copy of a net). Let N be a workflow net. N
′

is a copy of N
if and only if there is a bijection ϕ such that ϕ(P ) = P

′
, ϕ(T ) = T

′
, ϕ(F ) = F

′

and ∀(x, y) ∈ F : ϕ((x, y)) = (ϕ(x), ϕ(y)).

A path taken from a Petri net defines a new Petri net, so copying a path can
be treated as copying its corresponding Petri net.

Lemma 1. Given two nodes, m1, m2 ∈ P ∪ T , and a path σ, such that m1 =
σ(1), m2 = σ(|σ|), and ∀i ∈ dom(σ) : −→σ (i) = 1. Then we can copy σ by firstly
applying a bridge rule on (m1,m2) and afterwards repeating the arc refinement
rule.

Lemma 2. We have a path σ in a Petri net, if there is some node n such that−→σ (n) > 1, then there is a path σ
′

= σ1 ◦ σ3 if and only if σ = σ1 ◦ σ2 ◦ σ3 and

n
σ2−→ n.

Theorem 1. Let N be a workflow net. Then N can be copied into N
′

by only
using the bridge rules and the arc refinement rule, starting with only two places.

Proof. Initially P
′

= {i′ , f ′}, T ′
= ∅, F ′

= ∅, i′ = ϕ(i), and f
′

= ϕ(f). We
select an arbitrary node n from N such that n ∈ P ∪ T and n 6∈ P ′ ∪ T ′

. In N ,
from n we find two paths, n1

σ1−→ n and n
σ2−→ n2, such that n1, n2 ∈ P

′ ∪T ′
and

all other nodes on σ1 and σ2 are not in P
′ ∪ T ′

. This is always possible by the
definition of a workflow net. By Lemma 2 we can reduce σ1 and σ2 by removing
all internal loops along the paths.

Consider case (1): suppose σ1 and σ2 have no common internal nodes, then
we may apply Lemma 1 by adding the path σ1 ◦ σ2 from n1 to n2, and add
n

′
= ϕ(n) to the copy.
Consider case (2): suppose σ1 and σ2 have common internal nodes, e.g.,

∃i, j : σ1(i) = σ2(j) 6= n, then there is a loop. We then look for the first node m

on σ1 which is also on σ2. Then ∃σ3, σ4, σ5, σ6 : n1
σ3−→ m

σ4−→ n∧n σ5−→ m
σ6−→ n2

where σ1 = σ3◦σ4 and σ2 = σ5◦σ6. Now we have found n1
σ3−→ m and m

σ6−→ n2,
and σ3 and σ6 have no internal nodes in common as m is the first common node
on σ1. We replace n with m, then we apply Lemma 1 by adding the path σ3 ◦σ6
from n1 to n2, and we add node m

′
= ϕ(m) to the copy.

In each step, therefore, we add at least one node. We repeat this procedure
until all the nodes of N are copied into N

′
. Finally, we add all arcs F \ϕ−1(F

′
)

by arc bridge rule. Now N
′

is a copy of N . ut

Now let us consider which rules allow us to generate the subclasses of work-
flow nets. Based upon Theorem 1, it is easy to prove that we only need the
transition bridge rule and the arc refinement rule to generate all state machine
workflow nets, and we need the place bridge rule and the arc refinement rule to
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generate all marked graph workflow nets. They yield Corollary 1 and Corollary
2. As defined in Definition 10, Jackson nets are generated by the rules R1, R2,
R4, R5, and R6. For a free-choice workflow net, the rules R1, R2, R4, and R5
can always preserve its properties.

Corollary 1. If N is a state machine workflow net, then N can be copied into
N

′
by only using the transition bridge rule with the arc refinement rule.

Corollary 2. If N is a marked graph workflow net, then N can be copied into
N

′
by only using the place bridge rule with the arc refinement rule.

Theorem 2. The place refinement rule, the transition refinement rule, the place
duplication rule, and the transition duplication rule preserve the free-choice work-
flow net property.

[12] proves that each Jackson net is a sound net. From [6] we can derive
that each generated state machine workflow net is sound as well. All free-choice
workflow nets are sound. The generated marked graph workflow nets cannot be
sound as the rules applied do not preserve the properties.

3.3 Generation of Nets

Our approach of generating Petri nets has two determinants, construction rules
and probabilities of the rules. We have discussed the necessary rules to generate
different classes of workflow nets. In this part, we focus on the probability-based
rule selection.

Given two nets N and N
′
, we say that N generates N

′
if and only if N

′
can

be obtained from N by applying zero or more times a rule from our construction
rules. To generate a workflow net we adopt a stepwise refinement technique
starting with one single place. In the first step we apply the place refinement
rule to generate the initial place and the final place. For any subsequent steps,
we select a rule from all the rules whose conditions hold (we say those rules are
enabled). For the initial and the final places there are some restrictions such
that the place refinement rule, the place duplication rule, the loop addition rule
cannot be applied to the initial and the final places, and for the transition bridge
and the arc bridge rules, the initial place cannot be the target place (i.e., r in
Definition 8 and 9), and the final place cannot be the source place (i.e., s in
Definition 8 and 9). Figure 3 depicts an example of net refinement.

In order to select a rule from all the enabled rules, we attach a rule weight
to each rule. A rule weight is a random number ranging from 0 (least likely)
to 100 (most likely). Therefore, a rule is randomly selected based on the rule
weight. Similarly, we also attach an element weight (also ranging from 0 to 100)
to each of the elements (each of the places, transitions, and arcs) in a net. Hence
each rule can randomly select an element or a pair of them based on the element
weight to expand a net. Because we always start with an initial net to generate
another net, for all the elements in the initial net, we give each of them a default
element weight. When we apply rules, new elements are added into the net. In
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Fig. 3. An Example of Workflow Net Refinement

order to determine weights of the newly added elements, we define three type
parameters (ranging from 0 to 1) for each element type, namely, place parameter,
transition parameter, and arc parameter. Each rule can have some or all of the
type parameters based on what kinds of elements it can introduce. For instance,
as the place refinement rule can introduce two places, a transition, and two arcs,
the rule has all the type parameters. While, the place bridge rule can add a place
and two arcs, so it only has the place parameter and the arc parameter. All the
refinement rules (R1,...,R6) only refine one element, so the weight of the newly
added elements are determined by the multiplication of the weight of the refined
element and the type parameters. For example, if we refine a place having a
weight of 50, and we let the place parameter be 0.2, the transition parameter be
0.5, and the arc parameter be 0.1, then any newly added place has a weight of
(0.2 x 50 =) 10, any newly added transition has a weight of (0.5 x 50 =) 25, and
any newly added arc has a weight of (0.1 x 50 =) 5. On the other hand, all the
bridge rules bridge a pair of nodes, so the weight of the newly added elements
are determined by the multiplication of the sum of the bridged nodes and the
type parameters. For instance, if we bridge two transitions having a weight of
50 and 70, respectively, then any newly added place has a weight of ((50 + 70)
x 0.2 = ) 24, and any newly added arc has a weight of ((50 + 70) x 0.1) = 12.

Therefore, such a mechanism makes net generation random. We are currently
considering other mechanisms besides this one as well.

4 Characteristics of Net

Characteristics of Petri nets in different classes are decidable with the generated
benchmarks. Such characteristics we consider currently consist of length of the
shortest path (number of transitions in a path is the length of this path), number
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of nodes, average number of fanin and fanout of nodes, deadlock and livelock,
and coverage. We use a real number to express each characteristic, in some
cases we use 1 for true and 0 for false. Each Petri net in a class has a certain
probability of being selected in a benchmark, and each characteristic can be
considered as a random variable having a probability distribution over that class.
For instance, with the given samples from a class, we can speak of the expectation
and variance of the number of nodes in the class, or the probability of having a
deadlock. Therefore, we can estimate the characteristics of any new nets from the
same class with ceratin confidence. In this section, we focus on the characteristic
coverage and give two examples to illustrate how it can help in testing.

We restrict ourselves to a Petri net with an initial node such as a workflow
net. Each transition in the net is attached with a label. The goal of the coverage
test is to find all the transitions with a certain label. The coverage is measured
by trace coverage and transition coverage. We start a path with the initial node,
at each choice point we select one of the enabled transitions at random. As soon
as we find a transition with the label that we look for, we stop and start a new
trace from the initial node again. Therefore, the trace coverage is the number of
traces that we need to find all the transitions with the label, and the transition
coverage is the number of transitions fired to find all the transitions with the
label. We show two applications of how to use the coverage in testing.

Finding labels. We may attach labels to transitions in a workflow net. In this
application we need to find all the transitions with a special label. We start in the
initial state. A transition is randomly fired when there are two or more enabled
transitions. After a transition has fired, we test whether it has the special label.
If so we remove this label and we start a new trace from the initial state again.
Otherwise we continue until we reach the final state and then we start from
the initial state again. We stop if all the transitions with the label have been
found. The coverage returns the number of traces followed and the number of
transitions fired in order to find all the labeled transitions. Algorithm 1 describes
this application. In this algorithm all transitions have a label either 0 or 1. We
are looking for the transitions with label 1.

As labeling can be associated with different concepts, this algorithm can be
used in model-based software testing as done in [7]. In this application we use
a workflow net to model a software system, where each transition represents a
software component. A software component either behaves correctly or has an
error that can only be detected by firing the transition. Only transitions with
an error are labeled.

Finding causal pairs. In this example we test how long (measured in coverage)
it takes to cover all the causal pairs, i.e., a possible pair of consecutive transitions,
in a workflow net. For process miners, i.e., the alpha algorithm [2], we need
complete logs, i.e., log with a set of complete traces. This means that we need
so many complete traces that every causal pair has occurred. We can get all
the possible causal pairs for a given net by static analysis, i.e., by using the
technique of reachability graph. Equipped with this result, we use Algorithm 2
to get the coverage for each given sound workflow net. This means that we have
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Algorithm 1: Finding Labels

input : a sound N = (P, T, F, i, f)
output: pathCoverage, transitionCoverage

1 var A,B : A ⊆ T,B ⊆ T
var pathCoverage, transitionCoverage : int
var stop : boolean
var m : P −→ N
begin

2 A := ∅;B := ∅; pathCoverage := 0; transitionCoverage := 0; stop :=
false;m0 := [i];
while |A| < |T | do

3 pathCoverage := pathCoverage + 1;m
′

:= m0;
4 repeat

5 B := {t ∈ T |(N : m
′ t−→)};

6 (N : m
′ t−→ m

′′
), for some t ∈ B;

7 m
′

:= m
′′

; transitionCoverage := transitionCoverage + 1;
A := A ∪ {t};

8 if transitionLabel(t) 6= 0 then
9 transitionLabel(t) := 0; stop := true;

10 endif

11 until m
′

= [f ] or stop = true

12 end

13 end

an estimate of the length of a log in order to be complete for random classes of
Petri nets.

Finally, we show the result of an empirical study we did. We used the tool we
developed (see Section 5) to randomly generated 3000 well-structured workflow
nets. Those nets were used as benchmarks to get the results in Table 1.

5 Tool Implementation

We realized a supporting tool for our methodology. The tool is developed as a
plugin for the ProM framework [10] in Java, the distribution can be downloaded
from [16]. The tool has the following relevant features:

Graphical user interface. Figure 4 is a snapshot of the tool interface.This
graphical user interface is easy to use. For example, it lists all the rules visually
so that it is very intuitive for the user to select a particular rule. The generated
nets can be visualized using the viewer provided by ProM. Testing results are
output in a table for the user.

Selection of net class. The interface contains all the classes of the workflow
nets that the user can generate. Once a particular class has been selected, all the
rules which are not allowed in such a class are disabled automatically by giving
their probabilities a value of zero.
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Algorithm 2: Finding Causal Pairs

input : a sound N = (P, T, F, i, f), a set C of all the causal pairs in N
output: pathCoverage, transitionCoverage

1 var A,B : A ⊆ C,B ⊆ T
var pathCoverage, transitionCoverage : int
var u : u ∈ T
var m : P −→ N
begin

2 A := ∅;B := ∅; pathCoverage := 0; transitionCoverage := 0;u :=
null;m0 := [i];
while A 6= C do

3 pathCoverage := pathCoverage + 1;m
′

:= m0;

4 B := {t ∈ T |(N : m
′ t−→)};

5 (N : m
′ t−→ m

′′
), for some t ∈ B;

6 u := t;m
′

:= m
′′

; transitionCoverage := transitionCoverage + 1;
7 repeat

8 B := {t ∈ T |(N : m
′ t−→)};

9 (N : m
′ t−→ m

′′
), for some t ∈ B;

10 transitionCoverage := transitionCoverage + 1;

11 A := A ∪ {(u, t)};u := t;m
′

:= m
′′

;

12 until m
′

= [f ]

13 end

14 end

Random weight of rules. The user can change the weight of any enabled rule
using the sliding bar under the rule image, the probability of the rule is calculated
and displayed next to the sliding bar.

Table 1. Mean number, standard deviation, 25th percentile (Q1), Median (Q2), 75th
percentile (Q3) of the characteristics of 3000 well-structured workflow nets.

Characteristics Avg. Std.dev. Q1 Q2 Q3

length of the shortest path 2.525 1.882 1.000 2.000 4.000

number of nodes
place 7.186 2.408 6.000 7.000 9.000
transition 8.649 2.797 7.000 8.000 10.000

avg. fanin/out of nodes

place fanin 1.575 0.491 1.250 1.500 1.800
place fanout 1.578 0.494 1.250 1.500 1.800
transition fanin 1.283 0.332 1.000 1.200 1.400
transition fanout 1.282 0.335 1.000 1.200 1.400

soundness 1.000 0.000 1.000 1.000 1.000

coverage
path coverage 15.032 10.125 8.400 12.100 18.500
transition coverage 45.655 31.909 24.000 38.350 57.975
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Specification of sample size and net size. The user can specify the number
of nets to generate and the number of times to apply rules to generate a net.
The sizes of all nets have a poisson distribution, the user only needs to input
the average number, then the tool is able to calculate the size of each individual
net.

Selection of characteristics. The user can select the characteristics introduced
in Section 4 to investigate the nets.

Reusability of samples. The tool saves all the generated nets in PNML for-
mat in a dedicated folder on disk. This enables the user to reuse or share any
benchmarks.

[13] proposed a systematic approach to design software in coloured Petri
nets and transfer the CPN models into Java code, we practised the approach in
the design and implementation of this tool. The tool currently runs on a single
processor thus it is not possible to generate a very large size of benchmarks.
In order to overcome this limit, we are considering to distribute the tool over
multiple processors (e.g., over grid) in the future.

Fig. 4. Interface Snapshot

6 Related Work

In [4] the authors proposed a method to generate Petri net benchmarks. They
start with a Petri net containing two places and two transitions with all nodes
connecting to each other, and make use of the refinement rules given by Murata
in [18]. Whereas in our approach we use not only the Murata rules, but other
rules as well, this makes our rules more extensive and more general. We focus
on generating workflow nets, and start with a much simpler net with only one
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single place. They use a weighted random selection of rules to control the number
of transitions and places. Such a probability mechanism is also realized in our
approach, and we investigate more characteristics of nets besides the number of
nodes.

In [3] the authors developed a tool to generate process models in Petri nets
and log of business processes. They use a set of workflow patterns in [17] and add
probabilities to the patterns. In our approach we do this for graph grammars.
Both can get a probability distribution on the set of graphs.

7 Conclusion

In this paper, we defined a graph grammar with weights on the construction
rules, such that each graph of the graph language has a ceratin probability
of occurring. We consider graphs in the form of Petri nets, and the generated
Petri nets can be used as benchmarks. By extensive studies, we have a set of
construction rules to generate all Petri nets with different starting nets using a
stepwise refinement approach. Based upon structures, the nets can be classified
into different classes. Each Petri net in a class has a certain probability to be
selected in a benchmark. Moreover, we distribute weights to the rules and all
elements in a net, this makes the generation random. We have determined a
number of characteristics used in the random classes of Petri nets, and we are
able to get probability distributions of each characteristic over the classes. We
focused upon an interesting characteristic called coverage, and presented two
possible applications of it. A tool has been developed in ProM to realize our
methodology.

In future research, we would like to identify the probability parameters based
upon a concrete set of process models in a statistical way. If we have the param-
eter we can do better benchmarking. Also we would like to distribute our tool
over grid so that we can generate a large number of benchmarks.
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Abstract. The paper shows how bounded model checking can be ap-
plied to parameter synthesis for parametric timed automata with con-
tinuous time. While it is known that the general problem is undecidable
even for reachability, we show how to synthesize a part of the set of
all the parameter valuations under which the given property holds in a
model. The results form a complete theory which can be easily applied
to parametric verification of a wide range of temporal formulae – we
present such an implementation for the existential part of CTL

−X.

1 Introduction and related work

The growing abundance of complex systems in real world, and their presence in
critical areas fuels the research in formal specification and analysis. One of the
established methods in systems verification is model checking, where the system
is abstracted into the algebraic model (e.g. various versions of Kripke structures,
Petri nets, timed automata), and then processed with respect to the given prop-
erty (usually a formula of modal or temporal logic). Classical methods have their
limits however – the model is supposed to be a complete abstraction of system
behaviour, with all the timing constraints explicitely specified. This situation
has several drawbacks, e.g. the need to perform a batch of tests to confirm the
proper system design (or find errors) is often impossible to fullfill due to the
high complexity of the problem. Introducing parameters into models changes
the task of property verification to task of parameter synthesis, meaning that
parametric model checking tool produces the set of parameter valuations under
which the given property holds instead of simple holds/does not hold answer.
Unfortunately, the problem of parameter synthesis is shown to be undecidable
for some of widely used parametric models, e.g. parametric timed automata [3,
8] and bounded parametric time Petri nets [15].

Many of model checking tools acquired new capabilities of parametric verifi-
cation, e.g. UPPAAL-PMC [11] – the parametric extension of UPPAAL, LPMC
[14] – extending PMC. Some of the tools were built from scratch with parametric
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model checking in mind, e.g. TREX [1] and MOBY/DC [7]. Parametric analysis
is also possible with HyTech [10] by means of hybrid automata. However, due
to undecidability issues, algorithms implemented in these tools need not to stop
and are very time and resource consuming. Another, very interesting approach is
given in a recently developed IMITATOR tool [4] – having both the parametric
timed automaton and the initial parameter valuation, IMITATOR synthesizes a
set of parameter constraints. Substituting the parameters with a valuation sat-
isfying these constraints is guaranteed to produce the timed automaton which is
time-abstract equivalent to the one obtained from substituting the parameters
with the initial valuation.

In this paper we present a new approach to parametric model checking,
based on the observation that while we are not able to synthesize the full set of
parameter constraints in general, there is no fundamental rule which forbids us
from obtaining a part of this set. In Section 2 we introduce the parametric region
graph – an extension of region graph used in theory of timed automata [2] and
show (in Section 3) how the computation tree of a model can be unwinded up to
some finite depth in order to apply bounded model checking (BMC) techniques
[5]. To the best knowledge of the authors, this is the first application of BMC
to parametric timed automata and seems to be a quite promising direction of
research – firstly due to the unique BMC advantage which allows for verification
of properties in limited part of the model, secondly due to the fact that it is quite
easy to present BMC-based model checking algorithms for existential parts of
many modal and temporal logics. In fact we describe how Parametric BMC can
be implemented for the existential subset of CTL−X logic in Section 3, including
the analysis of a simplified parametric model of the 4-phase handshake protocol.

2 Theory of Parametric Timed Automata

In this paper we use two kinds of variables, namely parameters P = {p1, . . . , pm}
and clocks X = {x0, . . . , xn}. An expression of the form

∑m

i=1 ti · pi + t0, where
ti ∈ Z is called a linear expression. A simple guard is an expression of the form
xi − xj ≺ e, where i 6= j, ≺∈ {≤, <} and e is a linear expression. A conjunction
of simple guards is called a guard and the set of all guards is denoted by G. We
valuate the clocks in nonnegative reals, and parameters in naturals (including
0) that is υ : P → N is a parameter valuation and ω : X → R

≥0 is a clock
valuation (both υ and ω can be thought of as points in, respectively, Nm and
R

≥0n). Additionally, following [11] we assume that ω(x0) = 0 – the ”false clock”
x0 is fixed on 0 for convenience only, for uniform presentation of guards. By
e[υ] we denote the value obtained by substituting the parameters in a linear
expression e according to parameter valuation υ. We denote ω |=υ xi − xj ≺ e

iff ω(xi) − ω(xj) ≺ e[v] holds, and naturally extend this notion to guards. We
also need a notion of reset that is a set of expressions of the form xi := bi where
bi ∈ N, and 0 < i ≤ n. The set of all resets is denoted by R, and the action
of resetting a clock valuation ω by reset r ∈ R is defined as following: ω[r] is
a clock valuation such that ω[r](xi) = bi if xi := bi ∈ r, and ω[r](xi) = ω(xi)
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otherwise. If δ ∈ R and ω is a clock valuation, then ω + δ is a clock valuation
such that (ω + δ)(xi) = ω(xi) + δ for all 0 < i ≤ n, and ω(x0) = 0. An initial
clock valuation ω0 is the valuation satisfying ω(xi) = 0 for all xi ∈ X.

We also adopt a convenient notation from [11], where the ≤ symbol is treated
as true and the < symbol is treated as false. The propositional formulae built
from symbols ≤ and < are evaluated in a standard way. As to give an example,
≤⇒< evaluates to <, <⇒≤ evaluates to ≤, and ¬(≤ ∨ <) evaluates to <.

2.1 Parametric Timed Automata

Let us recall some notions from the theory of parametric timed automata. Non-
parametric timed automata [2] are state-transition graphs augmented with a
finite number of clocks, and clock constraints guarding the transitions between
states. Their parametric version [3] allows for using parameters (other than
clocks) in guard expressions – which may be perceived as creating the general
template for system behaviour under more abstract timed constraints.

Definition 1. A tuple A = 〈Q, q0, A,X, P,→, I〉 where:

– Q is a set of locations,
– q0 ∈ Q is the initial location,
– A is a set of actions,
– X and P are, respectively, sets of clocks and parameters,
– I : Q → G is an invariant function,
– →⊆ Q×A×G×R×Q is a transition relation.

is called a parametric timed automaton (PTA). All the above sets are finite. We

abbreviate (q, a, g, r, q′) as q
a,g,r
→ q′.

The semantics of PTA is presented below, in form of a labeled transition
system.

Definition 2 (Concrete semantics). Let A = 〈Q, q0, A,X, P,→, I〉 be a para-
metric timed automaton and υ be a parameter valuation. The labeled transition

system of A under υ is defined as a tuple [A]υ = 〈S, s0,
d
→〉 where:

– S = {(q, ω) | q ∈ Q, and ω is a clock valuation such that ω |=υ I(q)},
– s0 = (q0, ω0) (we assume that ω0 |=υ I(q0)),

– let (q, ω), (q′, ω′) ∈ S. The transition relation
d
→ is defined as follows:

• if d ∈ R
≥0, then (q, ω)

d
→ (q′, ω′) iff q = q′ and ω′ = ω + d,

• if d ∈ A, then (q, ω)
d
→ (q′, ω′) iff q

a,g,r
→ q′, and ω |=υ g, and ω′ = ω[r].

The elements of S are called the concrete states of Aυ.

The automaton obtained by substituting parameters in the guards and the
invariants of A by appropriate values of the parameter valuation υ is denoted
by Aυ. The concrete semantics of Aυ is defined as [Aυ] = [A]υ. Notice that Aυ

is a timed automaton and [Aυ] – its concrete semantics [2].
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Our definition of parametric timed automata slightly differs from the one
presented in [11], namely, we do not allow nonnegative reals as parameter values.
As it was shown in [3], the choice of the parameter valuation codomain does not
change the fact that the emptiness problem is undecidable. We explain the origin
of this restriction in the following subsection.

2.2 Parametric Region Graph

In non-parametric timed automata theory, the region graph [2] is used as a part
of a convenient method of presenting the concrete state space in a uniform,
finite way. The finiteness of the resulting structure is a result of presence of both
the bounded and unbounded regions. Intuitively, the bounded regions are convex
bounded sets in the space of clock valuations, while the unbounded regions are
convex and unbounded. The latter ones are defined using the maximal values of
clock constraints – this is not possible in the general case of parametric timed
automata (see however the optimization techniques in [11]), therefore in this
paper we consider only the bounded regions. We divide the space of all the clock
valuations into the set of regions using the following equivalence relation.

Definition 3. Let ω, ω′ be valuations of clocks X = {x0, . . . , xn}. Then, ω ≈ ω′

iff the following conditions hold:

– ⌊ω(xi)⌋ = ⌊ω′(xi)⌋ for all xi ∈ X,
– and frac(ω(xi)) < frac(ω(xj)) ⇐⇒ frac(ω′(xi)) < frac(ω′(xj)) for all

i 6= j, 1 ≤ i, j ≤ n,
– and frac(ω(xi)) = 0 ⇐⇒ frac(ω′(xi)) = 0 for all xi ∈ X,

where frac(ω(xi)) denotes the fractional part of ω(xi). The equivalence classes
of ≈ are called (detailed) regions.

To our aims it is convenient to describe regions as sets of valuations satisfying
certain guard expressions.

Lemma 1. Let X = {x0, . . . , xn} be a set of clocks, and Z – a region of val-
uations. There exists a guard gZ =

∧

i,j∈{0,...,n},i6=j xi − xj ≺ij bij, such that

≺ij∈ {≤, <} and bij ∈ Z satisfying:

Z = {ω | ω |= gZ}.

Proof. We need to specify the values of bij together with the accompanying
relation ≺ij . Let Z = [ω]≈ (the following considerations are valid for any choice
of ω from Z).

– If frac(ω(xi)) = 0, frac(ω(xj)) = 0, let ≺ij=≤ and bij = ⌊ω(xi)⌋−⌊ω(xj)⌋,
– if frac(ω(xi)) 6= 0, frac(ω(xj)) = 0, let ≺ij=< and bij = ⌈ω(xi)⌉−⌊ω(xj)⌋,
– if frac(ω(xi)) = 0, frac(ω(xj)) 6= 0, let ≺ij=< and bij = ⌊ω(xi)⌋−⌊ω(xj)⌋,
– for frac(ω(xi)) 6= 0, frac(ω(xj)) 6= 0 :

• if frac(ω(xi)) = frac(ω(xj)), let ≺ij=≤, bij = ⌊ω(xi)⌋ − ⌊ω(xj)⌋,

4
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• if frac(ω(xi)) < frac(ω(xj)), put ≺ij=<, bij = ⌊ω(xi)⌋ − ⌊ω(xj)⌋,
• if frac(ω(xi)) > frac(ω(xj)), let ≺ij=<, bij = ⌈ω(xi)⌉ − ⌊ω(xj)⌋.

It is easy to see that if ω ≈ ω′, then for any guard g we have ω |= g iff ω′ |= g.
Therefore, as gZ was constructed in such a way that ω |= gZ , we have also
ω′ |= gZ for all ω′ ∈ Z. On the other hand, if ω′ |= gZ , then satisfaction of
the guards of form xi − x0 ≺i0 bi0 and x0 − xi ≺0i b0i (recall that x0 is fixed)
guarantees that ⌊ω′(xj)⌋ = ⌊ω(xj)⌋ for all xj ∈ X. Similarly, ω′(xi) has nonzero
fractional value iff frac(ω(xi)) 6= 0, as ω′(xi) ∈ (⌊ω(xi)⌋, ⌈ω(xi)⌉), provided
that frac(ω(xi)) 6= 0. Let us assume that 0 < frac(ω(xi)), and frac(ω(xi)) <

frac(ω(xj)), then from ω(xi) − ω(xj) < ⌊ω(xi)⌋ − ⌊ω(xj)⌋ we have ω′(xi) −
ω′(xj) < ⌊ω′(xi)⌋ − ⌊ω′(xj)⌋. Therefore ω′(xi) − ⌊ω′(xi)⌋ < ω′(xj) − ⌊ω′(xj)⌋,
thus frac(ω(xi)) < frac(ω(xj)).

The guard constructed in the proof of the above lemma is called the charac-
teristic guard of Z. In the above proof we used the fact that if one representative
of an equivalence class satisfies a guard g, then so do all the remaining members.
This is not true if we allow nonnegative reals as parameter values – for exam-
ple it is easy to see that only some of representatives of class [(0, 0.3)] satisfy
x1 − x0 < p under parameter valuation υ such that υ(p) = 0.5.

Definition 4. Let A = 〈Q, q0, A,X, P,→, I〉 be a parametric timed automaton,
X = {x0, . . . , xn} and P = {p1, . . . , pm}. We introduce a relation in the set of
all the pairs (Z,C) where Z is a region, and C ⊆ N

m is a subset of the set of
all the valuations of parameters (treated as natural vectors). Let s = xi − xj ≺ e

be a simple guard, and gZ =
∧

i,j∈{0,...,n},i6=j xi − xj ≺ij bij the characteristic
guard of region Z. Then we define:

(Z,C)
s
; (Z ′, C ′) iff Z = Z ′ and C ′ = C ∩ {υ | bij(≺ij⇒≺)e[v]}.

Let g be a guard and s a simple guard, then:

(Z,C)
g∧s
; (Z ′, C ′) iff for some (Z ′′, C ′′) we have (Z,C)

g
; (Z ′′, C ′′)

and (Z ′′, C ′′)
s
; (Z ′, C ′).

There is a natural intuition behind the above definition – if (Z,C)
g
; (Z ′, C ′)

then (Z ′, C ′) contains all the pairs (ω, υ) ∈ Z × C such that ω |=υ g. Such an
operation is a counterpart for guard addition from [11], notice however that
we do not need a burden of costly canonicalization. Below we state some basic

properties of
g
; relation.

Lemma 2. Let (Z,C)
g
; (Z ′, C ′), where g is a guard. Then, the following con-

ditions hold:

1. if (ω, υ) ∈ (Z,C) and ω |=υ g, then (ω, υ) ∈ (Z ′, C ′),
2. if (ω, υ) ∈ (Z ′, C ′), then ω |=υ g.

5
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Proof. Let us start with the first part of the lemma. Let us assume that ω |=υ g.

By the induction on the complexity of g we prove that υ ∈ C ′.

The base case is when g = xi − xj ≺ e (g is a simple guard). Let us assume
that gZ contains a simple guard of the form xi − xj ≤ bij where bij ∈ Z. Notice
that in this case the characteristic guard contains also a simple guard of the
form xj − xi ≤ −bij , therefore bij = ω′(xi)−ω′(xj) for each ω′ ∈ Z. As ω |=υ g,

then bij = ω′(xi) − ω′(xj) ≺ e[υ]. Therefore bij ≺ e[υ], which in this case means
that bij(≺ij⇒≺)e[υ]. Now let us assume that gZ contains a simple guard of the
form xi − xj < bij . In this case, for each ω′ ∈ Z there exists δ ∈ (0, 1) such
that ω′(xi) − ω′(xj) = (bij − 1) + δ. Let us notice that e[υ] ∈ Z, therefore from
(bij − 1) + δ = ω′(xi) − ω′(xj) ≺ e[υ] we obtain bij ≤ e[υ]. The latter inequality
means that in this case bij(≺ij⇒≺)e[υ] holds.

For the induction step, notice that if (Z,C)
g′∧s
; (Z ′, C ′) (g′ is a guard,

and s a simple guard), then there exists (Z ′′, C ′′) such that (Z,C)
g′

; (Z ′′, C ′′)

and (Z ′′, C ′′)
s
; (Z ′, C ′). From the inductive assumption we obtain that as

ω |=υ g′ ∧ s implies ω |=υ g′, then υ ∈ C ′′. Similarly, as (ω, υ) ∈ (Z ′′, C ′′) and
ω |=υ s, we have υ ∈ C ′.

The proof of the second part of the lemma is also by the induction on the
structure of g. Assume that g = xi − xj ≺ e and gZ contains a simple guard of

form xi−xj ≺ij bij . If (Z,C)
g
; (Z ′, C ′), then C ′ = C∩{υ | bij(≺ij⇒≺)e[υ]}. As

ω(xi)−ω(xj) ≺ij bij and bij(≺ij⇒≺)e[υ] then ω(xi)−ω(xj)(≺ij ∧(≺ij⇒≺))e[υ].
Therefore we have ω(xi) − ω(xj) ≺ e[υ], thus ω |=υ g.

For the induction step, let us notice that if (Z,C)
g′∧s
; (Z ′, C ′), then there

exists (Z ′′, C ′′) such that (Z,C)
g′

; (Z ′′, C ′′) and (Z ′′, C ′′)
s
; (Z ′, C ′). If (ω, υ) ∈

(Z ′, C ′) then by the inductive assumption ω |=υ s holds. As C ′ ⊆ C ′′ ⊆ C, then
υ ∈ C ′′ and (ω, υ) ∈ (Z ′′, C ′′). Therefore, from the inductive assumption we
obtain ω |=υ g′ and, finally, ω |=υ g′ ∧ s.

From the above lemma we immediately obtain the following corollary.

Corollary 1. Let Z be a region, and C a subset of set of all the parameter
valuations. Then, the following conditions hold:

1. if (Z,C)
g
; (Z ′, C ′), then Z ′ × C ′ = Z × C ∩ {(ω, υ) | ω |=υ g},

2. if ω ∈ Z, υ ∈ C, and ω |=υ g, then (Z,C)
g
; (Z ′, C ′) for some Z ′, C ′ such

that (ω, υ) ∈ Z ′ × C ′.

In order to develop our theory further, we need to define two additional
operations on regions.

Definition 5. Let Z = [ω]≈ be a region and r ∈ R be a reset. Then, resetting
of Z by r is defined as: Z[r] = [ω[r]]≈.

Clearly, resetting of a region does not depend on the choice of a representa-
tive.

6

424 Petri Nets & Concurrency Knapik and Penczek



Definition 6. Let Z and Z ′ be two different regions. Region Z ′ is called a time
successor of Z (denoted by τ(Z)) iff for all ω ∈ Z there exists δ ∈ R such that
ω + δ ∈ Z ′ and ω + δ′ ∈ Z ∪ Z ′ for all δ′ ≤ δ.

Now, we are in the position to present the notion of a parametric region graph,
being an extension of region graph used in theory of timed automata [2]. The
main idea is to augment regions with sets of parameter valuations under which
the given concrete state (its equivalence class) is reachable from the initial state,
and to mimick the transitions in the concrete semantics by their counterparts in
parametric region graph.

Definition 7. Let A = 〈Q, q0, A,X, P,→, I〉 be a parametric timed automaton.

Define the parametric region graph of A as the tuple PREG(A) = 〈S, s0,
d
→〉

where:

– S = {(q, Z,C) | q ∈ Q,Z is a region, C ⊆ N
m and ∀υ∈C∃ω∈Z ω |=υ I(q)},

– s0 = (q0, Z0, C0) where Z0 = [ω0]≈ and C0 = {υ | ω0 |=υ I(q0)},

– (q, Z,C)
d
→ (q′, Z ′, C ′) is defined as follows:

• if d = τ (time transition), then q = q′, Z ′ = τ(Z), and C ′ is such that

(Z ′, C)
I(q)
; (Z ′, C ′),

• if d ∈ A (action transition), then there exists a transition q
d,g,r
→ q′ in A

and C ′′ such that (Z,C)
g
; (Z,C ′′) and (Z[r], C ′′)

I(q′)
; (Z ′, C ′).

Additionally, we call nodes of type (q, Z, ∅) dead, and assume that they have no
outgoing transitions.

Notice that in the above definition we could replace ∃ with ∀, due to the fact
that for any guard g, fixed parameter valuation υ, and clock valuations ω, ω′

such that ω ≈ ω′ we have ω |=υ g iff ω′ |=υ g.
Both the concrete semantics of (parametric) timed automaton, and (para-

metric) region graph are labelled transition systems. We define finite and infinite
runs in a labelled transition system in a usual way.

Lemma 3. Let A be a parametric timed automaton, and ρn = s0, s1, . . . sn a
finite run in PREG(A), where si = (qi, Zi, Ci), and Cn 6= ∅. For any (ω, υ) ∈
Zn ×Cn there exists a finite run µn = t0, t1, . . . tn in Aυ, such that ti = (qi, ωi),
ωi ∈ Zi for i ∈ {0, . . . , n}, and ωn = ω.

Proof. The base case of n = 0 is straightforward – as from the definition of
PREG(A) we have ω |=υ I(q0) for any (ω, υ) ∈ Z0 × C0.

Recall that Cn ⊆ Cn−1. If sn−1
d
→ sn is a time transition (with d = τ),

then τ(Zn−1) = Zn. Therefore for each ωn ∈ Zn there exist ωn−1 ∈ Zn−1,
and l ∈ R, such that ωn = ωn−1 + l. We conclude the case by noticing that
(ωn−1, υ) ∈ Zn−1 × Cn−1, ωn |=υ I(qn), and using the inductive assumption.

Now, if sn−1
d
→ sn is an action transition (d ∈ A), then there exists a

transition qn−1
d,g,r
→ qn in A, and a subset C ′ of Nm, such that (Zn−1, Cn−1)

g
;
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(Zn−1, C
′), and (Zn−1[r], C ′)

I(qn)
; (Zn−1[r], Cn). Therefore for each ωn ∈ Zn

we have ωn |=υ I(qn), and there exists ωn−1 ∈ Zn−1 such that ωn = ωn−1[r],
ωn−1 |=υ I(qn−1), and ωn−1 |=υ g (notice that υ ∈ Cn∩C ′∩Cn−1). We conclude
the case by assuming tn−1 = (qn−1, ωn−1), tn = (qn, ωn) and using the inductive
assumption.

Notice that the definition of the transition relation in PREG(A) implies
that in ρn we have Ci+1 ⊆ Ci for all 0 ≤ i < n. In particular Cn ⊆ Ci for all
0 ≤ i ≤ n.

The above lemma does not extend to infinite runs, as shown in the following
example.

Example 1. Consider the simple parametric timed automaton:

q

x1 − x0 < p

The following infinite run in PREG(A) does not have a counterpart in Aυ due
to the fact that p is unbounded.

(q, [(0, 0)], {p | p > 0})
τ
→ (q, [(0, 0.1)], {p | p ≥ 1})

τ
→

(q, [(0, 1)], {p | p > 1})
τ
→ (q, [(0, 1.1)], {p | p ≥ 2})

τ
→ . . .

Consider a transition (q, Z,C)
d
→ (q′, Z ′, C ′) in PREG(A). Notice that if

ω ∈ Z, υ ∈ C ∩ C ′, then (q, ω)
d′

→ (q′, ω′) in [Aυ], where d′ = d if d is an action,
and d′ is some real number if d = τ . From this observation and Lemma 3 we
obtain the following corollary.

Corollary 2. Let ρ = s0, s1, . . . be an infinite run in PREG(A), such that
si = (qi, Zi, Ci) for some Zi, Ci, and let υ ∈ Ci for all i ≥ 0. Then, there
exists an infinite run µ = t0, t1, . . . in the concrete semantics of Aυ, such that
ti = (qi, ωi), and ωi ∈ Zi.

The counterpart of Lemma 3 holds without the restriction on finiteness of
runs.

Lemma 4. Let A be a parametric timed automaton, and µ = t0, t1, . . . tn . . . an

infinite (finite) run in Aυ, where ti = (qi, ωi), and such that if ti
d
→ ti+1 is

a time transition, then [ωi+1] = τ([ωi]). Then, there exists an infinite (finite,
resp.) run ρ = s0, s1, . . . sn . . . in PREG(A) such that si = (qi, Zi, Ci), and
(ωi, υ) ∈ Zi × Ci for each i ≥ 0 (0 ≤ i ≤ n, resp.).
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Proof. Let us start with the finite run case, and let Zi = [ωi]. The base case is
straightforward – just assume C0 = {u | ω0 |=u I(q0)} and notice that υ ∈ C0.

Assume that we have already constructed a finite run ρn = s0, s1, . . . sn−1.

If tn−1
d
→ tn is a time transition, then τ(Zn−1) = Zn, ωn ∈ Zn, υ ∈ Cn−1,

and ωn |=υ I(qn). Therefore, from Corollary 1 we obtain that there exists C ′

such that (Zn, Cn−1)
I(qn)
; (Zn, C

′), υ ∈ C ′, and conclude the case by placing
Cn = C ′, and the inductive assumption.

If tn−1
d
→ tn is an action transition, then there exists a transition in A such

that for some guard g and reset r we have qn−1
d,g,r
→ qn. Notice that as (ωn−1, υ) ∈

Zn−1 × Cn−1, ωn−1 |=υ g, ωn−1[r] = ωn, and ωn |=υ I(qn), from Corollary 1 we

have that there exist sets C ′, C ′′ satisfying (Zn−1, Cn−1)
g
; (Zn−1, C

′), υ ∈ C ′,

and (Zn−1, C
′)

I(qn)
; (Zn, C

′′). We conclude the case by assuming Cn = C ′′.

Let µ = t0, t1, . . . be an infinite run in Aυ. We have already shown that
for each finite prefix µn = t0, t1, . . . tn we can construct its counterpart ρn =
sn0 , s

n
1 , . . . s

n
n in PREG(A), where sin = (qi, Zi, C

n
i ). Notice that Cn

i = Cn+1
i , so

the infinite sequence ρ = s0, s1, . . ., where si = (qi, Zi, C
i
i ) is a valid infinite run

in PREG(A) satisfying (ωi, υ) ∈ Zi × Ci
i for all i ≥ 0.

The following definition formalizes the connection between parametric re-
gion graph, and region graphs. In what follows, by a subgraph of PREG(A) =

〈S, s0,
d
→〉 we mean a tuple 〈S′, s0,

d
→֒〉, where S′ is a subset of S, and

d
→֒ is the

restriction of
d
→ to S′.

Definition 8. Let A be a parametric timed automaton, υ – a parameter valua-
tion, and F – a subgraph of PREG(A). By proj(F, υ) we define a subgraph of
F whose states are tuples (q, Z,C) such that υ ∈ C.

Observe that proj(PREG(A), υ) is in fact isomorphic with the region graph
of Aυ – by a forgetful functor stripping C from tuple (q, Z,C).

3 Bounded Model Checking for ECTL
−X

The central idea of bounded model checking is to unfold the computation tree
of a considered model up to some depth, and then perform the analysis of such
a finite structure [5]. Such an approach limits us to verification (and in our case
– parameter synthesis) of existential properties only, it should be noted however
that implicit model checking methods often fail in case of large and complex
systems. Bounded model checking seems to be especially effective in searching
for counterexamples, i.e. in proving that some undesirable property holds in a
model. This allows for detection of serious design flaws of concurrent and reactive
systems.

The non-parametric model checking tool verifies a model (system specifica-
tion) against a given property (usually in form of a temporal logic formula),
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producing the answer of simple holds/does not hold type. Its parametric coun-
terpart is supposed to work slightly differently – having a parametric model we
expect the answer in form of a set of parameter values under which a given prop-
erty is satisfied. The automated synthesis of a complete set of desired parameter
valuations is not possible in case of timed automata due to general undecid-
ability of the problem, however obtaining a part of this set still seems to be a
worthy goal. Our approach allows for incremental synthesis of parameters, i.e. if
the valuations obtained by analysis of a part of a computation tree are not suf-
ficient, then the tree can be unfolded up to a greater depth for further analysis.
Combined with an expert supervision, the synthesized parameter valuations can
give rise to hypotheses specifying the whole space of desired parameters.

We propose the following general flow of property verification/parameter
synthesis.

Fig. 1. Parametric Bounded Model Checking schema

The above diagram is very general. One of the approaches in the current
applications of bounded model checking to verification of system properties is
to encode the limited part of the computation tree together with a property in
question as a propositional formula [6, 13]. The result can be checked using an
efficient SAT-solver.

3.1 From Parametric Region Graph to concrete semantics

The PREG(A) structure is infinite. In order to represent the infinite runs in a
finite substructure we need a notion of loop.

10
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Definition 9. Let ρn = s0, s1, . . . sn be a finite run in PREG(A), and si
d
→ si+1

for all 0 ≤ i < n. If sn = (qn, Zn, Cn) and there exists si = (qi, Zi, Ci), where

0 ≤ i < n such that sn
d
→ si and qn = qi, Zn = Zi, then ρn is called a loop.

Let ρn = s0, s1, . . . sn be a loop in PREG(A), such that si = (qi, Zi, Ci), and
(qn, Zn) = (qj , Zj) for some j < n. We can create an infinite run ρ̂ = ŝ0, ŝ1, . . .

by unwinding the ρn loop as follows:

ŝi =

{

(qi, Zi, Cn) for i < n

(qj+(n−i)mod(n−j), Zj+(n−i)mod(n−j), Cn) for i ≥ n.

The validity of such a construction is based on the observation that Cn ⊆ Ci for
all 0 ≤ i ≤ n and the fact that transitions in PREG(A) are defined in terms of
gZ and guards only. Applying Corollary 2 to such an unwinding we obtain the
following corollary.

Corollary 3. Let ρ = s0, s1, . . . , sn be a loop in PREG(A), where si = (qi, Zi, Ci),
and υ ∈ Cn – a parameter valuation. There exists an infinite run µt = t0, t1, . . .

in the concrete semantics of Aυ, where ti = (q̂i, ωi), ωi ∈ Zi for i < n,
ωi ∈ Zj+(n−i)mod(n−j) for i ≥ n, and:

q̂i =

{

qi for i < n

qj+(n−i)mod(n−j) for i ≥ n.

3.2 Parametric Bounded Model Checking for ECTL
−X

The presented method can be applied to the verification of a variety of proper-
ties. As the example, in this subsection we present the application of introduced
theory to verification of properties specified in the existential part of Compu-
tation Tree Logic (CTL−X) without the next operator [9] – namely ECTL−X.
Intuitively, CTL−X uses a branching time model, where many possible paths in
the future exist. The whole CTL−X contains both the universal (”for all the pos-
sible paths”) and existential modalities (”there exists a path in the future”) while
ECTL−X contains only the latter ones – see [13] for more thorough treatment.

Definition 10 (CTL−X and ECTL−X syntax). Let PV be a set of propositions
containing the true symbol, and p ∈ PV. The set of well-formed CTL−X formulae
is given by the following grammar:

Φ ::= p | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | EGΦ | EΦUΦ.

The existential subset of CTL−X, i.e. ECTL−X is defined as a restriction of
CTL−X such that the negation can be applied to the propositions only.

Additionally we use the derived modalities: EFα
def
= E(trueUα), AFα

def
=

¬EG¬α, AGα
def
= ¬EF¬α. Each modality of CTL−X has an intuitive meaning.

The path quantifier A stands for ”on every path” and E means ”there exists a
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path”. G stands for ”in all the states”, F means ”in some state”, and U has a
meaning of ”until”.

We augment the given parametric timed automaton A = 〈Q, q0, A,X, P,→
, I〉 with a labelling function L : Q → 2PV . Let us present an intepretation of
ECTL−X formulae for a parametric region graph.

Definition 11 (ECTL−X semantics for parametric region graph). Let
A = 〈Q, q0, A,X, P,→, I〉 be a parametric timed automaton, and F – a subgraph
of its parametric region graph, such that (q0, Z0, C

′
0), where C ′

0 ⊆ C0, is a state
of F . Let s be a state of F , p ∈ PV, and α, β be ECTL−X formulae. We treat
F as a model for ECTL−X formulae, defining the |= relation as follows.

1. F, (q, Z,C) |= p iff p ∈ L(q),
2. F, s |= ¬p iff F, s 6|= p,
3. F, s |= α ∨ β iff F, s |= α or F, s |= β,
4. F, s |= EαUβ iff there exists a run ρn = s0, s1, . . ., where s0 = s, si are

states of F for i ≥ 0, F, sj |= β for some j ≥ 0, and F, si |= β for all i < j,
5. F, s |= EGα iff there exists a run ρn = s0, s1, . . ., such that F, si |= α for all

i ≥ 0.

We abbreviate F, (q0, Z0, C0) |= α as F |= α.

The counterpart of the above definition for the timed automaton Aυ =

〈S, s0,
d
→〉 obtained from the parametric timed automaton A under the parameter

valuation υ is similar – except for that it is defined over the concrete seman-
tics (s ∈ S). Therefore the only difference is in the first clause which takes the
following form:

1. Aυ, (q, ω) |= p iff p ∈ L(q)

As previously, we abbreviate Aυ, (q0, ω0) |= α as Aυ |= α.
In order to apply bounded model checking to verification of temporal proper-

ties in PREG(A) we need to specify the version of the above semantics for finite
subgraphs of PREG(A). The only difference concerns clauses 4 and 5 which
take the following form:

4. F, s |= EαUβ iff there exists a finite run ρn = s0, s1, . . . sn, where s0 = s, si
are states of F for 0 ≤ i ≤ n, F, sj |= β for some 0 ≤ j ≤ n, and F, si |= β

for all i < j,
5. F, s |= EGα iff there exists a loop ρn = s0, s1, . . . , sn, such that F, si |= α

for all 0 ≤ i ≤ n.

Recall that timed automaton Aυ is strongly non-zeno (see [16]) iff for each

sequence of states q1, . . . , qn such that qi
ai,gi,ri
−→ qi+1 for all 0 ≤ i < n, and

qn
an,gn,rn
−→ q1 (we call such a sequence a structural loop) there exists a clock x

satisfying the following conditions:

– for some 1 ≤ i ≤ n the x clock is reset in step i (i.e. x := 0 ∈ ri),
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– there exists 1 ≤ j ≤ n such that for any clock valuation ω if ω |=υ gj , then
ω(x) ≥ 1.

Intuitively, if an automaton is strongly non-zeno, then in each its loop at least
one unit of time elapses ([16]). Notice that checking if the automaton is strongly
non-zeno does not require any representation of the state space.

Theorem 1. Let A be a parametric timed automaton, F – a finite subgraph of
PREG(A) containing state (q0, Z0, C

′
0), where C ′

0 ⊆ C0, and P =
⋂

{C | (q, Z,C)
is a state of F}. If P is nonempty, and Aυ is strongly non-zeno for each υ ∈ P ,
then for each formula α ∈ ECTL−X if F |= α, then Aυ |= α for all υ ∈ P .

Proof. Let υ ∈ P be a parameter valuation. Denote by F̂ a (possibly infinite)
subgraph of PREG(A) created in two steps:

– firstly, by adding to F the new states created by unwinding of each loop
along the lines presented above – obtaining F ′,

– secondly, by replacing all the states (q, Z,C) in F ′ by (q, Z, P ) – obtaining
F̂ .

It is easy to see that F |= α iff F̂ |= α. Recall that proj(F̂ , υ) is isomorphic to
some subgraph of the region graph of Aυ. As satisfiability of ECTL−X formulae
in a subgraph of the region graph implies satisfiability in the region graph, and
satisfiability in region graph is equivalent to satisfiability in the concrete model
(see [16]) we obtain the thesis of the theorem.

3.3 Example – four phase handshake protocol

In this section we perform a first step in parametric analysis of a simplified
version of four phase handshake protocol. The protocol is extensively used in
practice and widely studied, having both the software and hardware implemen-
tations [?,?]. The considered system consists of two communicating entities –
the Producer and the Consumer. The Producer creates data packages and sends
them to the Consumer. Both the components communicate using two shared
boolean variables, that is: req (request) governed by the Producer and used to
signal the Consumer that the data is prepared and ready to be read, and ack
(acknowledge) governed by the Consumer and used to signal the Producer that
the data has been read successfully and the Consumer is ready. The initial value
of both the variables is false.

The running system goes through the following sequence of signals (req, ack):

(false, false) → (true, false) → (true, true) → (false, true) → (false, false).

As we have no tool for automated analysis at our disposal yet, we analyze
the simplified version of the system behaviour. We introduce two parameters,
omitting the signal propagation time, namely: minIO, and maxIO being, re-
spectively, the lower and the upper bound on read/write time.
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  Req
wait for

  send
wawait for

   Ack
wait for

ConsumerProducer

ack := true

req == true
ack := false

req == false

req := true

ack == false
req := false

ack == true

receive
wait for

get Dataput Data

Fig. 2. 4–phase handshake protocol

return

readData

putData

Consumer ReadyConsumer Ready

Consumer Idle
Producer Idle

Producer IdleProducer Ready

s2

s1s0

x1 := 0

x1 − x2 ≤ IdleSender()

x1 < maxIO x2 < maxIO

x2 := 0

minIO < x1

minIO ≤ x2

Fig. 3. 4–phase handshake protocol, behaviour diagram

The IdleSender function guards the time that the Producer is allowed to be
idle after putting data into some shared transmission vehicle (e.g. a bus). Let
us put IdleSender() := maxIO − minIO and unwind the Parametric Region
Graph of Figure 3 (we omit the dummy clock x0).

Notice that the above graph contains a loop, introduced by the sequence of
actions: τ, τ, putData, readData, return. This loop can be unwinded as presented
in Subsection 4.1 into an infinite path in the Parametric Region Graph, and into
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putData

putData

putData

putData

putData

return
returnreadData readData

readData

readData

readData

readData

maxIO > 1
[(1, 0)]

minIO = 0

[(1, 0.1)]

maxIO > 1 maxIO > 1 maxIO > 1
[(1, 0.1)][(1.1, 1)][(1, 0)][(1.1, 0.1)]

[(1.1, 0.1)]

minIO = 0minIO = 0minIO = 0minIO = 0minIO ≤ 1
maxIO ≥ 2

[(1.1, 0)]
maxIO > 2

[(2, 2)]

maxIO ≥ 2 maxIO > 1
[(2, 1.1)] [(1.1, 1)]

minIO = 0minIO = 0minIO = 0

[(0, 0.1)][(0, 0)]

minIO = 0
maxIO > 1

minIO = 0
maxIO > 1

minIO = 0
maxIO > 1

[(2, 1)]

minIO = 0
maxIO ≥ 2

[(1.1, 0)]
maxIO > 2

minIO ≤ 1
maxIO ≥ 2

[(2, 0.1)]

minIO ≤ 2

[(2, 0)]

maxIO ≥ 3
[(2.1, 2.1)]

[(0, 0)]

s2 s2
s2

s2 s2

s2

maxIO ≥ 1
dead
∅

[(0.1, 0)]

maxIO ≥ 1

maxIO ≥ 1

s0s1s0s1s1s1

s1s1s1

τ

τ τ

ττ
τ

ττ

τ

s0

τ

s0

dead
∅

[(0, 0)][(0.1, 0.1)]

τ

s0

s1

s0

τ

s0

maxIO ≥ 1
[(0.1, 0)]

maxIO ≥ 1

maxIO > 1
[(1, 1)]

maxIO ≥ 2

τ

s0

[(1.1, 1.1)]

s1

s1 s1

Fig. 4. The 4–phase handshake protocol, Parametric Region Graph of depth 5

loops in concrete semantics of non-parametric timed automata with minIO = 0,
and maxIO instantiated by any value greater that 1.

The graph of Figure 4, treated as a subgraph of the Parametric Region Graph
of Figure 3 allows us to observe that in the considered system the property
EGEF (ProducerIdle∧ConsumerReady) holds for minIO = 0, and maxIO >

1, with the previously mentioned loop as a witness. The intuition behind the
considered formula is that the Producer will put data into the transmission
infinitely often in the running system.

Of course, this is only the first, hand-made, step of synthesis of the param-
eter valuations under which the considered property is satisfied. The complete
analysis of non-simplified versions with more parameters and components has to
wait until we develop the planned tool.

4 Future work

The theory presented in this paper is to be implemented in Verics model checker
[12]. There is a growing evidence [14, ?] of success of model checking in verifica-
tion of safety critical industrial applications, and the idea of parameter synthesis
for a complex model or protocol seems to be promising in analysis and design of
real-world systems. Also, as the method is quite general, we expect that it may
be applied to many known temporal, modal and epistemic logics.
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Abstract. Decision Diagrams (DDs) are a well populated family of data
structures, used for efficient representation and manipulation of huge
data sets. Typically a given application requires choosing one particular
category of DDs, like Binary Decision Diagrams (BDDs) or Data Decision
Diagrams (DDDs), and sticking with it.
Each category provides a language to specify its operations. For instance,
the operation language of BDDs provides if-then-else, apply, etc. We
focus on two main kinds of operation languages: BDD-like and DDD-
like. They overlap: some operations can be expressed in both kinds of
languages, while others are only available in one kind.
We propose in this article a critical comparison of BDD-like and DDD-
like languages. From the identified problems, we also propose a unified
language for DD operations. It covers both BDD-like and DDD-like lan-
guages, and even some operations that cannot be expressed in either.

1 Introduction

Decision Diagrams (DDs) are now widely used in model checking as an extremely
compact representations of state spaces [1]. Numerous DD categories have been
developed over the past twenty years based on the same principles. Each category
is adapted to a particular application domain and comes with a manipulation
language, that is used to create and modify the DDs.

Typically a given application requires choosing one particular category of
DDs, like Binary Decision Diagrams (BDDs) or Data Decision Diagrams (DDDs),
and sticking with it. Then, the user has to learn its operations, which might be a
non-trivial task. DDs are used for both efficient memory representation and effi-
cient computation time. But knowing which operation leads to better efficiency
sometimes requires deep knowledge and understanding of the DD category.

Two solutions try to circumvent this problem. The first one is to use high-
level Domain Specific Languages (DSLs), specific to an application domain. For
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instance, CrocoPat4 completely hides the DDs and provides to the user a lan-
guage for manipulating relational expressions. We do not consider high-level
languages here. The second solution is automatic optimization of low-level oper-
ations [2]. We are interested in this article only in low-level languages provided
with the DDs. DSLs can then be translated to low-level programs.

Section 2 first does a brief presentation of DDs. It presents the terminology
we are using in the remainder of the article, and the categories of DDs we cover.

We compare two kinds of languages, those used in BDD-like structures (BDDs,
Algebraic Decision Diagrams (ADDs), Multi-valued Decision Diagrams (MDDs),
for instance) in Section 3, and those used in DDD-like structures (DDDs, Set De-
cision Diagrams (SDDs), Σ Decision Diagrams (ΣDDs)) in Section 4. They offer
very different operations to their users. Moreover, their expressiveness differ. We
think they are therefore good candidates for comparison.

We then propose in Section 5 low-level operations that generalize both BDD-
like and DDD-like operations. They only apply to DDs where the function’s re-
sults are stored in terminal vertices, so Edge-Valued Decision Diagrams (EVDDs)
are not covered in this article. Moreover, hierarchy as in SDDs and continuous
input domains are not handled for simplicity.

2 Decision Diagram Principles

Decision Diagrams are representations of functions using Directed Acyclic Graphs
(DAGs) with maximal sharing from the leaves and roots. DD categories differ on
the signatures of represented functions. We note B the Boolean domain and N
the natural integers. Function signatures are for instance Bn → B for BDDs [3],
Bn → N for ADDs [4], and N∗ → B (unbounded sequences of integers as inputs)
for DDDs [5]. Categories also differ in the graph representation of functions.
In most cases, the result is stored in terminal vertices, but Edge-Valued Bi-
nary Decision Diagrams (EVBDDs) [6] and Edge-Valued Multi-Valued Decision
Diagrams (EVMDDs) [7] store them along the paths.

Represented functions are total. They return a value in their ouput domain
for each value of their input domain. These domains can be infinite, either be-
cause they are discrete but not bounded as in DDDs or ADDs [4], or because
they are continuous as in Interval Decision Diagrams (IDDs) [8]. As the DD is
a finite graph, not all functions have a DD counterpart. This excludes functions
that effectively return an infinite number of different values, as they cannot be
represented by a finite number of terminals in the DD categories presented here.

A DD represents a function, which can also be seen as an association of each
input element with an output one. We consider categories where every input
element is a path of the graph, ending with a terminal vertex labeled by the
function’s corresponding output value. Each vertex on the path is a variable
of the function, and edges are labeled by their possible values. An order over

4 http://www.sosy-lab.org/~dbeyer/CrocoPat/
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variables specifies the allowed succession of vertices in the graph. For instance,
the Boolean function x ∨ y is represented by the BDD in Figure 1.

1

0

y

y

x

1

0

{0, 1}

1

0

The function is described by the following
set of paths:





x
0−→ y

0−→ 0, x
0−→ y

1−→ 1

x
1−→ y

0−→ 1, x
1−→ y

1−→ 1





Fig. 1. BDD for x ∨ y with variable order x < y, and its corresponding paths
We compare operations for two categories of DDs that have deep differences.

First, operations on BDDs and other categories with a fixed number of vari-
ables are presented in Sec. 3. Then, Sec. 4 presents operations on DDDs where
paths can use different variables, and even have different lengths. Sec.5 makes a
synthesis of these two kinds, by proposing a new language for operations.

3 BDD-like Operations

BDD-like operations are used on DDs representing functions with a finite and
homogeneous input domain. Their signatures are thus of the form Xn → O,
where X is a finite domain. This includes categories such as BDDs [3], ADDs [4],
MDDs [9,10], etc. Their paths are therefore of the form v1

x1−→ . . . vn
xn−−→ t.

Several operations are defined for BDDs in [3]. We give their extension to
finite edges [10] and terminal [4] domains. In practice, they are used in BDD
libraries, such as CUDD5.

The following operations form the BDD-like manipulation language. It is
composed of functions, which take DDs (noted di), variables (vi), input val-
ues (xi), output values (ti) or operators (�) as parameters. We give – informally
– the result of each operation as its set of returned paths.

constant(t) creates a DD where all paths lead to the terminal value t. It repre-
sents the constant function that returns t whatever its inputs are.
constant(t)=

{
v1

x1−→ . . . vn
xn−−→ t

}
6

make(v, x) creates a DD where only the variable v is relevant to the function’s
result. The paths where v has value x lead to terminal value 1, and others to
terminal 0, even for DD categories with unbounded terminals such as ADDs. We
explain this restriction in Problem 1.

make(v, x)=

{
v1

x1−→ . . . v
X\{x}−−−−→ . . . vn

xn−−→ 0

}
∪
{
v1

x1−→ . . . v
x−→ . . . vn

xn−−→ 1
}

apply(�, dl, dr) computes dl � dr. It takes two DDs dl and dr representing
functions of signature Xn → O, and a binary operator � : O×O→ O on their
output domain. It returns the DD of the function computed by:

apply(�, dl, dr)=

{
v1

x1−→ . . . vn
xn−−→ t1 � t2

∣∣∣∣∣
v1

x1−→ . . . vn
xn−−→ t1 ∈ dl

v1
x1−→ . . . vn

xn−−→ t2 ∈ dr
∧
}

5 http://vlsi.colorado.edu/~fabio/CUDD/
6 We omit universal quantification on xi for readability, as in other operations.
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restrict(v, x, d) restricts d to the value x of the variable v, and then ignores
this variable’s values. The returned function’s result is similar to the original
one, when v has value x, so this operation computes f |v=x. The resulting DD
still has all variables, including v, which has no effect on its result.
restrict(v, x, d)=

{
v1

x1−→ . . . v
X−→ . . . vn

xn−−→ t
∣∣∣v1 x1−→ . . . v

x−→ . . . vn
xn−−→ t ∈ d

}

compose(v, dl, dr) substitutes the variable v in dl with the DD dr. Both DDs dl
and dr must represent functions of type Xn → X. This operation can be expressed
using apply and restrict, and does not appear in articles on BDDs other than [3].

satisfy-all(t, d) returns the set of paths with terminal value t. The result of
this operation is not a DD but an iterable enumeration of paths.
satisfy-all(t, d)=

{
v1

x1−→ . . . vn
xn−−→ t ∈ d

}

satisfy-one(t, d) chooses one element from those returned by satisfy-all.
Choice may be deterministic or not, depending on the implementation.

satisfy-count(t, d) Instead of returning paths, this operation counts them.
Again, the result is not a DD, it is an integer.
satisfy-count(t, d)=

∣∣∣
{
v1

x1−→ . . . vn
xn−−→ t ∈ d

}∣∣∣

The language for BDD-like operations is widely used, in many libraries and
applications. The example given below7 builds a BDD for x ∧ y ∧ z. It then
restricts the function for variable x = 0 and counts the paths leading to ter-
minal 1. Results of operations are given as comments, after //. Notice that all
operations, except satisfy-count, return a DD containing all variables x, y, z.
Their declaration is required before executing the operation. As the operation
is composed of nested function calls, it should be read from bottom to top. The
call to constant is common in BDD programming, but not useful here.
satisfy -count // =⇒ 2
( 1

, restrict // =⇒ x
0,1−−→ y

0−→ z
0−→ 1 ∪ · · · → 0

( x, 0

, apply // =⇒ x
0−→ y

0−→ z
0−→ 1 ∪ · · · → 0

( ∧
, make(z, 0) // =⇒ x

0,1−−→ y
0,1−−→ z

0−→ 1 ∪ x
0,1−−→ y

0,1−−→ z
1−→ 0

, apply // =⇒ x
0−→ y

0−→ z
0,1−−→ 1 ∪ · · · → 0

( ∧
, make(y, 0) // =⇒ x

0,1−−→ y
0−→ z

0,1−−→ 1 ∪ x
0,1−−→ y

1−→ z
0,1−−→ 0

, apply // =⇒ x
0−→ y

0,1−−→ z
0,1−−→ 1 ∪ x

1−→ y
0,1−−→ z

0,1−−→ 0
( ∧
, make(x, 0) // =⇒ x

0−→ y
0,1−−→ z

0,1−−→ 1 ∪ x
1−→ y

0,1−−→ z
0,1−−→ 0

, constant(1) // =⇒ x
0,1−−→ y

0,1−−→ z
0,1−−→ 1

) ) ) ) )

7 Inspired by the documentation of CUDD.
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This language for BDD-like operations has several drawbacks. We describe
them in the remainder of this section. Note that these drawbacks do not prevent
wide use of this language.

Problem 1 (make restricts terminal values). Creating a DD with this oper-
ation requires a default value for other paths. For instance, make(x, 0) creates
a DD returning 1 whenever x = 0, but implicitly also 0 for the other cases.

Boolean functions have a trivial implicit result, as only two terminal values
are available. But it is not the case for ADDs, which represent functions Bn → N.
Their implicit result is chosen as the identity element 0 of addition. With addi-
tion, all terminal values can be obtained, as in apply(+, make(x, 0), make(x, 0))

which returns x 0−→ y
0,1−−→ z

0,1−−→ 2 ∪ x 1−→ y
0,1−−→ z

0,1−−→ 0.
So, the set of terminal values should be a monoid for BDD-like operations.

It requires defining a + operation to generate all possible terminal values. Note
that constant can then be also restricted to the terminals’ generator only.

Problem 2 (The language is not minimalist). The compose operation is
redundant. It can be expressed using two other operations, apply and restrict.
Usually, this is not a problem, as redundant operations can be safely removed
from the language to get a minimal one. But the operation is specifically de-
fined because its algorithm is more efficient. So, this BDD-like language is not
minimalist, but removing the redundant operation has an efficiency cost.

The same task can be defined in several ways, that are not equivalent regard-
ing efficiency. Writing a complex operation therefore requires knowledge from the
user on how its evaluation internally works.

Problem 3 (The language requires embedding). A usual operation in
model checking is to compute the fixed point of next states computation. But the
BDD-like language has no operations for iteration or recursion. So, it requires to
be embedded into a general-purpose language, that can compute the fixed point.

The BDD-like languages are thus truly DSLs. They describe an operation in
a concise and readable manner, but are not as expressive as a general-purpose
programming language. They can express only very simple computations.

Problem 4 (Operations cannot be optimized). In [11] it has been shown
that rewriting the operations can lead to huge performance improvements. This
has been partially automated in DDD-like languages [2]. Because of embedding
(see Problem 3), a library with BDD-like operations cannot see the whole opera-
tion to perform. It only processes it in small operations. Only few optimizations
are available for these, whereas most improvements require access to the full
syntax tree of the operation.

This problem is very similar to Problem 2, which occurs because the compose
operation cannot be expressed efficiently enough using other operations. The lan-
guage is not low-level enough to enable optimizations that could bring the same
efficiency. Its operations take whole DDs as parameters and return a whole DD.
So, the language lacks more intrusive operations, that apply to parts of the DDs.
DDD-like operations presented in Section 4 define them, and have shown great
optimizations thanks to lower-level operations.
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4 DDD-like Operations

The main difference between BDD-like and DDD-like structures is the input
domain of represented functions. In [5], paths are defined as “sequences of as-
signments”, because in the same DD, paths can be of various lengths, and the
same variable can appear several times along a path. We cannot describe the do-
main of functions represented by DDD-like structures with a cartesian product
notation. We propose in [12] a specification of their domain.

These categories include DDDs [5] and SDDs [13] which represent sets and
have Boolean terminals, and MultiSet Decision Diagrams (MSDDs) [14] which
represent multisets with natural integer terminals. We propose in [12] a unifi-
cation of BDD-like and DDD-like structures, where they represent functions on
complex data types rather than functions with multiple arities. We do not give
importance to these subtleties in this article, so readers only need to be aware
of paths with different lengths and variable repetition.

DDD-like operations are partitioned in two languages: a language of binary
set operations (Sec. 4.1) and a language of unary set transformation (Sec. 4.2).
They are not totally disjoint, as bridges exist between them.

4.1 Binary Set Operations

The language of set expressions is composed of the usual binary set opera-
tions ∪,∩, \ – or their multiset counterparts – applied to two DDs. These three
operations are distinct, whereas they are all covered by apply in BDD-like op-
erations. A general definition is difficult, because domains of variables can be
unbounded. To preserve the finite graph representation of the function, an infi-
nite number of paths must lead to terminal 0, whereas a finite number lead to
other terminals. So, the operation applied to terminals should always return 0
when both its operands are 0 to ensure termination. A general apply could exist,
given operator on terminals respects this constraint.

These operations are a small subset of BDD-like operations. For instance,
they are not sufficient to compute a state space. So, they are completed with a
language for set transformations.

4.2 Unary Set Transformations

The unary set transformations, initially proposed in [5], have nothing in common
with BDD-like operations. They are close to the map functions found in most
functional languages: for a DD category representing sets, an operation is applied
to each path. But instead of returning a transformed path, application on each
path returns a set of paths, each set represented by a DD.

These transformations are homomorphisms. They must therefore enforce a
constraint: all must be linear for a union ∪ operator defined in the DD category:
h(d1 ∪ d2) = h(d1) ∪ h(d2). The linearity property means that every input DD
can be split in several DDs, then the operation applied to each, and the result
obtained by union of their results. For simplicity, operations given below do not
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mention particular cases required by linearity. These cases are common to all
operations, and are discussed in Problems 8 and 9. Note that these operations
are applied on quasi-reduced DDs, i.e. without level skipping.

Unary transformations are parametric: they take parameters that define their
behavior in addition to the DD to transform. To describe the language of such
operations, we show each one with both kinds of parameters. The first one,
between brackets, contains all parameters except the DD to transform. The
second one, between parentheses, is this DD. We thus clearly distinguish between
parameters that define the operation, and the parameter to which it is applied.

terminal[t] is the only operation that allows to create a DD outside unary set
transformations. It is therefore crucial, as the basis for each operation. This
nullary operation creates a DD terminal valued by t. It is close to the constant
BDD-like operation. But they differ because the DD returned by terminal repre-
sents the nullary function that returns t, whereas the DD returned by constant
represents a n-ary function.
terminal[t]()= {7→ t}
constant[dc] returns the constant DD dc, whatever its input DD is. This opera-
tion is parameterized by the DD to return, and is applied to a DD that it ignores
(almost, see Problem 8). The name of this operation can be misleading. The re-
turned DD represents a function that can be constant or not: all its paths do
not necessarily lead to the same terminal. But the constant operation returns
this DD independently of its input. It thus differs from constant of BDD-like
operations, which returns a constant function.
constant[dc](d) = dc

identity[] returns its input with no modification. This operation can be ex-
pressed using other operations, but is introduced in DDDs for efficiency.
identity[](d) = d;

make[v x−→] adds a prefix v x−→ to a DD. It differs from the BDD-like make opera-
tions, because it adds a variable to the represented function given as parameter,
whereas the BDD-like creates an n-ary function from scratch.

make[v x−→](d)=





v
x−→ v1

x1−→ . . . vn
xn−−→ t

v
{y 6=x}−−−−→ v1

x1−→ . . . vn
xn−−→ 0

∣∣∣∣∣∣
v1

x1−→ . . . vn
xn−−→ t ∈ d





match[v x−→, h] is the inverse operation of make. It selects paths where v x−→ is a
prefix of the DD, and then applies another operation h to the subDD that prefix
leads to. Other paths return the identity DD.
match[v x−→, h](d)= h

({
v1

x1−→ . . . vn
xn−−→ t

∣∣∣ v x−→ v1
x1−→ . . . vn

xn−−→ t ∈ d
})

This operation is overloaded, as it also exists to match a terminal.
match[t, h](d)= h ({t | t ∈ d})
composition[h1, h2] computes the composition h1◦h2, and applies it to its input
DD. It has no relation with compose of BDD-like operations, which substitutes
a variable with the result of a DD.
composition[h1, h2](d) = (h1 ◦ h2)(d) = h1(h2(d))
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union[h1, h2] (respectively intersection) computes the union (resp. intersec-
tion) of results of h1 and h2 applied to the input DD. This operation wraps
some of the set operations presented in Sec. 4.1. Set difference \ is not wrapped
because it is not a linear operation. Note that these two operations can be easily
extended to n-ary versions as they are associative and commutative.
union[h1, h2](d) = h1(d) ∪ h2(d) intersection[h1, h2](d) = h1(d) ∩ h2(d)

fixpoint[h] has been introduced for model checking applications. Problem 3
shows that BDD-like languages lack operations for iteration. fixpoint provides
such an operation. It computes the fixed point of h, applied to the input DD.
fixpoint[h](d) = h∞(d) = h(. . . h(d) . . . )

The DDD-like unary set transformations are much more expressive than the
BDD-like operations. Figure 2 shows a Petri net and an operation that computes
its state space, which will be improved later. The operation uses the fixpoint
operator where BDD-like operations require to be embedded in a general purpose
language. To encode an least fixed point, identity is used to keep previously
computed states.

We show how the operation works by applying the operation for transition t
to the DDD path q 1−→ p

2−→ r
0−→ 1 representing the initial state of the Petri net.

match[q 1−→, . . .] (q 1−→ p
2−→ r

0−→ 1)
=⇒ make[q 0−→, . . .] (p 2−→ r

0−→ 1)
=⇒ q

0−→ match[p 2−→, . . .] (p 2−→ r
0−→ 1)

=⇒ q
0−→ make[p 0−→, . . .] (r 0−→ 1)

=⇒ q
0−→ p

0−→ match[r 0−→, . . .] (r 0−→ 1)
=⇒ q

0−→ p
0−→ make[r 1−→, . . .] (1)

=⇒ q
0−→ p

0−→ r
1−→ match[1, . . .] (1)

=⇒ q
0−→ p

0−→ r
1−→ identity[] (1)

=⇒ q
0−→ p

0−→ r
1−→ 1

Problem 5 (Operations usually must be lazily defined). The operation
given in Figure 2 has a bug, because the match operation for transition u requires
exactly one token in p. So, it cannot be applied from the initial state. We have
to enumerate all possible cases, by adding :

, match[q 1−→, make[q 0−→, match[p 1−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // u
We cannot express “add n tokens” or “remove n tokens”, only “set to n tokens”.

In practice, an operation usually has an a priori unbounded number of match
calls. They will be discovered during computation. Description of the operation
would be infinite, so it is in practice rather defined lazily. Then match uses a
function returning the operation associated with each encountered value.

Problem 6 (Lazy operations cannot be optimized). The operations that
compute the state space of Petri net in Figure 2 can be optimized. The operation
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1

1

v

11 1

fixpoint[
union[

identity

, match[q 1−→, make[q 0−→, match[p 2−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // t

, match[q 1−→, make[q 0−→, match[p 1−→, make[p 0−→,

match[r 0−→, make[r 1−→, match[1, identity []. . .] // u

, match[q 0−→, make[q 1−→, match[p 0−→, make[p 1−→,

match[r 1−→, make[r 0−→, match[1, identity []. . .] // v
] ]

Fig. 2. A Petri net and the operation encoding its firing rule. The variable order used by
operations is q < p < r. Transitions’ names are given as comments after their encoding.
We use ]. . .] instead of numerous closing brackets, so indentation is meaningful.

is rewritten to an equivalent but more efficient one, given below, by merging
identical match calls. It is more efficient because some parts of the operation
are merged, and thus require fewer application of the operations. The currently
most advanced optimization technique, called “automatic saturation” has been
introduced in [2]. It follows the same principle of rewriting an operation into a
more efficient one.
fixpoint[

union[
identity

, match[q 1−→, make[q 0−→, union[

match[p 1−→, make[p 0−→, match[r 0−→, make[r 1−→,
match[1, identity []. . .]

, match[p 2−→, union[

make[p 0−→, match[r 0−→, make[r 1−→, match[1, identity []. . .]

make[p 1−→, match[r 0−→, make[r 1−→, match[1, identity []. . .]
]. . .]

, match[q 0−→, make[q 1−→, match[p 0−→, make[p 1−→,

match[r 1−→, make[r 0−→, identity []. . .]
] ]
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Non-optimized and optimized ones are expressed in the same language. So,
the language is suitable for optimization by program transformation. It solves
the Problem 4 of BDD-like languages.

Lazy operations seen in Problem 5 are useful to deal with a priori unbounded
structures. But they have a drawback: they cannot be optimized, because their
suboperations are not known until execution. To circumvent the problem, new
operations have been added in DDD-like languages. They are redundant with
existing ones, but provide the missing information. However, as more optimiza-
tions are added, more specific operations like these must also be added. This
approach creates several redundant ways to define the same operations. Users
have to know which one is better to enable most optimizations.

Problem 7 (Weak typing). Each operation is designed to work on DDs of
a given type, i.e. a variable order and a category that defines the variables’
domains and output domain. For instance, the following operation can only be
applied to DDDs of variable order x < y. It detects the path x 1−→ y

1−→ 1.
match[x 1−→, match[y 1−→, match[1, constant[terminal[1]]]]]

Operations’ operands which are DDs are not explicitly typed. Only the user
knows their type. So, an operation can discover at runtime that it is not applied
to an intended operand. The operation then fails, but how this failure is reported
is unclear in the DDD-like languages: return of a special terminal >, assertion to
stop the program, exception that can be caught. . . or even return of terminal 0
which is in fact silent.

Instead of giving a DD of the wrong type to an operation, typing errors can
also appear because of DDs returned by inner operations. This leads to errors
(known in DDDs as the “top” > terminal) that are hard to debug8. Such a typing
error occurs when operands of union or intersection do not return DDs of the
same type. For instance, the following operation is erroneous because the first
part of union returns a DDD with variable order x < y whereas the second has
variable order y < x.
union[ make[x 1−→, make[y 0−→, constant[terminal[1]]]

, make[y 1−→, make[x 0−→, constant[terminal[1]]]]

It seems easy here to check the typing problems. But lazy operations, required
for Problem 5, prevent checking in most practical cases.

Problem 8 (An identity DD is only transformed to an identity DD).
The linearity constraint of homomorphisms requires that every DD can be split
in several other DDs, operations applied to them, and their results merged.

Each DD can be decomposed to itself and the identity DD (noted d0), where
all paths lead to terminal 0. From the definition of linearity, a DD can be de-
composed in itself and the identity, as in h(d) = h(d ∪ d0) = h(d) ∪ h(d0). So,
every operation must return the identity DD when applied to the identity d0.

8 Users that have used at least once a DDD library know the pain to look at thousands
of lines of DD paths to search where something went wrong.
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For instance, all operations applied to the DDD representing the empty set
return the empty set. Even constant[dc](d0) cannot return its DD parameter dc
when applied to d0. In this particular case, it must return the identity d0. This
constraint does not exist in BDD-like operations. They can return any DD when
applied to the identity one.

This requirement prevents the user of DDD-like operations to start its ap-
plication with the identity DD, and then filling it through operations. In model
checking applications using DDDs, we have to start therefore with an initially
non-empty set of states, which is usually the initial state.

Problem 9 (Operations on terminals must also be linear). This is an-
other consequence of homomorphisms, as in Problem 8. Consider a DD repre-
senting multisets. Each path represents an element of the multiset, its terminal
represents its cardinality. The multiset union sums the terminals of identical
paths. Because each DD can be decomposed, the result computed for a path
leading to n must be the same as the sum of results for the same path ending
with n1 and n2, where n = n1 + n2.

For instance, Fig. 3 shows an operation that tries to count paths leading to
terminal 1. Its result is computed by adding all subresults, given as destinations
of red bold arrows. The final result is shown for a DD (left part) and for one ar-
bitrary decomposition of the DD (right part). They differ, because the operation
on terminals is not linear.
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0

+ . . .
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Fig. 3. Counting paths leading to terminal 1 is not a linear operation

Users specify operations only for paths leading to 1 in DDDs. This category
has Boolean terminals, and homomorphisms always return the identity DD d0
when paths end with 0. For DDs representing multisets (MSDDs in [14]), letting
the user specify the operation for any non-zero terminal value is dangerous, as
it might break linearity. To ensure this property, user should still define the
operation only for terminal 1.

Problem 10 (Goal of restriction to linear operations is unclear). Even
if we allow operations to return not only DDs, but also other data types such
as integers, the linearity constraint is too restrictive for many operations. For
instance, even a simple operation like counting the number of paths leading to
a particular terminal value is not a linear operation (see Fig. 3 of Problem 9).
DDD-like languages have an operation to count paths, but it cannot be used
within linear operations. So, this special operation is doomed to appear only
at the end of a computation. The reason why DDDs define their operations
as homomorphisms is not explicitly given in [5]. They are well adapted for set
transformation, but they restrict drastically the expressiveness of their language.
We believe that the main justification for such constraints is efficiency.
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Linearity, h(d1 ∪ d2) = h(d1) ∪ h(d2), ensures not only that a DD can be
decomposed to its paths to compute the operation’s result, but also that the
subresults can always be combined before the next computation. Consider the
operation (f ◦ g)(d1 ∪ d2). It can be rewritten as the union of two compositions
(f ◦ g)(d1)∪ (f ◦ g)(d2), or as f(g(d1)∪ f(g(d2)). In both cases, the result if the
same, whether f is applied to two subresults g(d1) and g(d2), or to their union
g(d1) ∪ g(d2). The second case is likely to do less computations9 than the first
one, thus saving time and memory.

This optimization is possible because of the linearity constraint. We propose
in Sec. 5 to move this constraint where it should be: as an optimization enabled
only when operations can be proven linear.

Problem 11 (Unary operations are not enough). Some operations, such
as set union ∪, intersection ∩ or difference \ for DDDs are not unary. As DDD-
like set transformations are unary only, there is no way for a user to describe
them inside the homomorphisms framework.

Restriction to unary functions is useful to define operations as combina-
tors. For instance, composition[match[x 1−→, identity], make[y 0−→, identity]]
is a unary operation, because each suboperation is also unary and returns ex-
actly one result. The input DD argument of composed functions is implicit.

Composition of n-ary operations does not allow such shortcuts, because sev-
eral links can exist between the inputs and outputs of composed operations. But
n-ary operations are the general case, that is missing in DDD-like operations.

5 Generalized Operations

We propose in this section a language for generalized operations, that solves the
problems identified in Sections 3 and 4. This language covers both BDD-like and
DDD-like languages. Throughout the section, a simple program given in Fig. 4 is
used as example. It counts the similar paths in two DDs. Note that the proposed
operations are applied to quasi-reduced DDs, as in DDD-like unary operations.
Missing parts must be rebuilt on-the-fly when the operations are applied.

Program A program is a set of named operations, like check , checky, checkx<y

and count in Fig. 4. Naming enables recursion. There is therefore no need for
a particular fixpoint operation, nor embedding loops in a general-purpose lan-
guage (Problem 3). One of these named operations is called by the user.

Typed inputs and outputs Each named operation has typed inputs and outputs
(Problem 7). For instance, count(l: in t, r: in t, o: out int) has two inputs l
and r of the same type t, and one output o of type int . To handle n-ary operations
(Problem 11), several – or no – inputs and outputs are possible. All of them are
DDs, for homogeneity, even values (int) are considered as terminals. Operand
types are defined by a DD category (BDD, DDD, etc.) and a variable order. We
9 But in DDs, who knows?
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check (l: in v, r: in v, o: out int) =
match | l: |t|, r: |t| ⇒ o←make |1|

| l: |t|, r: |u| ⇒ o←make |0|
checky(l: in u, r: in u, o: out int) =

match | l : y
v−→ dl, r : y

v−→ dr ⇒ check(l← dl, r ← dr, o→ o)

| l : y
u−→ dl, r : y

v−→ dr ⇒ o←make |0|
checkx<y(l: in t, r: in t, o: out int) =

match | l : x
v−→ dl, r : x

v−→ dr ⇒ checky(l← dl, r ← dr, o→ o)

| l : x
u−→ dl, r : x

v−→ dr ⇒ o←make |0|
count(l: in t, r: in t, o: out int) =

merge o from checkx<y(l← l, r ← r, o) with +

Fig. 4. Program that counts the similar paths in two DDs with variables x < y

propose in [12] a way to define types with an automaton describing the domains
of variables and their order.

We use four types of DDs in our example. Three types correspond to DDs
with Boolean terminals and unbounded variables: no variable (type v), variable y
(type u) and variables x < y (type t). The fourth type corresponds to DDs with
natural terminals and no variables (type int), used to count the results.

Predefined operation templates Operations can be of three kinds, that we call
“operation templates”. They are inspired from DDD-like operations, but are min-
imalist as each one has a very specific role. They thus solve Problem 2.

match | prefixn ⇒ call | . . . takes as parameter a finite mapping from prefix pat-
terns to operation calls. As we deal with n-ary operations, a pattern is composed
of n prefixes, one for each input operand. For each set of DD paths, one taken
from each operand, this operation finds the first matching pattern, and applies
the associated operation. A prefix can be:

– a terminal constant or placeholder10 for instance |1| or |t|,
– a DD placeholder (which also covers a terminal), for instance d,
– a prefix with constants or placeholders as variable or/and edge values, and

another prefix for the successor, for instance 1
x−→ d, x 0−→ d, or x

y−→|t|.

As in functional languages with pattern-matching, all the patterns of a match
must cover all possible prefixes of the input DDs. They also must bind all the
outputs of the operation. The following binary operation, which uses the value
of x as discriminant, is only valid when x has a Boolean domain.
match | d1 : x

1−→ d, d2 : x
y−→ d′ ⇒ . . . | d1 : x

0−→ d, d2 : x
y−→ d′ ⇒ . . .

di are the names of input parameters that are matched against a prefix, and
“. . . ” is here the next operation to perform (not given). Scope of placeholders
is in their pattern, so the two ys are distinct in the previous example, but the
two xs in a pattern x x−→ have the same value. The following unary operation is
valid even for unbounded domains, as placeholder y can take any value.
10 We name terminal placeholder a language variable that can store a terminal value.

The term “variable” is already used in DDs, so we do not use it to avoid ambiguities.
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match | d1 : x
x−→ d⇒ . . . | d1 : x

y−→ d⇒ . . .

Note that patterns overlap in the previous examples. We chose the usual
policy of functional languages: only the first matching pattern is applied. This
is useful to define default cases.

Operation calls bind inputs and outputs of caller and callee. We can wrap a
placeholder with an expression, to compute a value from its content. However,
we do not describe expressions here, by lack of space. So, placeholders are simply
bound to inputs and outputs of operations.

make | pattern | . . . creates a DD from patterns using constants and placehold-
ers. Patterns are expressed in the same way as in match. They must also cover
all possible prefixes of created DD. In Fig.4, we only create terminals, but this
operation can also create DD nodes. For instance, the code below creates the
DD x

0−→ 0 ∪ x 1−→ 1, when d is a placeholder holding the terminal 0, x is a
variable and y is a free placeholder of Boolean domain. Placeholders used in the
patterns can be bound to a value or be free. The latter case is useful to fill a
whole unbounded domain.
make | x

0−→ d | x
y−→|1|

As patterns may overlap, we chose a policy consistent with match: when a
prefix can be created using several patterns, the first one prevails. Note that this
operation template does not require a default value, and thus solves Problem 1.

merge placeholder from call with operator is a new operation. It is required be-
cause there is no more a global ∪ operator as in DDD-like languages. Each match
operation does not return a single DD, but a multiset of DDs, because it gen-
erates one or several DDs for each matching prefix. merge maps operations to
how their results should be merged. The operator used to merge results (+ in
Fig 4) is specified only for terminals, following the BDD-like apply mechanism.
It is applied on terminals of paths that differ only by their terminal values.

This operator must be associative and commutative, because there is no order
on generated DDs. Moreover, when dealing with unbounded domains, it must
have an identity element. Homomorphisms are a special case, where the merge
operator respects linearity.

6 Conclusion

This article does a critical comparison of BDD-like and DDD-like manipulation
languages. It also proposes a new language for manipulation of DDs, that takes
inspiration from both BDD-like languages and DDD-like languages, and cov-
ers them. This language also enables more operations. We give the example of
counting paths that are similar in two DDs. This operation cannot be defined
in the BDD-like and DDD-like languages, but is available in our proposal. The
proposed language solves the problems we identify, such as minimalism of the
language or expressiveness. It provides a small number of operations that have
been carefully designed to allow future optimizations and are general enough to
handle n-ary typed operations.
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We plan to extend the proposed language to hierarchical DDs, as they are
useful DD categories. Moreover, we have to redefine the optimizations that al-
ready exist for SDDs. Adding some kind of genericity to the language is also
required, because the proposed specification of types can prevent code reuse.
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3 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
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Abstract. Automating the composition of web services is an object of a growing
interest nowadays. In our former paper [3] we proposed a method for converting
the problem of the composition to the problem of building a graph of worlds
consisting of formally defined objects, and presented the first phase of this com-
position resulting in building a graph of types of services (an abstract graph).
In this work we propose a method of replacing abstract flows of this graph by
sequences of concrete services able to satisfy the user’s request. The method is
based on SAT-based reachability checking for (timed) automata with discrete data
and parametric assignments.

1 Introduction

In recent years there has been a growing interest in automating the composition of web
services. The number of more and more complex Internet services is still growing nowa-
days; several standards describe how services can be invoked (WSDL [17]), how they
exchange information (SOAP [13]), how they synchronise the executions in complex
flows (BPEL [16]), and finally how they can be discovered (UDDI [15]). However, still
there is a lack of automatic methods for arranging and executing their flows. One of
the problems to deal with is the size of the environment - most existing composition
methods work with concrete instances of web services, so even a simple query requires
taking all the instances of all the types of services into account. Another problem fol-
lows from incompatibilities in inputs/outputs of services, and difficulties in comparing
their capabilities and qualities - two services can offer the same functionality, but this
fact cannot be detected automatically without unification of their interfaces made by the
providers.

In our work [3] we proposed an approach to automatic composition of services
which can potentially solve the above problems. The problem of automatic composition
of web services is converted to the problem of building a graph of worlds consisting of
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formally defined objects, which are transformed by services. We introduce a uniform
semantic description of service types. In order to adapt a possibly wide class of existing
services, specific interfaces of concrete services are to be translated to the common one
by adapters (called proxies), built in the process of service registration. The process
is to be based on descriptions of interfaces of services, specified both in WSDL and
in the languages containing a semantic information (like OWL-S or Entish [1]). The
client’s goal is expressed in a fully declarative intention language. The user describes
two worlds: the initial and the final one, using the notions coming from an ontology,
and not knowing any relations between them or between the services. The task of the
composition system consists in finding a way of transforming the initial world into the
final one. The composition is three-phase. In the first phase, called abstract planning or
planning in types, we create an abstract plan, which shows sequences of service types
whose executions possibly allow to accomplish the goal. The second phase makes these
scenarios “concrete”, which means replacing the types of services by their concrete
instances. This can also involve choosing a plan which is optimal from the user’s point
of view. Finally, the last phase consists in supervising the execution of the optimal run,
with a possibility of correcting it in the case of a service failure.

Our previous paper [3] described a method of generating an abstract graph of ser-
vices. In the current work we deal with the second phase of composition: concretising
abstract flows, i.e., with searching for sequences of concrete services which can lead
to satisfying user’s request. We apply model checking techniques to this aim. The sub-
stage aimed at choosing an optimal scenario is not considered in this version of the
approach.

The rest of the paper is organised as follows. In Sec. 2 we present the related work.
Sec. 3 introduces worlds and services transforming them. Sec. 4 describes briefly the
abstract planning phase and its result. Next, in Sec. 5 we present our approach to SAT-
based concretising abstract scenarios. Sec. 6 show experimental results and concluding
remarks.

2 Related Work

There are many papers dealing with the topic of web services composition [4, 7–10,
14]. Some of these works consider static approaches, where flows are given as a part
of the input, while the others deal with dynamically created flows. One of the most
active research areas is a group of methods referred to as AI Planning [4]. Several
approaches use Planning Domain Definition Language (PDDL [5]). Another group of
methods is built around the so-called rule-based planning, where composite services are
generated from high-level declarative descriptions, and compositionality rules describe
the conditions under which two services are composable. The information obtained
is then processed by some designated tools. The project SWORD [6] uses an entity-
relation formalism to specify web services. The services are specified using pre- and
postconditions; a service is represented as a Horn rule denoting that the postcondition
is achieved when the preconditions are true. A rule-based expert system generates a
plan. Another methodology is the logic-based program synthesis [8]. Definitions of web
services and user requirements, specified in DAML-S [2], are translated to formulas of
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Linear Logic (LL): the descriptions of web services are encoded as LL axioms, while
a requirement is specified as a sequent to be proven by the axioms. Then, a theorem
prover determines if such a proof exists.

Besides the automatic approaches mentioned above, there exist also half-automatic
methods assuming human assistance at certain stages [12]. Some approaches are based
on specifying a general plan of composition manually; the plan is then refined and
updated in an automatic way.

Inspired by the Entish project [1], our approach enables to model automated com-
position based on matching input and output types of services. We adapt also the idea of
three-phase composition, but introduce original definitions of services and composition
techniques.

3 Worlds and Services

In our approach we introduce a unified semantics for functionalities offered by services,
which is done by defining a dictionary of notions/types describing their inputs and out-
puts. A service is then understood as a function which transforms a set of data into
another set of data (or as a transition between them). The sets of data are called worlds.
The worlds can be described by the use of an ontology, i.e., a formal representation of
a knowledge about them.

Definition 1 (World and objects). The universum is the set of all the objects. The
objects have the following features:

– each object is either a concrete object or an abstract object,
– each object contains named attributes whose values are either other objects or:
• values of simple types (numbers, strings, boolean values; called simple at-

tributes) or NULL (empty value) for concrete objects,
• values from the set {NULL, SET, ANY} for abstract objects.

If an attribute A of the object O is an object itself, then O is extended by all the
attributes of A (of the names obtained by adding A’s name as a prefix). Moreover,
when an object having an object attribute is created, its subobject is created as
well, with all the attributes set to NULL.

– each simple attribute has a boolean-valued flag const.

A world is a set of objects chosen from the universum. Each object in a world is identi-
fied by a unique name.

By default each const flag is set to false. If the flag of an attribute is true, then
performing on the object any operation (service) which sets this attribute (including
services initialising it) is not allowed (the value of the attribute is considered to be
final). The attributes are referred to by ObjectName.AttributeName.

Definition 2 (Object state, world state). A state of an object O is a function Vo as-
signing values to all the attributes of O (i.e., is the set of pairs (AttributeName,
AttributeValue), where AttributeName ranges over all the attributes of O). A
state of a world is defined as the state of all the objects of this world.
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In order to reason about worlds and their states we define the following two-argument
functions (the second default argument of these functions is the world we are reasoning
about):

– Exists - a function whose first argument is an object, and which says whether the
object exists in the world,

– isSet - a function whose first argument is an attribute of an object, and which says
whether the attribute is set (has a nonempty value),

– isConst - a function whose first argument can be either an attribute or an object.
When called for an attribute, the function returns the value of its const flag; when
called for an object it returns the conjunction of the const flags of all the attributes
of this object.

The ontologies collect the knowledge not only about the structure of worlds, but also
about the ways they can be transformed, i.e., about services. The services are organised
in a hierarchy of classes, and described both on the level of classes (by specifying what
all the services of a given class do - such a pattern of behaviour is referred to as an
abstract service or a metaservice), and on the level of objects (concrete services). The
description of a service includes, besides specifying input and output data types, also
declaration of introducing certain changes to a world, i.e., of creating, removing and
modifying objects. The definition of a service is as follows:

Definition 3 (Service). A service is an object of a non-abstract subclass1 of the ab-
stract class Service. A service contains (initialised) attributes, inherited from the base
class Service. The attributes can be grouped into

– processing lists (the attributes produces, consumes, requires),
– modification lists (the attributes mustSet, maySet, mustSetConst, maySetConst),

and
– validation formulas (the attributes preCondition and postCondition).

Moreover, a service can contain a set of quality attributes.

A service modifies (transforms) a world, as well as the world’s state. The world
to be transformed by a service is called its pre-world (input world), while the result
of the execution is called a post-world (output world). Modifying a world consists in
modifying a subset of its objects. The objects being transformed by one service cannot
be modified by another one at the same time (i.e., transforming objects is an atomic
activity). A world consisting of a number of objects can be transformed into a new
state in two ways2: by a service which operates on a subset of its elements, or by many
services which operate concurrently on disjoint subsets of its elements.

The groups of attributes are presented in the definitions below.

1 We use the standard terminology of object-oriented programming. The term “subclass” is re-
lated to inheritance. A class is called abstract if instantiating it (i.e., creating objects following
the class definition) is useless, in the sense that the objects obtained this way do not correspond
to any real-world entity.

2 Services which create new objects are not taken into account.
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Definition 4 (Processing lists). The processing lists are as follows:

– produces - a list of named objects of classes whose instances are created by the
service in the post-world,

– consumes - a list of named objects of classes whose objects are taken from the
input world, and do not exist in the world resulting from the service execution (the
service removes them from the world),

– requires - a list of named objects of classes whose instances are required to exist
in the current world to invoke the service and are still present in the output world.

The formal parameters from the above lists define an alphabet for modification lists and
validation formulas.

Definition 5 (Modification lists). The modification lists are as follows:

– mustSet - a list of attributes of objects occurring in the lists produces and re-

quires of a service, which are obligatorily set (assigned a nonempty value) by this
service,

– maySet - a list of attributes of objects occurring in the lists produces and requires
of a service, which may (but not must) be set by this service,

– mustSetConst - a list of attributes of the objects which occur in the lists produces
and requires of a service, which are obligatorily set as being constant in the
worlds after executing this service,

– maySetConst - a list as above, but of the attributes which may be set as constant.

A grammar for the above lists can be found in [3]. The attributes of the objects appearing
in processing lists which do not belong to the union of lists mustSet and maySet are
not changed when the service is called.

Definition 6 (Validation formulas). The validation formulas are as follows:

– preCondition - a formula which describes the condition under which the ser-
vice can be invoked. It consists of atomic predicates over the names of objects from
the lists consumes and requires of the service and over their attributes, and is
written in the language of the first order calculus without quantification (atomic
predicates with conjunction, disjunction and negation connectives). The language
of atomic predicates contains comparisons of expressions over attributes with con-
stants, and functions calls with object names and attributes as arguments. In par-
ticular, it contains calls of the functions isSet, isConst and Exists3.

– postCondition - a formula which specifies conditions satisfied by the world re-
sulting from invoking the service. The formula consists of atomic predicates over
the names of objects from the lists consumes, produces and requires of the
service and over their attributes. To the objects and attributes one can apply pseud-
ofunctions pre and post which refer to the state of an object or an attribute in the

3 Using Exists in preCondition is redundant w.r.t. using an appropriate object in the list
consumes or requires. However, the future directions of developing the service descrip-
tion language mentioned in the final part of the paper, include moving modification lists to
validation formulas.
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input and the output world of this service, respectively. By default, the attributes
of objects listed in consumes refer to the state of the pre-world, whereas these in
produces and requires - to the state of the post-world.

Definition 7. A service U is enabled (executable) in the current state of a world S if:

– each object O from the lists consumes and requires of U can be mapped onto an
object in S, of the class of O or of its subclass; the mapping is such that each object
in S corresponds to at most one object from the above lists;

– for the objects in S which, according to the above mapping, are actual values of the
parameters in consumes and requires the formula preCondition of U holds,

– the list mustSet of U contains no attributes for which, in objects which are actual
values of the parameters, the flag const is set.

Definition 8. A service U executable at the current world S produces a new world S’ in
which:

– there are all the objects from S, besides these which in the mapping done for exe-
cuting U were actual values for the parameters in consumes,

– there is a one-to-one mapping between all the other objects in S’ and the objects in
the list produces of U, such that each object O from the list produces corresponds
to an object in S’ which is of a (sub)class of O;

– for the objects which, according to the above mappings, are actual values of the
parameters in the processing lists the formula postCondition holds,

– in the objects which are actual values of the appropriate parameters the flags
const of the attributes listed in mustSetConst of U are set, and the attributes
listed in mustSet of U have nonempty values,

– assuming the actual values of the parameters as above, all the attributes of all
the objects existing both in S and in S’ which do not occur neither in mustSet

nor in maySet have the same values as in the world S; the same holds for the
flags const of the attributes which do not occur neither in mustsetConst nor in
maySetConst. Moreover, all the attributes listed in mustSet or maySet which
are of nonempty values in S, in S’ are of nonempty values as well.

3.1 Concrete Services

We assume here that concrete services present their offers in their pre- and postcondi-
tions. and that their maySetConst and maySet lists are empty (i.e., setting an attribute
or the Const flag optionally is not allowed in this case).

A grammar for validation formulas is as follows:

<objectName> ::= <objectName from consumes> |
pre(<objectName from requires>) |
post(objectName from requires>) |
<objectName from produces>

<objectAttribute> ::= <objectName>.<attributeName> |
<objectName>.<objectAttribute>

<expressionElement> ::= "integer value" | "real value" |
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<objectAttribute> "of a numeric type"
<arithmOp> ::= + | - | * | /
<expression> ::= <expressionElement> |

<expression> <arithmOp> <expression>
<compOp> ::= = | < | <= | > | >=
<atomicPredicate> ::= Exists(<objectName>) |

isSet(<objectAttribute>) |
isConst(<objectAttribute>) |
not <atomicPredicate> |
<objectAttribute> <compOp> <expression>|
<objectAttribute> <compOp> "value"

<conjunction> ::= <atomicPredicate> |
<atomicPredicate> and <conjunction>

<validationFormula> ::= <conjunction> |
<conjunction> or <validationFormula>

It should be noticed that pre() and post() are allowed in postCondition only.
Moreover, in this paper we assume that the expressions involve only attributes which
refer either to names of objects from consumes, or to the names of objects which are
of the form pre(objectName from requires) (i.e., that the expressions involve
only values of attributes in the input world of a service). We assume also that all the
elements of an expression are of the same type, the result is of this type as well, and
so is the attribute this result is compared with. The expressions involve attributes of
numeric types only, while the atomic predicates allow comparing an attribute of an
arbitrary type with a value of the same type4.

The values of the attributes and the values occurring in comparisons in the atomic
predicates above are as follows:

– boolean values,
– integer values of a certain range5,
– characters,
– real values of a certain range, with the precision limited to a number of decimal

places (usually two),
– values of certain enumeration types.

Enumeration types are used instead of strings. In fact, such an approach seems sufficient
to represent the values necessary: in most cases the names of items offered or processed
by services come from a certain set of known names (e.g. names of countries, cities,
names of washing machines types etc), or can be derived from the repository (e.g. names
of shops which registered their offers). Similarly, restricting the precision of real values
seems reasonable (usually two decimal places are sufficient to express the amount of
a ware we buy, a price, a capacity etc). Consequently, all the values considered can be
treated as discrete. It should be noticed also that we assume an ordering on the elements
of enumeration types and the boolean values6.

4 The grammar for validation formulas is given in a semi-formal way. The “quoted” items should
be understood as notions from the natural language. By "value" we mean a value of an
arbitrary (also non-numeric) type.

5 A natural restriction when using programming languages.
6 Similarly as in the Ada programming language.
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4 Abstract Planning

The aim of the composition process is to find a sequence of services whose execution
can satisfy a user’s goal. The user describes its goal in a declarative language defined
by the ontology. He specifies (possibly partially) an initial and a final (desired) world,
possibly giving also some evaluation criteria. The query is defined in the following way:

Definition 9 (Query). A query consists of the following elements:

– an initial domain - a list of named objects which are elements of the initial world.
The form of the list is analogous to the form of the list produces in the description
of a service;

– an initial clause specifying a condition which is to be satisfied by the initial world.
The clause is a formula over the names of objects and their attributes, taken from
the initial domain. The grammar of the clause is analogous to the grammar of the
preCondition;

– an effect domain - a list of named objects which have to be present in a final world
(i.e., a subset the final world must contain);

– an effect clause specifying a condition which is to be satisfied by the final world.
The clause is a formula over the names of objects and their attributes from both the
domains defined above; references to the initial state of an object, if ambiguous, are
specified using the notations pre(objectName) and post(objectName), anal-
ogously as in the language used in the formulas postCondition of services. The
grammar of the effect clause is analogous to the grammar of the postCondition;

– an execution condition - a formula built over services (unknown to the user when
specifying the query) from a potential run performing the required transformation
of the initial world into a target world. While construction of this formula simple
methods of quantification and aggregation are used;

– a quality function - a real-valued function over the initial world, the final world
and services in a run, which specifies a user’s criterion of valuating the quality of
runs. The run of the smallest value of this function is considered to be the best one.

The last two parts of a query are used after finishing both the abstract planning phase
and the first part of concrete planning, which adjusts types and analyses pre- and post-
conditions of concrete services.

The aim of a composition process is to find a path in the graph of all the possible
transitions between worlds which leads from a given initial world to a given final world,
specified (possibly partially) in a user’s query, using no other knowledge than that con-
tained in the ontology. The composition is three-phase; the first phase (described in [3])
consists in finding all the sequences of service types (abstract services) which can po-
tentially lead to satisfying the user’s goal. The result of the abstract planning phase is
an abstract graph.

The abstract graph is a directed multigraph. The nodes of the graph are worlds
in certain states, while its edges are labelled by services. Notice that such a labelling
carries an information which part of a input world (node) is transformed by a given
service (that is specified by actual values of the parameters in consumes and requires
of the service), and which part of the output world (node) it affects (the lists produces
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and requires of this service). We distinguish some nodes of the graph - these which
have no input edges represent alternative initial worlds, while these with no output edges
are alternative final worlds. A formal definition of the abstract graph is as follows:

Definition 10. An abstract graph is a tuple GA = (V, Vp, Vk, E, L), where V is a
subset of the set S of all the worlds, Vp ⊆ V is a set of initial nodes, Vk ⊆ V is a set
of final nodes, and E ⊆ V × V is a transition relation s.t. e = (v, v′) ∈ E iff L(e)
transforms the world v into v′, where L : E −→ U is a function labelling the edges
with services.

5 Main Idea

From the phase of abstract composition [3] we get a graph showing the sequences of ser-
vice types which can potentially lead to satisfying user’s request. The next step towards
obtaining a flow to be run is to find concrete services of the appropriate types whose
offers enable satisfying the query. We use SAT-based bounded model checking to this
aim. In the paper [19] we have shown how to test reachability for timed automata with
discrete data using BMC and the model checker VerICS. We adapt the above approach.

The main idea of our solution consists in translating each path of the abstract graph
to a timed automaton with discrete data and parametric assignments (TADDPA). The
automaton represents concrete services of appropriate types (corresponding to the types
of services in the scenario we are working on) which can potentially be executed to
reach the goal. The variables of the automaton store the values of the attributes of the
objects occurring along the path, while the parameters are assigned to variables when
the exact value assigned by a service is unknown. Next, we test reachability of a state
satisfying the user’s query. If such a state is reachable, we get a reachability witness,
containing both an information about a sequence of concrete services to be executed to
reach the goal and the values of parameters for which this sequence is executable.

In spite of using timed automata we currently do not make use of the timing part of
this formalism, but the reason for using them is twofold. Firstly, doing this allowed us
to adapt the existing implementation for timed automata with discrete data (modified
to handle their extension - TADDPA). Secondly, in the future we are going to use the
clocks to represent the declared times of services executions, which should enable us
searching for scenarios of an appropriate timed length.

Below, we introduce all the elements of our approach.

5.1 Timed Automata with Discrete Data and Parametric Assignments

Given a set of discrete types T =
⋃
i=1,...,n Ti (n ∈ IN), including an integer type,

a character type, user-defined enumeration types, a real type of a precision given etc.,
such that for any Ti ∈ T there is an ordering7 on the values of Ti. By TN ⊂ T we
denote the subset of T containing all the numeric types T ∈ T . Let DV be a finite set
of variables whose types belong to T , and let DP be a finite set of parameters whose

7 Similarly as in some programming languages, e.g. the Ada language.
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types belong to T . Let type(a), for a ∈ DV ∪ DP , denote the type of a. The sets of
arithmetic expressions over T for T ∈ TN , denoted Expr(T ), are defined by

expr ::= c | v | expr ⊗ expr,

where c ∈ T , v ∈ DV with type(v) = T , and ⊗ ∈ {+,−, ∗, /}. By type(expr) we
denote the type of all the components of the expression and therefore the type of the
result8. Moreover, we define Expr(T ) =

⋃
T∈TN Expr(T ).

The set of boolean expressions over DV , denoted BoE(DV ), is defined by

β ::= true | v ∼ c | v ∼ v ′ | expr ∼ expr′ | β ∧ β | β ∨ β | ¬β,

where v , v ′ ∈ DV , c ∈ type(v), type(v′) = type(v), expr, expr′ ∈ Expr(T ),
type(expr) = type(expr′), and ∼∈ {=, 6=, <,≤,≥, >}.

The set of instructions over DV and DP , denoted Ins(DV ,DP ), is given by

α ::= ε | v := c | v := p | v := v ′ | v := expr | αα,

where ε denotes the empty sequence, v , v ′ ∈ DV , c ∈ type(v), p ∈ DP and type(p) =
type(v), type(v′) = type(v), expr ∈ Expr(T ), and type(expr) = type(v)9. Thus,
an instruction over DV is either an atomic instruction over DV which can be either
non-parametric (v := c, v := v′, v := expr) or parametric (v := p), or a (possibly
empty) sequence of atomic instructions. Moreover, by Ins3(DV ,DP ) we denote the
set consisting of all these α ∈ Ins(DV ,DP ) in which any v ∈ DV appears on the
left-hand side of “:=” (i.e. is assigned a new value, possibly taken from a parameter)
at most once. By a variables valuation we mean a total mapping v : DV −→ T
satisfying v(v) ∈ type(v) for each v ∈ DV . We extend this mapping to expressions
of Expr(T ) in the usual way. Similarly, by a parameters valuation we mean a total
mapping p : DP → T satisfying p(p) ∈ type(p) for each p ∈ DP . Moreover, we
assume that the domain of values for each variable and each parameter is finite.

The satisfaction relation (|=) for a boolean expression β ∈ BoE(DV ) and a valu-
ation v is defined as: v |= true, v |= β1 ∧ β2 iff v |= β1 and v |= β2, v |= β1 ∨ β2
iff v |= β1 or v |= β2, v |= ¬β iff v 6|= β, v |= v ∼ c iff v(v) ∼ c, v |= v ∼ v ′

iff v(v) ∼ v(v ′), and v |= expr ∼ expr′ iff v(expr) ∼ v(expr′). Given a variables
valuation v, a parameter valuation p and an instruction α ∈ Ins(DV ,DP ), we denote
by v(α,p) a valuation v′ such that

– if α = ε then v′ = v,
– if α = (v := c) then for all v ′ ∈ DV it holds v′(v ′) = c if v ′ = v , and v′(v ′) =
v(v ′) otherwise,

– if α = (v := v1) then for all v ′ ∈ DV it holds v′(v ′) = v1 if v ′ = v , and
v′(v ′) = v(v ′) otherwise,

8 Using different numeric types in the same expression is not allowed. The “/” operator denotes
either the integer division or the “ordinary” division, depending on the context.

9 Distinguishing between assigning an arithmetic expression, and separately assigning a param-
eter, a constant or a variable follows from the fact that arithmetic expressions are defined for
numeric types only. The same applies to the definition of boolean expressions.
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– if α = (v := expr) then for all v ′ ∈ DV it holds v′(v ′) = expr if v ′ = v , and
v′(v ′) = v(v ′) otherwise,

– if α = (v := p) then for all v ′ ∈ DV it holds v′(v ′) = p(p), and v′(v ′) = v(v ′)
otherwise,

– if α = α1α2 then v′ = (v(α1,p))(α2,p).

Let X = {x1, . . . , xnX } be a finite set of real-valued variables, called clocks. The
set of clock constraints over X , denoted CX (X ), is defined by the grammar:

cc ::= true | xi ∼ c | xi − xj ∼ c | cc ∧ cc,

where xi, xj ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}. Let X+ denote the set X ∪{x0},
where x0 6∈ X is a fictitious clock representing the constant 0. An assignment over X
is a function a : X −→ X+. Asg(X ) denotes the set of all the assignments over X .

By a clock valuation we mean a total mapping c : X −→ IR+. The satisfaction
relation (|=) for a clock constraint cc ∈ CX (X ) and a clock valuation c is defined as
c |= true, c |= (xi ∼ c) iff c(xi) ∼ c, c |= (xi − xj ∼ c) iff c(xi) − c(xj) ∼ c,
and c |= cc1 ∧ cc2 iff c |= cc1 and c |= cc2. In what follows, the set of all the clock
valuations satisfying a clock constraint cc is denoted by [[cc]]. Given a clock valuation
c and δ ∈ IR+, by c + δ we denote a clock valuation c′ such that c′(x) = c(x) + δ
for all x ∈ X . Moreover, for a clock valuation c and an assignment a ∈ Asg(X ), by
c(a) we denote a clock valuation c′ such that for all x ∈ X it holds c′(x) = c(a(x)) if
a(x) ∈ X , and c′(x) = 0 otherwise (i.e., if a(x) = x0). Finally, by c0 we denote the
initial clock valuation, i.e., the valuation such that c0(x) = 0 for all x ∈ X .

Definition 11. A timed automaton with discrete data and parametric assignments (TAD-
DPA) is a tuple A = (L, L, l0, DV ,DP ,X , E , Ic, Iv,v0), where L is a finite set of la-
bels (actions),L is a finite set of locations, l0 ∈ L is the initial location,DV is a finite set
of variables (of the types in T ),DP is a finite set of parameters (of the types in T ), X is
a finite set of clocks, E ⊆ L×L×BoE(DV )×CX (X )×Ins3(DV ,DP )×Asg(X )×L
is a transition relation, Ic : L −→ CX (X ) and Iv : L −→ BoE(DV ) are, respectively
a clocks’ and a variables’ invariant functions, and v0 : DV −→ T s.t. v0 |= Iv(l0) is
an initial variables valuation.

The invariant functions assign to each location a clock constraint and a boolean
expression specifying the conditions under which A can stay in this location. Each
element t = (l, l, β, cc, α, a, l′) ∈ E denotes a transition from the location l to the
location l′, where l is the label of the transition t, β and cc define the enabling conditions
for t, α is the instruction to be performed, and a is the clock assignment. Moreover,
for a transition t = (l, l, β, cc, α, a, l′) ∈ E we write source(t), label(t), vguard(t),
cguard(t), instr(t), asgn(t) and target(t) for l, l, β, cc, α, a and l′ respectively.

Semantics of the above automata is given as follows:

Definition 12. Semantics of a TADDPA A = (L, L, l0, DV ,DP ,X , E , Ic, Iv,v0) for
a parameter valuation p : DP −→ T is a labelled transition system10 S(A,p) =
(Q, q0,LS ,→), where:
10 By a labelled transition system we mean a tuple S = (S, s0, Λ,→), where S is a set of states,
s0 ∈ S is the initial state, Λ is a set of labels, and→⊆ S × Λ × S is a (labelled) transition
relation.
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– Q = {(l,v, c) | l ∈ L ∧ ∀v∈DV v(v) ∈ type(v) ∧ c ∈ IR
|X |
+ ∧ c |= Ic(l) ∧ v |=

Iv(l)} is the set of states,
– q0 = (l0,v0, c0) is the initial state,
– LS = L ∪ IR+ is the set of labels,
– → ⊆ Q× LS ×Q is the smallest transition relation defined by the rules:

• for l ∈ L, (l,v, c)
l→(l′,v′, c′) iff there exists a transition t = (l, l, β, cc, α, a,

l′) ∈ E such that v |= Iv(l), c |= Ic(l), v |= β, c |= cc, v′ = v(α,p) |=
Iv(l′), and c′ = c(a) |= Ic(l′) (action transition),

• for δ ∈ IR+, (l,v, c)
δ→(l,v, c + δ) iff c, c + δ |= Ic(l) (time transition).

A transition t ∈ E is enabled at a state (l,v, c) for a given parameter valuation p if
v |= vguard(t), c |= cguard(t), c(asgn(t)) |= Ic(target(t)), and v(instr(t),p) |=
Iv(target(t)). Intuitively, in the initial state all the variables are set to their initial val-
ues, and all the clocks are set to zero. Then, being in a state q = (l,v, c) the system
can either execute an enabled transition t and move to the state q′ = (l′,v′, c′) where
l′ = target(t), the valuation of variables is changed according to instr(t) and the pa-
rameter valuation p, and the clock valuation is changed according to asgn(t), or move
to the state q′ = (l,v, c + δ) which results from passing some time δ ∈ IR+ such that
c + δ |= inv(l).

We say that a location l (a variables valuation v, respectively) is reachable if some
state (l, ·, ·) ((·,v, ·), respectively) is reachable in S(A,p). Given D ⊆ DV , a partial
variables valuation vD : D −→ T is reachable if some state (·,v, ·) s.t. v |D = vD is
reachable in S(A,p).

5.2 SAT-Based Reachability Checking

In the paper [19] we showed how to test reachability for timed automata with discrete
data (TADD) using SAT-based bounded model checking to this aim. The main idea con-
sisted in discretising the set of clock valuation of the automaton considered, in order to
obtain a countable state space. Next, the transition relation of the transition system
obtained was unfolded up to some depth k, and the unfolding was encoded as a propo-
sitional formula. The property to be tested was encoded as a propositional formula as
well, and satisfiablity of the conjunction of these two formulas was checked using a
SAT-solver. Satisfiability of the conjunction allowed to conclude that a path from the
initial state to a state satisfying the property was found.

Comparing with the automata considered in [19], the automata used in this paper
are extended in the following way:

– values of discrete variables are not only integers, but are of several discrete types,
– arithmetic expressions used can be of a more involved form,
– the invariant function involves not only clock comparisons, but also boolean ex-

pression over values of discrete variables,
– the definition of the automaton contains additionally a set of parameters, and the

instructions can be assignments of the form a variable := a parameter.

464 Petri Nets & Concurrency Penczek, Pó lrola, and Zbrzezny



As it is easy to see, discretisation of the set of clock valuations for TADDPA can
be done analogously as in [19]. The way of extending arithmetic operations on integers
was described in [18]. New data types can be handled by conversions to integers; intro-
ducing extended invariants is straightforward. The only problem whose solution cannot
be easily adapted from the previous approach is that SAT-based reachability testing for
TADDPA involves also searching for a parameter valuation for which a state satisfying
a given property can be reached. However, the idea of doing this can be derived from
the idea of SAT-solvers: a SAT-solver searches for a valuation of propositional vari-
ables for which a formula holds. Thus, we represent the values of parameters by sets of
propositional variables; finding a valuation for which a formula γ which encodes that
a state satisfying a given property is reachable along a path of a length k implies also
finding an appropriate valuation of parameters occurring along the path considered.

5.3 SAT-Based Service Composition

In order to apply the above verification method to automatic searching for sequences
of concrete services able to satisfy the user’s request we translate paths of the abstract
graph to timed automata with discrete data and parametric assignments. The translation
uses the descriptions of concrete services, as well as the user’s query.

Consider a path π = w0 → w1 → . . . wn (n ∈ IN) in the abstract graph, such that
w0 ∈ Vp (i.e., is an initial world) and wn ∈ Vk (i.e., is a final world) - i.e., a sequence of
worlds and abstract services which transform them. Let Oπ be the set of all the objects
which occur in all the worlds along this path (i.e., Oπ = {o ∈ wi | i = 0, . . . , n}).
Then, we define V (π) = {objectName.attributeName | objectName ∈ Oπ},
Vpre(π) = {objectName.attributeName.pre | objectName ∈ Oπ ∧ ∃i∈{0,...,n−1}
objectName ∈ wi∩wi+1} and V ′(π) = V (π)∪{v.isConst | v ∈ V (π)}∪{v.isSet |
v ∈ V (π)} ∪ {v.isAny | v ∈ V (π)} ∪ Vpre(π). The set of discrete variables of the au-
tomatonA(π) corresponding to π is equal to V ′(π). The intuition behind this construc-
tion is that for each attribute of each objects occuring along the path we define a variable
aimed at storing the value of the attribute (objectName.attributeName). Moreover,
for each such variable we introduce three new boolean variables: the one saying whether
the flag isConst for the attribute has been set (objectName.attributeName.isConst),
the second one to express that the attribute has been set (has a nonempty value; object-
Name.attributeName.isSet, and the third one to specify that the value of the at-
tribute is nonempty but its exact value is not given (objectName.attributeName.is-
Any). The variables in Vpre(π) (of the form objectName.attributeName.pre) are
aimed at storing values of attributes from a pre-world of a service.

The initial values of variables are taken from the initial world w0 resulting from the
user’s query:

– for each attribute x.y which according to the query has a concrete value γ in
w0, we set x.y := γ, x.y.isAny := false and x.y.isSet := true; concerning
x.y.isConst we set it true if such a condition occurs in the query, otherwise it is
set to false,

– for each attribute x.y which according to the query is set, but its value is not given
directly, we set x.y.isSet := true, and x.y.isAny = true; x.y.isConst is set
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according to the query as above; x.y can obtain any value of the appropriate type
(we can assume it gets a “zero” value of type(x.y)),

– for each attribute x.y which does not occur in the query or is specified there as hav-
ing the empty value we set x.y.isSet = false, x.y.isAny = true, x.y.isConst =
false, the value of x.y is set to an arbitrary value as above,

– each variable of the form x.y.pre is assumed to have a “zero” value of type(x, y).

Define for each wi, i = 0, . . . , n, a new location ofA(π), denoted for simplicity wi
as well, and consider an edge wi → wi+1 of π (i ∈ {0, . . . , n − 1}), corresponding to
an abstract service sai. For each concrete service s of the type of sai we introduce a
new location wsi and the transitions wi

s→ wsi and wsi
ε→ wi+1 (where ε is an “empty”

label)11. Then, we make use of the description of s as follows:

– the precondition of s becomes the guard of the transition wi
s→ wsi (notice that a

disjunctive form is here allowed);
– the list requires of s is used to construct the instruction α “decorating”wi

s→ wsi :
initially α is set to ε, then, for each attribute y of an object x occurring in requires
for which it holds x.y.isSet = true, α is extended by concatenating x.y.pre :=
x.y,

– the lists mustSet and mustSetConst of s are used to construct the instruction
α as well: for each attribute x.y occuring in the list mustSet α is extended by
concatenating x.y.isSet := true, and for each attribute x.y occuring in the list
mustSetConst of s α is extended by concatenating x.y.isConst := true,

– the postcondition is used as follows (x.y denotes an attribute):
• the predicates Exists are ignored,
• the (possibly negated) predicates of the form isSet(x.y) or isConst(x.y)

result in extending the instruction α “decorating” wi
s→ wsi by concatenating

respectively x.y.isSet := true or x.y.isConst := true if such an instruc-
tion has not been added to α before (or respectively x.y.isSet := false or
x.y.isConst := false if the predicates are negated)12,

• each predicate of the form x.y = z or post(x.y)=z (where z can be either
a concrete value or an expression13) results in extending the instruction α by
concatenating x.y := z, x.y.isSet := true (if it has not been added before)
and x.y.isAny := false,

• for each predicate of the form x.y # z or post(x.y) # z with # ∈ {<
,>,≤,≥} (where z is either a concrete value or an expression) we introduce
a new parameter p, extend α by concatenating x.y := p, x.y.isSet := true
(if it has not been added before) and x.y.isAny := false, and conjunct the
invariant of wsi (initially true) with the above predicate.

11 We assume here that the postcondition of s contains no disjunctions; otherwise we treat s a
number of concrete services each of which has the postcondition corresponding to one part of
the DNF in the original postcondition of s.

12 Possible inconsistencies, i.e. an occurence of x.y in mustSet and the predicate not
isSet(x.y) in postCondition, are treated as ontology errors.

13 Recall that the expressions can refer only to values the variables have in the pre-world of a
service.
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– moreover, for each attribute x.y which occurs either in mustSet or in the post-
conidition in a predicate isSet(x.y), but does not have in the postCondtion

any “corresponding” predicate which allows to set its value, we introduce a new
parameter psx.y , and extend α by adding x.y := psx.y and x.y.isAny := false.

The invariants of wi and wi+1, as well as the guard of the transition labelled with ε are
set to true. The set of instructions of the latter transition is empty. The set of clocks
of A(π) is empty as well. The intuition behind the above construction is as follows:
initially, only the variables of the form x.y corresponding to attributes specified by
the user’s query as having concrete values are set, while the rest stores random values
(which is expressed by x.y.isAny = true). Next, concrete services modify values of
the variables. If the description of a service specifies that an attribute is set and specifies
the exact value assigned, then the transition corresponding to execution of this service
sets the corresponding variable in an appropriate way. If the exact value of the attribute
set is not given, a parameter for the value assigned is introduced, and possible conditions
on this parameter (specified in the postcondition) are assigned to the target location
as a part of its invariant. Moreover, before introducing any changes to the values of
the variables corresponding to the attributes of the objects in requires their previous
values are stored.

The above construction can be optimised in several ways. Firstly, one can add a
new “intermediate” location wsi only in the case when no location, corresponding to
a service of the same type as s and having the appropriate invariant, has been added
before; otherwise, the transition outgoing wi can be redirected to the existing location.
Secondly, the variables of the form x.y.pre can be introduced only for these attributes
for which there is a postcondition of a service which refers both to pre(x).y and
post(x).y. Finally, if we have several concrete services of a given type t occuring
as the i-th service along the abstract path, and - according to the above construction -
need to introduce for each of them a parameter to be assigned to a variable x.y, then we
can reduce the number of parameters: instead of introducing a new parameter for each
concrete service we can introduce one parameter pt,ix.y . This follows from the fact that
only one concrete service of this type is exectuted as the i-th, and therefore only one
assignment a new value to x.y is performed.

6 Experimental Results and Concluding Remarks

The method described above has been implemented. The preliminary implementation
was tested on a Getting Juice example considered in [3], by running it to generate a
sequence of concrete services corresponding to the abstract path SelectWare, then
FruitSelling and then MakingJuice. The sequence has been found; a detailed de-
scription of the example together with the result can be found in the appendix.

Currently, the automaton is generated by hand, since a repository of concrete ser-
vices is still under construction. In the future we are going to automate the method
completely, including dynamic translation of a service, dynamic creation of enumera-
tion types based on the query and on the contents of the repository, and building the
automaton step by step. This will enable us to test efficiency of the approach.
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A Experimental Results - A Detailed Description

Below we present the Getting Juice example considered in [3]. Assume we have the
following classes:
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Ware id integer
Ware name string
Ware owner string
Measurable capacity float
Juice extends Ware, Measurable
Fruits extends Ware, Measurable

and the following types of services:

SelectWare produces w:Ware
SelectWare consumes null
SelectWare requires null
SelectWare mustSet w.name; w.owner

Selling produces null
Selling consumes null
Selling requires w:Ware
Selling mustSet w.id; w.owner
Selling preCondition not isSet(w.id) and isSet(w.name)

and isSet(w.owner)
Selling postCondition w.owner!=pre(w).owner

FruitSelling extends Selling
FruitSelling requires w:Fruits
FruitSelling mustSet w.capacity
FruitSelling postCondition w.capacity>0

JuiceSelling extends Selling
JuiceSelling requires w:Juice
JuiceSelling mustSet w.capacity
JuiceSelling postCondition w.capacity>0

MakingJuice produces j:Juice
MakingJuice consumes f:Fruits
MakingJuice mustSet j.id; j.name; j.capacity
MakingJuice preCondition isSet(f.id) and isSet(f.name) and

isSet(f.owner) and f.capacity>0
MakingJuice postCondition isSet(j.id) and isSet(j.name) and

j.capacity>0

The user’s query is specified as follows:

InitWorld null
InitClause true
EffectWorld j:Juice
EffectClause j.id>0 and j.capacity=10 and j.owner="Me"

One of the sequences of services which possibly can lead to satisfying the query
is SelectWare, then FruitSelling and then MakingJuice [3]. Below we consider
concretising the above path of the abstract graph.

Assume the concrete instances of the SelectWare specify the following offers14:
14 The current version of our implementation does not deal with inheritance of classes.
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FruitNetMarket mustSet w.name, w.owner
FruitNetMarket preCondition -
FruitNetMarket postCondition (w.name=strawberry and

w.owner=shop1) or
(w.name=blueberry and w.owner=shop1)

FruitNetOffers mustSet w.name, w.owner
FruitNetOffers preCondition -
FruitNetOffers postCondition (w.name=plum and w.owner=shop2) or

(w.name=apple and w.owner=shop2) or
(w.name=apple and w.owner=shop3)

Next, the fruitselling services specify:

Shop1 mustSet w.id, w.owner, w.capacity
Shop1 precondition not isSet(w.id) and isSet(w.name)

and isSet(w.owner) and w.owner=shop1
Shop1 postcondition w.owner!=pre(w).owner and w.id>0 and

w.capacity>0 and w.capacity<=10

Shop2 mustSet w.id, w.owner, w.capacity
Shop2 precondition not isSet(w.id) and isSet(w.name)

and isSet(w.owner) and w.owner=shop2
Shop2 postcondition w.owner!=pre(w).owner and w.id>0 and

w.capacity>0

Shop3 mustSet w.id, w.owner, w.capacity
Shop3 precondition not isSet(w.id) and isSet(w.name)

and isSet(w.owner) and w.owner=shop3
Shop3 postcondition w.owner!=pre(w).owner and w.id>0

and w.capacity>=100

which means that Shop1 is able to sell at most 10 units of fruits, Shop2 - at least 100
units, while Shop3 is able to sell any amount. Finally, we have the following services
which make juice:

HomeJuiceMaking mustSet j.id, j.name, j.capacity
HomeJuiceMaking preCondition isSet(f.id) and isSet(f.name) and

isSet(f.capacity) and isSet(f.owner)
and f.capacity>0
and f.capacity<=10 and
f.name!=plum and f.name!=apple

HomeJuiceMaking postCondition isSet(j.id) and isSet(j.name) and
j.capacity>0 and j.name=f.name
and j.capacity=f.capacity
and j.owner=f.owner

GrandmaKitchen mustSet j.id, j.name, j.capacity
GrandmaKitchen preCondition isSet(f.id) and isSet(f.name) and

isSet(f.capacity) and isSet(f.owner)
and f.capacity>0 and f.capacity<=5
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GrandmaKitchen postCondition isSet(j.id) and isSet(j.name) and
j.capacity>0 and j.name=f.name
and j.capacity=f.capacity
and j.owner=f.owner

JuiceTex mustSet j.id, j.name, j.capacity
JuiceTex preCondition isSet(f.id) and isSet(f.name) and

isSet(f.capacity) and isSet(f.owner)
and f.capacity>0

JuiceTex postCondition isSet(j.id) and isSet(j.name) and
j.capacity>0 and j.name=f.name
and j.capacity=2*f.capacity
and j.owner=f.owner

Thus, assume that we have the following types: integer, float (we can assume that the
precision is up to two decimal places), FruitTypes = (strawberry, blueberry,

apple, plum), and OwnerNames = (Me, Shop1, Shop2, Shop3, Shop4) (the
ranges of enumeration types can be deduced from the offers and from the user’s query).
The variables and their types are: f.id : integer, f.name : FruitTypes, f.owner :
OwnerNames, f.capacity : float, j.id : integer, j.name : FruitTypes, j.owner :
OwnerNames, j.capacity : float plus the corresponding boolean variables of the
form x.y.isSet, x.y.isAny and x.y.isConst. Moreover, we introduce one additional
variable f.owner.pre : OwnerNames to store the previous value of f.owner15.

All the variables of the form x, y are initialised to zero values of the appropriate
types, each x.y.isSet and x.y.isConst is initialised with false, and each x.y.isAny
is initialised with true.

– The FruitNetMarket generates two transitions )together with the intermediate
locations and the “ε-transitions” outgoing them). The first one is decorated with
f.name.isSet := true; f.owner.isSet := true; f.name := strawberry; f.ow-
ner := shop1; f.owner.isAny := false; f.name.isAny := false, the second
one is decorated in a similar way, but with f.name := blueberry, the edges for the
three offers of FruitNetOffers look similarily,

– the fruitselling services correspond to the following edges and intermediate loca-
tions:
• for Shop1:
∗ the guard of the first edge is f.id.isSet = false∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.owner = shop1,
∗ the instruction is f.id.isSet := true; f.owner.isSet := true; f.capaci-
ty.isSet := true; f.id.isAny := false; f.owner.isAny := false; f.ca-
pacity.isAny := false; f.owner.pre := f.owner; f.owner := pFSf.own;

f.id := pFSf.id; f.capacity := pFSf.cap (where pFS· are parameters),
∗ the invariant of the intermediate location is ¬(f.owner.pre = f.owner)∧
f.id > 0 ∧ f.capacity > 0 ∧ f.capacity ≤ 10;

15 We apply the optimisation allowing to add one variable of the form x.y.pre only, as well as
the one consisting in reducing the number of parameters.
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• for Shop2:
∗ the guard of the first edge is f.id.isSet = false∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.owner = shop2,

∗ the instruction is f.id.isSet := true; f.owner.isSet := true; f.capaci-
ty.isSet := true; f.id.isAny := false; f.owner.isAny := false; f.ca-
pacity.isAny := false; f.owner.pre := f.owner; f.owner := pFSf.own;

f.id := pFSf.id; f.capacity := pFSf.cap,
∗ the invariant of the intermediate location is ¬(f.owner.pre = f.owner)∧
f.id > 0 ∧ f.capacity > 0,

• for Shop3:
∗ the guard of the first edge is f.id.isSet = false∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.owner = shop3,
∗ the instruction is f.id.isSet := true; f.owner.isSet := true; f.capaci-
ty.isSet := true; f.id.isAny := false; f.owner.isAny := false; f.ca-
pacity.isAny := false; f.owner.pre := f.owner; f.owner := pFSf.own;

f.id := pFSf.id; f.capacity := pFSf.cap,
∗ the invariant of the intermediate location is ¬(f.owner.pre = f.owner)∧
f.id > 0 ∧ f.capacity ≥ 0,

– for the services making juice from fruits:
• for HomeJuiceMaking:
∗ the guard of the first edge is f.id.isSet = true∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.capacity.isSet = true ∧ f.capacity > 0 ∧
f.capacity ≤ 10 ∧ ¬(f.name = plum) ∧ ¬(f.name = apple)
∗ the instruction is j.id.isSet := true; j.id.isAny := false; j.name.is-
Set := true; j.name.isAny := false; j.capacity.isSet := true; j.capa-
city.isAny := false; j.owner.isSet := true; j.owner.isAny := false;
j.id := pMJ

j.id ; j.capacity := f.capacity; j.name := f.name, j.owner :=
f.owner
∗ the invariant of the intermediate location is j.capacity > 0

• for GrandmaKitchen
∗ the guard of the first edge is f.id.isSet = true∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.capacity.isSet = true ∧ f.capacity > 0 ∧
f.capacity ≤ 5,
∗ the instruction is j.id.isSet := true; j.id.isAny := false; j.name.is-
Set := true; j.name.isAny := false; j.capacity.isSet := true; j.capa-
city.isAny := false; j.owner.isSet := true; j.owner.isAny := false;
j.id := pMJ

j.id ; j.capacity := f.capacity; j.name := f.name, j.owner :=
f.owner
∗ the invariant of the intermediate location is j.capacity > 0

• for JuiceTex
∗ the guard of the first edge is f.id.isSet = true∧f.name.isSet = true∧
f.owner.isSet = true ∧ f.capacity.isSet = true ∧ f.capacity > 0
∗ the instruction is j.id.isSet := true; j.id.isAny := false; j.name.is-
Set := true; j.name.isAny := false; j.capacity.isSet := true; j.capa-
city.isAny := false; j.owner.isSet := true; j.owner.isAny := false;
j.id := pMJ

j.id ; j.capacity := 2 ∗ f.capacity; j.name := f.name, j.ow-
ner := f.owner
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∗ the invariant of the intermediate location is j.capacity > 0

The condition to be tested is j.id.isSet ∧ ¬j.id.isAny ∧ j.capacity.isSet ∧ ¬j.capa-
city.isAny ∧ j.owner.isSet ∧ ¬j.owner.isAny ∧ j.id > 0 ∧ j.capacity = 10 ∧
j.owner = me. In practice, we extend it by adding an additional proposition which is
true in the locations w0, . . . , w3 to avoid obtaining paths which finish before both the
transitions corresponding to a concrete service are executed.

After running our preliminary implementation, we have obtained the path corre-
sponding to selling 10 units of blueberries by Shop1 and processing them by Home-

JuiceMaking. A screenshot displaying the witness is presented in Fig. 1. To find the

Fig. 1. A witness for concretisation of an abstract path for the Getting Juice example

witness, we checked satisfaction of the boolean formula encoding the translation of
the tested condition. The formula in question consisted of 20152 variables and 52885
clauses; our implementation needed 0.65 second and 6.2 MB memory to produce it. Its
satisfiability was checked by RSAT[11], a mainstream SAT solver; to checking it 0.1
seconds and 5.6 MB of memory were needed.
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Abstract. Benchmarking is a fundamental activity to rigorously quantify the im-
provements of a new approach or tool with respect to the state of the art. Gen-
erally, it consists in comparing results of a given technique with more or less
similar approaches. In the Petri nets community, the comparison is often centered
on model checking and/or state space calculation performance. However, there
is sometimes little justification for the choice of the techniques to compare to.
Also, benchmarks often lack context information, such as the exact model used,
or how to reproduce the results. This makes it difficult to draw conclusions from
the comparisons.
We conducted a survey among the Petri nets community in which we gathered in-
formation about the used formalisms and techniques. This revealed an unanimous
interest for a common repository of benchmarks. The survey shows that existing
efforts in this direction suffer from limitations that prevent their effectiveness.
In this article we report the results of the survey and we outline perspectives for
improving Petri nets benchmark repositories.

1 Introduction

One of the goals of developing modern model checkers is often improving the perfor-
mance of existing tools, whether in terms of time, memory consumption or scalability.
A rigorous scientific method requires these improvements to be quantified in order to
communicate them to the community. Usually this is done by running the model checker
against a set of known benchmarks. A benchmark is

[...] a standard or point of reference against which things may be compared or
assessed.[1]

Benchmarks can range from academic examples which focus on a very specific
aspect (e.g., the dining philosophers for testing scalability) to more general, real-life
examples (e.g., an avionics system with real-time, concurrency and dependability re-
quirements). Benchmark results should be useful when comparing to the state of the
art. However, a meaningful comparison of benchmarks is often difficult for a number of
reasons. One of them is that the typical article has no space to give enough details about
features of the used model that could have greatly influenced the benchmark perfor-
mance. For example, using a low-level modeling formalism with ad-hoc optimizations
for the tool under test can bias the results. Also, even when one tries to use the same
model for benchmarking as has been used for another tool, the translation from one
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formalism to another can be less than trivial, if not a daunting task. Formalisms differ in
semantics, in the way of expressing information, and in expressive capabilities. Some
are more abstract and can tackle several semantic aspects (e.g., time, concurrency, al-
gebras...) while others are more restricted. Translating, for example, a Coloured Petri
Net (CPN) to a P/T net (PTN) requires some simplifications that have an impact on the
interpretation of performance results.

We ran a survey in the Petri nets community, asking what formalisms are being
used, what type (if any) of model checking is performed and what are the opinions
on the hypothesis of standardizing benchmarks. This article is based on the answers
of the community. In it we propose a way to improve the current situation by helping
standardizing and classifying models used for benchmarks. We review previous efforts
in creating repositories, analyze their limitations and how they can evolve to offer better
functionality. The goal of the article is fostering a discussion towards a better, more
usable repository of models that the community can benefit from.

The structure of the article is as follows. Sec. 2 reports the answers to the survey and
the requirements that have been identified as a consequence. Sec. 3 analyzes existing
related work. Sec. 4 illustrates our proposal. Sec. 5 discusses some critical points and
open questions of the proposal. Sec. 6 draws conclusions, followed by references and
by an appendix with complete diagrams and survey graphs.

2 Requirements

To identify desirable requirements for a repository which improves the current situation,
we performed a survey among the Petri net community members. We asked 40 groups
and individual researchers to participate. We received feedback from 18 (45%) of them.
Here we are only reporting pertinent questions and answers; the complete list is freely
available on request to smv@unige.ch. Graphs with answer percentages for questions
reported here are in appendix A.

A fundamental couple of questions we asked was:

– Would you find useful to have a central repository for models?
– Would you find useful to have test beds1 for each axis of research in verification?

The answer has been a resounding 100% yes for both questions. This confirms the
suggested lack of a unified resource for benchmarking models that can adapt to different
types of research. There have been some however who expressed doubts about the fact
that previous approaches have been tried and did not completely succeed. Also, a wor-
rying factor among respondents was the burden of maintenance of a model repository.

Following this, the next useful step in understanding the requirements of the com-
munity is identifying what the mentioned axes of research are. This means differentiat-
ing and quantifying the following aspects:

– What modeling formalisms are used (Fig. 9). The vast majority of groups focus
on PTNs or CPNs. Other types of Petri nets are however well represented. In most
cases, the same researchers use multiple formalisms.

1 Test beds can be a range of models with specific characteristics on which different research
groups can perform benchmarks of their approach.
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– What is the main purpose of the respondents’ research (Fig. 10). 95% is interested
in property validation and verification (the only respondent who isn’t is rather in-
terested in modeling and simulation). Those who use higher-level Petri nets for-
malisms all put an accent on Modeling as a central purpose.

– Among those who are interested in property verification, we asked to specify the
kind of properties (Fig. 11). They all verify invariants, a majority (70%) verifies
CTL, and about 50% verify LTL.

These points underline a need for a repository to manage models using different for-
malisms, and centered on different types of semantics. Also, models should be coupled
with different types of property definitions.

Of the total number of respondents, 95% perform state space exploration, and al-
most half employ structural verification methods (Fig. 12). Among those exploring the
state space, the majority use explicit state space representation, associated in most cases
to some kind of symbolic encoding (Fig. 14). The quasi-totality of respondents is devel-
oping and maintaining a tool (Fig. 13). Also, a relevant 30% is using parallel algorithms
to boost performance. According to these data, it is relevant to have a way to compare
these tools on the basis of their efficiency when managing large state spaces (in terms
of memory, time or other metrics).

Respondents to the survey also had the opportunity of adding free-text remarks to
their answers. One interesting fact that emerged from this is that most of them have
some sort of collection that they routinely use for benchmarks. These models are either
from the literature or, in some cases, by some model collection which may or may not be
publicly available. Apart from the most typical toy use cases (e.g., dining philosophers,
communication protocols...) no overlap was highlighted in the set of models used. This
confirms the difficulty in comparing the benchmarks.

On the basis of these survey results, we think that a suitable repository should fulfill
the following list of requirements:

i. It should allow for formalism-independent descriptions of models.
ii. It should be possible to include one or more formalism-specific implementations

(or instances) of the models, possibly in different formalisms.
iii. It should be possible to express properties to check, using different types of prop-

erty formalisms that focus on different semantic aspects
iv. Models, instances and properties should be classified and searchable by charac-

teristics. These can be seen as a sort of “tags” with which models can be selected
that are suitable for a certain type of verification activity. Characteristics should be
suggested by users when creating models.

v. The repository should store “benchmarks”. A benchmark should be seen here as
a collection of runs, done on a certain platform, and performed in order to verify
some property on a given model. Each run should be characterized by a tool and
tool version, as well as by used source files and possible parameters.

vi. It should be possible for registered users to add or update new models, instances,
properties or benchmarks in a collaborative way, classifying them accordingly.

vii. Registered users should be able to comment and rate existing models, instances
and benchmarks.
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viii. The administration workload should be kept to a minimum. Two fundamental tasks
should be managing users (to remove unused profiles or fix access problems) and
characteristics (to solve eventual duplications). Deleting models/instances/benchmarks
should also be an admin’s on-request task, while registered users should rather up-
date them.

We defined use cases for these requirements. Their visual representation is found in
Fig. 7 (we will not give here the full textual representation of each use case). They will
be discussed in more detail in Sec. 4.

3 State of the Art

As we already said, there is a clear need among the Petri nets community for a cen-
tral repository for models and test beds. There have already been proposals in this di-
rection: we can cite for example Avrunin et al. from the University of Massachusetts
(UMASS) [2] who studied the question and even started an implementation, and [3]
who proposed a set of interesting benchmarks, without adding source codes for them.
We will present here some of the existing repositories and how they fare with the re-
quirements from the previous section.

BEEM Benchmarks for Explicit Model Checkers (BEEM) [4] is a repository of bench-
marks. It contains a predefined set of parametric models expressed in a dedicated
low level language called DVE. This language can be automatically translated to
other formalisms, the repository provides automatic translation to the Promela lan-
guage. Models are organized by categories of problems (e.g. mutual exclusion,
leader election, etc.). Properties are expressed in LTL. Benchmarks are performed
using a model checking tool called DiVinE. BEEM contains 57 benchmarks.

PetriWeb PetriWeb [5] is a collaborative repository of Petri nets, i.e. users can submit
and store their models. It supports a particular variant of Petri nets with special
features like XOR transitions. Models are expressed with a PNML based definition
of these Petri Nets, called EPNML. They are organized by properties that are also
managed by the community. PetriWeb contains 79 models, by 5 different authors.

pnmlWEB pnmlWEB [6] is another collaborative repository of PetriNets. Users can
submit models expressed in PNML, without restriction, along with a description in
natural language. This repository doesn’t have actual models yet.

VLTS The Very Large Transition Systems benchmark suite (VLTS) [7] contains a set
of benchmarks for concurrent systems. These benchmarks are sometimes taken
from industrial examples. They are expressed as Labelled Transition Systems, which
makes it difficult to reuse the same benchmarks on any given tool. VLTS contains
40 different benchmarks.

UMASS repository Avrunin et al. proposed a repository [8] where models would be
expressed in natural language, with implementations written in Ada. Models are
submitted along with examples of properties to check, in different languages (CTL,
QREs, etc.). No benchmarks are stored in the repository. This project has not been
updated since 2003, and it seems that the development is suspended.
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The summary of the position of these examples with regards to the requirements
expressed in Sec. 2 can be seen in Table 1. We can see that:

– there is no repository that allows the storage of benchmarks for models without
relying on a precise formalism.

– there is no collaborative repository that allows the storage of benchmarks.

– there are some collaborative repositories, but none of them allows evaluation by
other users using comments or ratings.

We should also mention that the collaborative experiments were not completely suc-
cessful: PetriWEB has a set of models but they were submitted by a reduced number of
authors, and pnmlWEB is not actually used. The UMASS repository also aimed to be
collaborative, but this does not seem to be implemented and the project is now aban-
doned.

Repository BEEM PetriWEB pnmlWEB VLTS UMASS

Formalism independent models i X X
Implementations ii X X X X
Properties iii X X X
Classification, search iv X X X
Benchmarks v X X
Collaborative vi X X
Comments, rates vii
Low admin workload viii X X

Table 1. Repositories classification.

4 Proposal

In this section we propose a high level design that partially fulfills the requirements
that have been gathered in Sec. 2. We will go through the requirements and see how
they are satisfied. The proposal’s design is described using standard Unified Modeling
Language (UML) artifacts that are presented in appendix A. Fig. 7 shows the use case
diagram that describes the main functionalities. Fig. 8 presents a class diagram of the
repository’s Domain Object Model (DOM). For the sake of explanation we will extract
and present selected chunks of the main class diagram. We reference classes of the
DOM using the following notation: [DOMClass].
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Fig. 1. Detailed view of the Model-Instance semantics group

Requirements i & ii are handled by a clear separation between the problem to rep-
resent and its implementation. This is presented in Fig. 1 by the [Model] class that
represents the problem to model (e.g., the dining philosophers with deadlock) along
with its instances ([Instance]) (a model expressed in a specific formalism, e.g., CPN or
Timed Petri Net (TPN)). The model can be accompanied by [PDF] files, containing a
description that should be agnostic of a specific formalism or Petri net flavor.

Model creators can also add bibliographies ([RefBiblio]), comments ([Comment])
and characteristics ([Characteristic]) to the problem description. Characteristics are like
tags, defining what interesting aspects the model is concerned with (e.g., concurrency,
state space explosion, real time...). These artifacts should give a clear and detailed rep-
resentation and enable subsequent uses of the model by other scientists, like inferring
new instances of the model using different formalisms in order to model different as-
pects of the problem. The problem description can be instantiated ([Instance]) several
times, for example using different class of Petri nets. Ideally the instance itself should
be described using the Petri Net Markup Language (PNML) ([PNML]) as it provides
a portable and standard way of describing Petri net models, or using PDF documents
([PDF]) if PNML is not possible. As for the model ([Model]), its [Instance] description
can be specified using bibliographies ([RefBiblio]), comments ([Comment]) and char-
acteristics ([Characteristic]). Making these fields searchable would enact requirement
iv. Because we believe that the only applicable way to maintain such a repository in
the long term is a community driven approach (requirement vi), any logged-in user can
modify models or instances. For the sake of simplicity we did not represent the version-
ing mechanism in the DOM, as we consider it a detail concerning the implementation
platform.

To fulfill requirement iii, instances ([Instance]) and goals ([Goal]) are linked to-
gether (see Fig. 2). The [Goal] is what the benchmark is focusing on. It can be some-
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Fig. 2. Detailed view of the Instance-Property semantics group

thing general, like evaulating state space generation performance, or it can also be a
[Property] to check. Each instance may have several associated goals. Goal descriptions
can be enriched using bibliographies ([RefBiblio]), comments ([Comment]) and char-
acteristics ([Characteristic]) (requirement iv). In case the goal is checking a property,
a property specification [Property] should be included. Unfortunately, there is no stan-
dard language for properties equivalent to what PNML is for models. The greyed class
[PropertyML] represents a future extension to the repository that would allow upload-
ing property files expressed in such a standard language, if and when the community
agrees on one.

Fig. 3 proposes a solution to satisfy requirement v. Benchmarks ([Benchmark]) are
contained by a goal ([Goal]). A benchmark is a set of runs ([Run]) that have been done
on the same platform (to be comparable). Each run contains a result, that is expressed as
free text describing, for example, performance information. A run has one and only one
context ([Context]) that contains all the required information and steps to reproduce the
run. These are namely the source files ([SourceFile]) and the arguments ([Argument])
which the tool ([Tool]) should be launched with.

As for the rest of the DOM, [Benchmark] and [Argument] can be characterized and
commented by any contributor.
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Fig. 3. Detailed view of the Benchmark semantics group

From a functional point of view, we identify three user roles (see Fig. 7):

– A guest that can search and browse the repository (requirement iv).
– A registered user, that inherits from the guest and can also create/update objects,

and add comments and evaluations (requirements vi & vii).
– An administrator that can handle basic housekeeping tasks (requirement viii).

Fig. 4 shows the use cases that are executable by the guest user. Guests can apply for
registration to gain access to the repository as a registered user. It is worth noting that
the registration does not have to be validated by the repository administrator. Indeed,
to reduce maintenance cost any human being can register her/himself as a repository
user. The fact that it is a human should be enforced by a Completely Automated Public
Turing test to tell Computers and Humans Apart (CAPTCHA) mechanism. Guests are
also able to search the repository, however Denial of Service (DOS) attack should be
prevented with some limiting mechanism. Once the results of the search have been
returned, users can browse them and eventually they can see the details of a given
record. These details present the complete object graph ([Model], [Instance], [Goal]
or [Benchmark]) related to a given result, as well as their dependencies ([Comment],
[PDF], [Characteristic]. . . ).

Fig. 5 presents the use cases executable by the registered user. This is the main user
role, it inherits from the guest role as described in the main use case diagram. This role
has all the capabilities of the guest, plus the ability to create and modify content in the
repository. There is no authorization mechanism, that is once users have been logged
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Fig. 4. Detailed view of the guest use cases

they can update any data (in a wikified way: requirement vi). Although ownership is
not used for authorization purposes, the repository is protected against malicious users
as well as against human mistakes by a versioning mechanism.

Finally, Fig. 6 shows the administrator use cases. This is mainly housekeeping,
e.g., removing malicious users or cleaning up characteristics. Since the repository should
be driven by the community in a wikified way, the amount of administration should be
kept to a minimum (requirement viii).

We will now give two example workflows. The first workflow describes a scientist
that is looking for a new model in order to evaluate her own research. The second
presents a typical review process involving benchmarks submitted to a computer science
conference.

Scientist Sue connects to the repository and is looking for interesting models and
properties to check. Since Sue is working on high-level models such as CPN that are
also highly-concurrent, she constraints the search by setting criteria such as the instance
formalism and by setting some characteristics such as a high concurrency level. She
then browses the returned results and finds an interesting model: the dining philoso-
phers. Although the instance is exactly what she is looking for, there is no associated
PNML file. She therefore creates a PNML version of the CPN instance of the problem.
In order to upload the PNML version she registers and logs in as a registered user. She
also leaves some comments about the PNML version of the model and adds some in-
formation such as the theoretical bounds of the domains. She comes back a week later,
logs in and add a bunch of properties to check. After that, she registers her tool and
adds benchmarks. Because she wants to submit a paper to Petri Nets 2012, she gives
the reviewers the address of her benchmarks in the repository.

Here comes the second workflow, reviewer Rob has to evaluate Sue’s paper and
thus has to validate the benchmarks. Rob simply downloads the context [Context] of

Benchmarks for model checkers Petri Nets & Concurrency – 483



Fig. 5. Detailed view of the registered user use cases

Sue’s benchmarks and reproduces them on his multicore machine. He then comments
and rates the benchmarks using a special anonymous referee account. He also adds his
own benchmarks, that quantify how much this highly-concurrent model benefits from
parallel execution on his multiple processors.

5 Discussion

This proposal raises a number of question marks, which should be object for discussion.
We identified a list of open issues and potentially critical aspects.

What is the best type of collaborative form? A shared, multiuser repository where
each user can contribute with custom material demands for a structure that can man-
age multiple contributions and concurrent edit. Given the current state of the art in
web portals, a way to achieve this could be basing the repository on a wiki. How-
ever this raises a number of concerns and points to discuss, e.g., , what is the policy
w.r.t. permissions, updating and creating new models, and approving changes.
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Fig. 6. Detailed view of the admin use cases

Building on existing work. The state of the art reveals that repositories exist that fulfill
part of the requirements we are aiming for. Would it be reasonable to extend/revisit
existing approaches rather than building new repositories?

Managing characteristics. As it was proposed, characteristics are like a tag cloud. As
with tag clouds, one potential issue is duplication and chaos. Careful consideration
should be given to the mechanism for submitting new features. It could be possible
to rely on users, but this could be weak. Or the admin could approve characteristics
for insertion, but this could slow down insertion and create contrasts between the
admin and the users. Then again, a semi-automated, knowledge-based mechanism
could be devised that tries to detect duplication and suggests to the users to re-use
an existing characteristics instead of creating a new one.

Achieving critical mass. The rate of adoption is a key factor in the success of such
a repository. The Petri nets community seems to express a strong interest in the
repository concept, but probably something should be done to push the repository
forward. For example, it could be used as a required standard form to upload bench-
marks for articles submitted to the Petri Nets conference.

Workforce. We think that, although the repository can count on the community for
building content, there has to be at least a kernel of people who are constantly
implied in managing it and keeping it clean and functional. Given the nature of
many academic positions, this could be a non-trivial requirement, that demands
careful consideration.

6 Conclusion

We presented a proposal for a common repository of benchmark models for the Petri
nets community. The proposal is based on a survey led in the community at the be-
ginning of 2010. The purpose of this article is fostering a discussion on how to push
forward the state of benchmarking for Petri nets.
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While building a repository is a central aspect towards this goal, this is certainly
not the only one. Community members should consider how to adopt practices that im-
prove the quality of their results publications. We feel we can share the advice given
in [2] when it comes to what the community should do to help itself. Tools should be
freely available and accessible, in order to facilitate tuning results. Examples should be
published in full, and not only as partial descriptions in already short articles. Notations
and languages should be standardized to facilitate interchange. Common benchmarks
should be identified, and research articles should really stress the empirical aspects.
Furthermore, the scientific community should enforce a policy where empirical bench-
marking is a required component for sound publication of tool results.

Initiatives in this direction, together with a common repository, can definitely bring
some improvement to the quality of published results.
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A Appendix

Fig. 7. Requirements for a model repository
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Fig. 8. Proposal for a model repository
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