
Florent Domenach, Dmitry I. Ignatov, Jonas Poelmans (Eds.)

ICFCA 2012 � International Conference on Formal

Concept Analysis

Contributions to the 10th International Conference on Formal Concept Analysis
(ICFCA 2012)
May 2012, Leuven, Belgium

i

Volume Editors

Florent Domenach
Department of Computer Science
University of Nicosia, Cyprus

Dmitry I. Ignatov
School of Applied Mathematics and Information Science
National Research University Higher School of Economics, Moscow, Russia

Jonas Poelmans
Faculty of Business and Economics
Katholieke Universiteit Leuven, Belgium

Printed in Belgium by the Katholieke Universiteit Leuven with ISBN 978-9-08-
140995-7.

The proceedings are also published online on the CEUR-Workshop website in
volume Vol-876 of a series with ISSN 1613-0073.

Copyright c© 2012 for the individual papers by papers' authors, for the Volume
by the editors. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means without
the prior permission of the copyright owners.

ii

Preface

This volume contains the papers presented at the 10th International Conference
on Formal Concept Analysis (ICFCA 2012) held from May 7th to May 10th, at
the Katholieke Universiteit Leuven, Belgium.

There were 68 submissions by authors from 27 countries. Each submission
was reviewed by at least three program committee members, and twenty reg-
ular papers (29%) were accepted for the Springer Proceedings. The program
also included six invited talks on topical issues: Recent Advances in Machine
Learning and Data Mining, Mining Terrorist Networks and Revealing Crimi-
nals, Concept-Based Process Mining, and Scalability Issues in FCA and Rough
Sets. The corresponding abstracts are gathered in the �rst section of the Springer
volume. Another fourteen papers were assessed as valuable for discussion at the
conference and were therefore collected in this volume.

Formal Concept Analysis emerged in the 1980's from attempts to restructure
lattice theory in order to promote better communication between lattice theo-
rists and potential users of lattice theory. Since its early years, Formal Concept
Analysis has developed into a research �eld in its own right with a thriving theo-
retical community and a rapidly expanding range of applications in information
and knowledge processing including visualization, data analysis, and knowledge
management.

The conference aims to bring together researchers and practitioners working
on theoretical or applied aspects of Formal Concept Analysis within major re-
lated areas such as Mathematics, Computer and Information Sciences and their
diverse applications to �elds such as Software Engineering, Linguistics, Life and
Social Sciences.

We would like to thank the authors and reviewers whose hard work ensured
presentations of very high quality and scienti�c vigor. In addition, we express
our deepest gratitude to all Program Committee and Editorial Board members
as well as external reviewers, especially to Bernhard Ganter, Claudio Carpineto,
Frithjof Dau, Sergei Kuznetsov, Sergei Obiedkov, Sebastian Rudolf and Stefan
Schmidt for their advice and support.

We would like to acknowledge all sponsoring institutions and the local or-
ganization team who made this conference a success. In particular, we thank
Amsterdam-Amstelland Police, IBM Belgium, OpenConnect Systems, Research
Foundation Flanders, and Vlerick Management School.

We are also grateful to Katholieke Universiteit Leuven for publishing this
volume and the developers of the EasyChair system which helped us during the
reviewing process.

May, 2012 Florent Domenach
Dmitry I. Ignatov
Jonas Poelmans

Organization

The International Conference on Formal Concept Analysis is the annual confer-
ence and principal research forum in the theory and practice of Formal Concept
Analysis. The inaugural International Conference on Formal Concept Analysis
was held at the Technische Universität Darmstadt, Germany, in 2003. Subse-
quent ICFCA conferences were held at the University of New South Wales in
Sydney, Australia, 2004, Université d'Artois, Lens, France, 2005, Institut für Al-
gebra, Technische Universität Dresden, Germany, 2006, Université de Clermont-
Ferrand, France, 2007, Université du Québec à Montréal, Canada, 2008, Darm-
stadt University of Applied Sciences, Germany, 2009, Agadir, Morocco, 2010,
and University of Nicosia, Cyprus, 2011. ICFCA 2012 was held at the Katholieke
Universiteit Leuven, Belgium. Its committees are listed below.

Conference Chair

Jonas Poelmans Katholieke Universiteit Leuven, Belgium

Conference Organization Committee

Guido Dedene Katholieke Universiteit Leuven, Belgium
Stijn Viaene Vlerick Management School, Belgium
Aimé Heene Ghent University, Belgium
Jasper Goyvaerts Katholieke Universiteit Leuven, Belgium
Nicole Meesters Katholieke Universiteit Leuven, Belgium
Elien Poelmans Maastricht University, Netherlands
Gerda Verheyden GZA Hospitals, Antwerpen, Belgium

Program Chairs

Florent Domenach University of Nicosia, Cyprus
Dmitry I. Ignatov Higher School of Economics, Russia

Editorial Board

Peter Eklund University of Wollongong, Australia
Sébastien Ferré Université de Rennes 1, France
Bernhard Ganter Technische Universität Dresden, Germany
Robert Godin Université du Québec à Montréal, Canada
Robert Jäschke Universität Kassel, Germany

Sergei O. Kuznetsov Higher School of Economics, Russia
Leonard Kwuida Zurich University of Applied Sciences, Switzerland
Raoul Medina Université de Clermont-Ferrand 2, France
Rokia Missaoui Université du Québec en Outaouais, Canada
Sergei Obiedkov Higher School of Economics, Russia
Uta Priss Edinburgh Napier University, UK
Sebastian Rudolph Karlsruhe Institute of Technology, Germany
Stefan Schmidt Technische Universität Dresden, Germany
Bari³ Sertkaya SAP Research Center Dresden, Germany
Gerd Stumme University of Kassel, Germany
Petko Valtchev Université du Québec à Montréal, Canada
Rudolf Wille Technische Universität Darmstadt, Germany
Karl Erich Wol� University of Applied Sciences Darmstadt, Germany

Program Committee

Simon Andrews She�eld Hallam University, UK
Michael Bain University of New South Wales, Australia
Jaume Baixeries Polytechnical University of Catalonia, Spain
Peter Becker The University of Queensland, Australia
Radim Belohlavek Palacky University, Czech Republic
Sadok Ben Yahia Faculty of Sciences, Tunisia
Karell Bertet Université de La Rochelle, France
Claudio Carpineto Fondazione Ugo Bordoni, Italy
Nathalie Caspard Université Paris 12, France
Frithjof Dau SAP, Germany
Guido Dedene Katholieke Universiteit Leuven, Belgium
Stephan Doerfel University of Kassel, Germany
Vincent Duquenne Université Paris 6, France
Alain Gély LITA, Université Paul Verlaine, France
Joachim Hereth DMC GmbH, Germany
Marianne Huchard Université Montpellier 2 and CNRS, France
Tim Kaiser SAP AG, Germany
Mehdi Kaytoue LORIA Nancy, France
Markus Krötzsch The University of Oxford, UK
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Yuri Kudryavcev PMSquare, Australia
Lot� Lakhal LIF, Université Aix-Marseille, France
Wilfried Lex TU Clausthal, Germany
Engelbert Mephu Nguifo LIMOS, Université de Clermont-Ferrand 2, France
Amedeo Napoli LORIA Nancy, France
Lhouari Nourine LIMOS, France
Jan Outrata Palacky University of Olomouc, Czech Republic
Jean-Marc Petit LIRIS, INSA Lyon, France

v

Geert Poels Ghent University, Belgium
Alex Pogel New Mexico State University, USA
Sándor Radeleczki University of Miskolc, Hungary
Olivier Raynaud LIMOS, Université de Clermont-Ferrand 2, France
Camille Roth CNRS/EHESS, France
Mohamed Rouane-Hacene Université du Québec à Montréal, Canada
Dominik �l¦zak University of Warsaw & Infobright, Poland
Laszlo Szathmary University of Debrecen, Hungary
Andreja Tepav£evi¢ University of Novi Sad, Serbia
Stijn Viaene Katholieke Universiteit Leuven, Belgium

External Reviewers

Mikhail Babin, Russia
Philippe Fournier-Viger, Taiwan
Nathalie Girard, France
Tarek Hamrouni, France
Alice Hermann, France

Yury Katkov, Russia
Viet Phan Luong, France
Nikita Romashkin, Russia

Sponsoring Institutions

Amsterdam-Amstelland Police, The Netherlands
IBM, Belgium
OpenConnect Systems, United States
Research Foundation Flanders, Belgium
Vlerick Management School, Belgium

vi

Table of Contents

Composition of L-Fuzzy contexts . 1
Cristina Alcalde, Ana Burusco and Ramon Fuentes-Gonzalez

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 14
Jose Balcazar, Diego García-Saiz and Javier De La Dehesa

Completing Terminological Axioms with Formal Concept Analysis 29
Alexandre Bazin and Jean-Gabriel Ganascia

Structural Properties and Algorthms on the Lattice of Moore Co-Families 41
Laurent Beaudou, Pierre Colomb and Olivier Raynaud

A Tool-Based Set Theoretic Framework for Concept Approximation 53
Zoltán Csajbók and Tamás Mihálydeák

Decision Aiding Software Using FCA . 69
Florent Domenach and Ali Tayari

Analyzing Chat Conversations of Pedosexuals with Temporal Relational
Semantic Systems . 82

Paul Elzinga, Karl Erich Wol�, Jonas Poelmans, Stijn Viaene and

Guido Dedene

Closures and Partial Implications in Educational Data Mining 98
Diego García-Saiz, Jose L. Balcázar and Marta E. Zorrilla

Attribute Exploration in a Fuzzy Setting . 114
Cynthia Vera Glodeanu

On Open Problem � Semantics of the Clone Items . 130
Juraj Macko

Computing the Skyline of a Relational Table Based on a Query Lattice . . 145
Carlo Meghini, Nicolas Spyratos and Tsuyoshi Sugibuchi

Using FCA for Modelling Conceptual Di�culties in Learning Processes . . 161
Uta Priss, Peter Riegler and Nils Jensen

Author Index . 174

vii

Composition of L-Fuzzy contexts

Cristina Alcalde1, Ana Burusco2, and Ramón Fuentes-González2

1 Dpt. Matemática Aplicada. Escuela Universitaria Politécnica
UPV/EHU. Plaza de Europa, 1
20018 - San Sebastián (Spain)

c.alcalde@ehu.es
2 Dpt. Automática y Computación. Universidad Pública de Navarra

Campus de Arrosad́ıa
31006 - Pamplona (Spain)

{burusco,rfuentes}@unavarra.es

Abstract. In this work, we introduce and study the composition of two
L-fuzzy contexts that share the same attribute set. Besides studying its
properties, this composition allows to establish relations between the sets
of objects associated to both L-fuzzy contexts.
We also define, as a particular case, the composition of an L-fuzzy context
with itself.
In all the cases, we show some examples that illustrate the results.

Key words: Formal contexts theory, L-fuzzy contexts, Contexts asso-
ciated with a fuzzy implication operator

1 Introduction

In some situations we have information that relates two sets X and Z to the same
set Y and we want to know if these relations allow us to establish connections
between X and Z. In the present work we will try to deal with the study of this
problem using as tool the L-fuzzy Concepts Theory.

The Formal Concept Analysis developed by Wille ([13]) tries to extract some
information from a binary table that represents a formal context (X,Y,R) with
X and Y being two finite sets (of objects and attributes, respectively) and R ⊆
X × Y . This information is obtained by means of the formal concepts which are
pairs (A,B) with A ⊆ X, B ⊆ Y fulfilling A∗ = B and B∗ = A (where ∗ is
the derivation operator which associates to each object set A the set B of the
attributes related to A, and vice versa). A is the extension and B the intension
of the concept.

The set of the concepts derived from a context (X,Y,R) is a complete lattice
and it is usually represented by a line diagram.

In some previous works ([4],[5]) we defined the L-fuzzy context (L,X, Y,
R), where L is a complete lattice, X and Y the sets of objects and attributes
respectively and R ∈ LX×Y an L-fuzzy relation between the objects and the
attributes, as an extension to the fuzzy case of the Wille’s formal contexts when

2 C. Alcalde et al.

the relation between the objects and the attributes that we want to study takes
values in a complete lattice L. When we work with these L-fuzzy contexts we
use the derivation operators 1 and 2 defined by: For every A ∈ LX , B ∈ LY

A1(y) = inf
x∈X
{I(A(x), R(x, y))}, B2(x) = inf

y∈Y
{I(B(y), R(x, y))}

where I is a fuzzy implication operator defined in (L,≤), I : L × L −→ L,
which is decreasing in its first argument, and, A1 represents, as a fuzzy set, the
attributes related to the objects of A and B2 the objects related to the attributes
of B.

The information of the context is visualized by means of the L-fuzzy concepts
which are pairs (A,A1) ∈ (LX , LY) with A ∈ fix(ϕ) the set of fixed points of the
operator ϕ, being this one defined by the derivation operators 1 and 2 mentioned
above as ϕ(A) = (A1)2 = A12. These pairs, whose first and second components
are the extension and the intension respectively, represent, as a fuzzy set, the
set of objects that share some attributes.

The set L = {(A,A1) : A ∈ fix(ϕ)} with the order relation ≤ defined as:

(A,A1), (C,C1) ∈ L, (A,A1) ≤ (C,C1) if A ≤ C

(or equiv. C1 ≤ A1) is a complete lattice that is said to be the L-fuzzy concept
lattice ([4],[5]).

On the other hand, given A ∈ LX , (or B ∈ LY) we can obtain the derived
L-fuzzy concept applying the defined derivation operators. In the case of the use
of a residuated implication operator (as it holds in this work), the associated
L-fuzzy concept is (A12, A1) (or (B2, B21)).

Other extensions of the Formal Concept Analysis to the fuzzy area are in
[14], [12], [3], [8], [10], [11] and [6].

2 Composed formal contexts

The composition of formal contexts allows to establish relations between the
elements of two sets of objects that share the same attribute set.

Definition 1. Let (X,Y,R1) and (Z, Y,R2) be two formal contexts, the com-
posed formal context is defined as the context (X,Z,R1 ? R2), where ∀(x, z) ∈
X × Z:

R1 ? R2(x, z) =

{
1 if R2(z, y) = 1, ∀y such that R1(x, y) = 1

0 in other case

That is, the object x is related to z in the composed context if z shares all the
attributes of x in the original contexts.

Proposition 1. The relation of the composed context, R1 ? R2, can also be
defined as:

R1 ? R2(x, z) = min
y∈Y
{max{R1′(x, y), R2(z, y)}} ∀(x, z) ∈ X × Z

Composition of L-Fuzzy contexts 3

where R1′ is the negation of the relation R1, that is, R1′(x, y) = (R1(x, y))
′ ∀(x, y) ∈

X × Y .

This property will be helpful in the following sections.

Remark 1. Given the formal contexts (X,Y,R1) and (Z, Y,R2), the relation of
the composed context R1 ? R2 is not necessarily the opposed of the relation
R2 ? R1, that is, in general,

There exists (x, z) ∈ X × Z such that R1 ? R2(x, z) 6= R2 ? R1(z, x)

Example 1. Let us consider the formal contexts (X,Y,R1) and (Z, Y,R2), where
X = {x1, x2, x3}, Y = {y1, y2, y3, y4, y5}, Z = {z1, z2, z3, z4}, and the respective
relations are the following ones:

R1 y1 y2 y3 y4 y5

x1 0 1 1 0 1
x2 1 1 0 1 0
x3 0 0 1 0 1

R2 y1 y2 y3 y4 y5

z1 1 1 0 1 0
z2 0 1 0 0 1
z3 1 1 0 1 1
z4 0 1 1 1 1

If we calculate the composition of the contexts defined above in the two
possible orders, then the obtained relations are:

R1 ? R2 z1 z2 z3 z4

x1 0 0 0 1
x2 1 0 1 0
x3 0 0 0 1

R2 ? R1 x1 x2 x3

z1 0 1 0
z2 1 0 0
z3 0 0 0
z4 0 0 0

and, as can be seen, (R1 ? R2)op 6= R2 ? R1.
This property will be helpful in the following sections.

2.1 Particular case: when a formal context is composed with itself

Let us analyze a particular case where some interesting results are obtained.

Proposition 2. Let (X,Y,R) be a formal context. If (X,Y,R) is composed with
itself, then the obtained context is (X,X,R ? R) where the sets of objects and
attributes are coincident and the relation R ? R is a binary relation defined on
X as follows:

R ? R(x1, x2) = min
y∈Y
{max{R′(x1, y), R(x2, y)}} ∀(x1, x2) ∈ X ×X

4 C. Alcalde et al.

Remark 2. The object x1 is related to attribute x2 in the composed context, if
in the original context the object x2 has at least the same attributes than the
object x1.

Example 2. Returning to the formal context (X,Y,R) that we studied in the
previous example, where the relation R was:

R y1 y2 y3 y4 y5

x1 0 1 1 0 1
x2 1 1 0 1 0
x3 0 0 1 0 1

The composition of this context with itself is the context (X,X,R ? R), and
relation is given by the table:

R ? R x1 x2 x3

x1 1 0 0
x2 0 1 0
x3 1 0 1

Proposition 3. The relation R ? R obtained by the composition of the formal
context (X,Y,R) with itself is a preorder relation defined on the object set X.

Proof. As a consequence of the definition, it is immediate to prove that:

1. The relation R ? R is reflexive.
2. The relation R ? R is transitive.

ut

Remark 3. It is a simple verification to see that:

– The relation R?R is not, in general, a symmetric relation. To be symmetric
it is necessary that whenever an object x2 in the original context (X,Y,R)
has all the attributes of another object x1, both objects have the same set
of attributes.

– The relation R ? R is not antisymmetric either. Therefore, R ? R is not, in
general, an order relation.

3 Extension to the L-fuzzy context case

The expression given in proposition 1 can be generalized to the fuzzy case sub-
stituting the maximum operator by a t-conorm S and taking a strong negation
′. In this way, we can define the compositions of two L-fuzzy contexts as follows:

Composition of L-Fuzzy contexts 5

Definition 2. Let (L,X, Y,R1) and (L,Z, Y,R2) be two L-fuzzy contexts, we
define the composed L-fuzzy context (L,X,Z,R1 ? R2), where:

R1 ? R2(x, z) = inf
y∈Y
{S(R1′(x, y), R2(z, y))} ∀(x, z) ∈ X × Z

with S being a t-conorm defined in the lattice L.

If we remind the definition of a fuzzy S-implication, the previous one can be
expressed in this way:

Definition 3. Let (L,X, Y,R1) and (L,Z, Y,R2) be two L-fuzzy contexts, and
I an S-implication operator. We define the composed L-fuzzy context (L,X,Z,
R1 ? R2), where:

R1 ? R2(x, z) = inf
y∈Y
{I(R1(x, y), R2(z, y))} ∀(x, z) ∈ X × Z

We can generalize this definition to any fuzzy implication as we will see next.

3.1 Composition of L-fuzzy contexts associated with an implication
operator

Definition 4. Let (L,X, Y,R1) and (L,Z, Y,R2) be two L-fuzzy contexts, and
let I be a fuzzy implication operator, we define the composed L-fuzzy context
associated with the implication I as the L-fuzzy context (L,X,Z,R1 ?I R2),
where:

R1 ?I R2(x, z) = inf
y∈Y
{I(R1(x, y), R2(z, y))} ∀(x, z) ∈ X × Z

Remark 4. If we remind the definition of the triangle subproduct operator / given
by [9], one of the standard operators in the fuzzy relation theory which has been
previously used in diverse works [1, 2], we can see that the composed relation
defined here can be written as:

R1 ?I R2 = R1 / (R2)op

As can be observed, also in this case a similar result to the crisp case is obtained.

Proposition 4. Let (L,X, Y,R1) and (L,Z, Y,R2) be two L-fuzzy contexts. Then,
the relation of the composed L-fuzzy context (L,X,Z,R1?IR2) is not, in general,
the opposite of the relation of the composed L-fuzzy context (L,Z,X,R2 ?I R1).

(R1 ?I R2)op 6= R2 ?I R1

That is, if we change the order of the composition, the obtained relation between
the elements of X and Z is different.

6 C. Alcalde et al.

Proof. Given two L-fuzzy contexts (L,X, Y,R1) and (L,Z, Y,R2), and a fuzzy
implication operator I, the relation of the composed L-fuzzy context (L,X,Z,
R1 ?I R2) is:

R1 ?I R2(x, z) = inf
y∈Y
{I(R1(x, y), R2(z, y))} ∀(x, z) ∈ X × Z

On the other hand, the relation of the composed L-fuzzy context (L,Z,X,
R2 ?I R1) is defined as:

R2 ?I R1(z, x) = inf
y∈Y
{I(R2(z, y), R1(x, y))} ∀(z, x) ∈ Z ×X

As, in general, given a fuzzy implication I(a, b) 6= I(b, a), then these relations
are not opposed. ut

Example 3. We have a company of temporary work in which we want to ana-
lyze the suitability of some candidates to obtain some offered employments. The
company knows the requirements of knowledge to occupy each one of the posi-
tions, represented by means of the L-fuzzy context (L,X, Y,R1), where the set of
objects X is the set of employments, the attributes Y the necessary knowledge,
and the relation among them appears in Table 1 with values in the chain L={0,
0.1, 0.2, . . . , 1}.

Table 1. The requirements of knowledge to obtain each one of the employments.

R1 computer science accounting mechanics cooking

domestic helper 0.1 0.3 0.1 1
waiter 0 0.4 0 0.7

accountant 0.9 1 0 0
car salesman 0.5 0.7 0.9 0

On the other hand, we have the knowledge of some candidates for these
positions, represented by the L-fuzzy context (L,Z, Y,R2) in which the objects
are the different candidates to occupy the jobs, the attributes the necessary
knowledge and the relation among them is given by Table 2.

A candidate will be suitable to obtain a job if he owns all the knowledge
required in this position. Therefore, to analyze what candidate is adapted for
each job, we would use the composed L-fuzzy context (L,X,Z,R1 ? R2). The
relation of this composed context, calculated using the Lukasiewicz implication
operator, is the represented in Table 3.

To obtain the information of this L-fuzzy context we will use the ordinary
tools of the L-fuzzy Concept Theory to analyze the associated L-fuzzy concepts.
Thus, for example, if we want to find the best candidate to occupy the job of
waiter, we take the set:

Composition of L-Fuzzy contexts 7

Table 2. Knowledge of the candidates.

R2 computer science accounting mechanics cooking

C1 0.5 0.8 0.3 0.6
C2 0.2 0.5 0.1 1
C3 0 0.2 0 0.3
C4 0.9 0.4 0.1 0.5
C5 0.7 0.5 0.2 0.1

Table 3. Suitability of each candidate for each position.

R1 ? R2 C1 C2 C3 C4 C5

domestic helper 0.6 1 0.3 0.5 0.1
waiter 0.9 1 0.6 0.8 0.4

accountant 0.6 0.3 0.1 0.4 0.5
car salesman 0.4 0.2 0.5 0.2 0.3

{domestic helper/0,waiter/1, accountant/0, car salesman/0}

and we obtain the derived L-fuzzy concept, whose intension is:

{C1/0.9, C2/1, C3/0.6, C4/0.8, C5/0.4}

If we look at the attributes with the highest membership degree, we can
deduce that the most suitable candidate for the job of waiter is C2, followed by
C1 and C4.

If, for instance, we want to find the best person to be accountant in a restau-
rant that also could work as a waiter, we take the set

{domestic helper/0,waiter/1, accountant/1, car salesman/0}

and the derived L-fuzzy concept is

{C1/0.6, C2/0.3, C3/0.1, C4/0.4, C5/0.4}

where we can see that the most suitable candidate is C2.
On the other hand, if our interest is to analyze which of the jobs is the

most suitable for each candidate, we do the composition in the contrary order,
obtaining the L-fuzzy context (L,Z,X,R2 ? R1), where the composed relation
is represented in Table 4.

We can see in this example that both compositions are different: A candidate
can be the best to occupy a concrete job, but that job need not be the most
appropriate for this candidate.

8 C. Alcalde et al.

Table 4. Suitability of each employment for each candidate.

R2 ? R1 domestic helper waiter accountant car salesman

C1 0.5 0.5 0.4 0.4
C2 0.8 0.7 0 0
C3 0.3 0.2 0.2 0.7
C4 0.2 0.1 0.5 0.5
C5 0.4 0.3 0.8 0.8

The following result will be of interest to study the L-fuzzy concepts associ-
ated to the objects of the composed L-fuzzy context.

Before to proceed with the proposition, we are going to introduce a new
notation: If the subscripts point out the derivation operators and the superscripts
the L-fuzzy contexts where they are applied, then A ?©

1 is the derived set from A
obtained in the composed L-fuzzy context, A 1©

1 is the derived set obtained in the
L-fuzzy context (L,X, Y,R1), and (A 1©

1) 2©
2 the derived set of the last one in the

L-fuzzy context (L,Z, Y,R2)

Proposition 5. If the implication operator I is residuated and we consider the
set:

A(x) =

{
1 if x = xi

0 in other case

then, the intension of the L-fuzzy concept obtained in the composed L-fuzzy con-
text (L,X,Z,R1 ?I R2) from the set A, is equal to the extension of the L-fuzzy
concept obtained in (L,Z, Y,R2) from the intension of the L-fuzzy concept ob-
tained in (L,X, Y,R1) from A. That is, we obtain the same fuzzy set Z applying
the derivation operators twice (once in each one of the contexts that make up the
composition), or once in the composed context.

Moreover, it is verify that:

∀z ∈ Z, A ?©
1 (z) = (A 1©

1) 2©
2 (z) = R1 ?I R2(xi, z)

That is, the membership degrees obtained are the values of the row of R1 ?I R2
that corresponds to the object xi.

Proof. Let be A(x) =

{
1 if x = xi

0 in other case
, the intension of the L-fuzzy concept

obtained from A in the context (L,X, Y,R1) is the L-fuzzy subset of Y :

A 1©
1 (y) = inf

x∈X
{I(A(x), R1(x, y))}, ∀y ∈ Y.

As the implication I is residuated, ∀a ∈ L it is verified that I(0, a) = 1 and
I(1, a) = a, thus,

A 1©
1 (y) = R1(xi, y), ∀y ∈ Y.

Composition of L-Fuzzy contexts 9

Taking now the set A 1©
1 , we obtain the derived L-fuzzy concept in the L-fuzzy

context (L,Z, Y,R2), the extension of which is:

(A 1©
1) 2©

2 (z) = inf
y∈Y
{I(A 1©

1 (y), R2(z, y))} =

= inf
y∈Y
{I(R1(xi, y), R2(z, y))} = R1 ?I R2(xi, z), ∀z ∈ Z.

On the other hand, the intension of the obtained L-fuzzy concept in the
composed L-fuzzy context from A is:

A ?©
1 (z) = inf

x∈X
{I(A(x), R1 ?I R2(x, y))} = R1 ?I R2(xi, z), ∀z ∈ Z.

ut
Example 4. If we come back to example 3, we have analyzed which candidate is
the most suitable for the job of waiter.

To do this, in the L-fuzzy context (L,X,Z,R1 ? R2) (see Table 3) we have
taken the set

A = {domestic helper/0,waiter/1, accountant/0, car salesman/0}

and we have calculated the closed L-fuzzy concept, where the fuzzy intension is:

A ?©
1 = {C1/0.9, C2/1, C3/0.6, C4/0.8, C5/0.4}

And here, if we look at those attributes whose membership degrees stand out
from the others, we deduce that the most suitable candidates to be good waiters
were, C2, C1 and C4, in this order.

The same result is obtained if we take the L-fuzzy context (L,X, Y,R1) (see
Table1) and we calculate the L-fuzzy concept from A, which intension is:

A 1©
1 = {computer science/0, accounting/0.4,mechanics/0, cooking/0.7}

And, from this fuzzy set we obtain in the L-fuzzy context (L,Z, Y,R2) (see
Table2) the derived L-fuzzy concept the extension of which is:

(A 1©
1) 2©

2 = {C1/0.9, C2/1, C3/0.6, C4/0.8, C5/0.4}

As can be seen, the result is the same that the obtained in the composed L-fuzzy
context.

3.2 Composition of an L-fuzzy context with itself

The composition of an L-fuzzy context (L,X, Y,R) with itself will allow us to
set up some relationships between the elements of the object set X.

Proposition 6. If I is a residuated implication associated with a left continuous
t-conorm T , then the relation R?IR that results of the composition of (L,X, Y,R)
with itself, associated with the implication I, constitutes a fuzzy preorder relation
defined in the object set X.

10 C. Alcalde et al.

Proof. 1. First, we prove that it is a reflexive relation, that is, the relation
verifies:

∀x ∈ X, R ?I R(x, x) = 1.

By the definition of the composition associated with an implication operator,
we have

∀x ∈ X, R ?I R(x, x) = inf
y∈Y
{I(R(x, y), R(x, y))},

and, as any residuated implication verifies that I(a, a) = 1, ∀a ∈ L, then

∀x ∈ X, R ?I R(x, x) = 1.

2. To see that R ?I R is a T -transitive relation, we have to prove that

∀x, t, z ∈ X, T (R ?I R(x, t), R ?I R(t, z)) ≤ R ?I R(x, z),

that is, the following inequality must be verified:

T

(
inf
α∈Y
{I(R(x, α), R(t, α))}, inf

β∈Y
{I(R(t, β), R(z, β))}

)
≤

inf
α∈Y
{I(R(x, α), R(z, α))}.

By the monotony of the t-norm, we have:

T

(
inf
α∈Y
{I(R(x, α), R(t, α))}, inf

β∈Y
{I(R(t, β), R(z, β))}

)
≤

inf
α∈Y

{
T

(
I(R(x, α), R(t, α)), inf

β∈Y
{I(R(t, β), R(z, β))}

)}
≤

inf
α∈Y
{T (I(R(x, α), R(t, α)), I(R(t, α), R(z, α)))} .

As the used t-norm T is left-continuous, we know that [7]

∀a, b, c ∈ [0, 1], T (I(a, b), I(b, c)) ≤ I(a, c),

and it is verified that:

T

(
inf
α∈Y
{I(R(x, α), R(t, α))}, inf

β∈Y
{I(R(t, β), R(z, β))}

)
≤

inf
α∈Y
{I(R(x, α), R(z, α))}.

ut

Remark 5. The relation R ?I R is neither symmetric nor antisymmetric and
then, is neither an equivalence nor an order relation. For instance, if we take the
relation R given by the table:

Composition of L-Fuzzy contexts 11

R y1 y2 y3 y4

x1 0.1 0.3 0.5 0.1
x2 0.8 0.2 0.8 0.2
x3 0.4 0.7 0 0.1

then the relation R ?I R associated with the Lukasiewicz implication operator
is:

R ?I R x1 x2 x3

x1 1 0.9 0.5
x2 0.3 1 0.2
x3 0.5 0.5 1

and, as can be seen, is neither a symmetric nor an antisymmetric relation.

Remark 6. If we are using a non residuated implication operator, not always a
fuzzy preorder relation is obtained. For instance, if we take the previous relation
R and we do the composition R ?I R associated with the Kleene-Dienes impli-
cation (that does not verify I(x, x) = 1), then we obtain the following relation:

R ?I R x1 x2 x3

x1 0.5 0.7 0.5
x2 0.2 0.2 0.2
x3 0.3 0.3 0.3

that is neither a reflexive nor a fuzzy preorder relation.

The application of this composition can be very interesting in social or work
relations as we can see next:

Example 5. There are four different manufacture processes in a factory and we
want to organize the workers so that each of them is subordinate of another one
if its capacity to carry out each one of the processes of manufacture is smaller.

To model this problem, we are going to take the L-fuzzy context (L,X, Y,R),
where the set of objects X is formed by the workers {O1, O2, O3, O4, O5}, the
attributes are the different manufacture processes {P1, P2, P3, P4}, and the rela-
tion R represents the capacity of each one of the workers to carry out each one
of the processes, in a scale of 0 to 1 (See Table 5).

The L-fuzzy context that results of the composition of this context with itself
allow us to define relations boss-subordinate between the workers so that the
relation R ? R(x, y) of the compound context (associated with the Lukasiewicz
implication) gives the degree in which the worker x is subordinate of the worker
y. (See Table 6).

12 C. Alcalde et al.

Table 5. Capacity of the workers to carry out each one of the manufacture processes

R P1 P2 P3 P4

O1 0.7 1 0.3 0
O2 0.3 0.8 0.9 0.4
O3 0.1 0.2 1 0.5
O4 0.5 0.3 0.2 0.4
O5 1 0.5 0.8 1

Table 6. Relation ”be subordinate of”.

R ? R O1 O2 O3 O4 O5

O1 1 0.6 0.2 0.3 0.5
O2 0.4 1 0.4 0.3 0.7
O3 0.3 0.9 1 0.2 0.8
O4 0.6 0.8 0.6 1 1
O5 0 0.3 0.1 0.4 1

This will allow us, for example, to choose bosses in the group watching the
columns of the obtained relation: In this case, we could choose as bosses of the
workers to O2 and O5 because both have as subordinate O3 and O4 and the
subordination degrees are the biggest values of the columns.

4 Conclusions and future work

This work constitutes the first approach to the problem of composition of L-
fuzzy contexts. In future works we will use these results in the resolution of
other problems that seem interesting to us:

- First, this composition will be useful to study the chained L-fuzzy contexts,
that is, to find relations between two defined contexts where the set of attributes
of the first context is the same that the set of objects of the second one.

- On the other hand, we think that it will be useful to define the compo-
sition of L-fuzzy contexts in the interval-valued case in order to study certain
situations.

Acknowledgements

This work has been partially supported by the Research Group “Intelligent Sys-
tems and Energy (SI+E)” of the Basque Government, under Grant IT519-10.

References

1. C. Alcalde, A. Burusco and R. Fuentes-González, “Analysis of certain L-Fuzzy
relational equations and the study of its solutions by means of the L-Fuzzy Concept

Composition of L-Fuzzy contexts 13

Theory.” International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems. 20 No.1 (2012), pp. 21–40.

2. E. Bartl and R. Bělohlávek, “Sup-t-norm and inf-residuum are a single type of
relational equations.” International Journal of General Systems. 40 No.6 (2011),
pp. 599–609.

3. R. Bělohlávek, “Fuzzy Galois connections and fuzzy concept lattices: from binary
relations to conceptual structures”, in: Novak V., Perfileva I. (eds.): Discovering
the World with Fuzzy Logic, Physica-Verlag (2000), pp. 462–494.

4. A. Burusco and R. Fuentes-González, “The Study of the L-Fuzzy Concept Lattice.”
Mathware and Soft Computing. 1 No.3 (1994), pp. 209–218.

5. A. Burusco and R. Fuentes-González, “Construction of the L-Fuzzy Concept Lat-
tice.” Fuzzy Sets and Systems. 97 No.1 (1998), pp. 109–114.

6. Y. Djouadi, D. Dubois and H. Prade, “On the possible meanings of degrees when
making formal concept analysis fuzzy.” EUROFUSE workshop. Preference Mod-
elling and Decision Analysis. Pamplona, Sep 2009, pp. 253–258.

7. J. Fodor, M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision
Support. Theory and Decision Library (Kluwer Academic Publishers), Dor-
drecht/Boston/London (1994).

8. A. Jaoua, F. Alvi, S. Elloumi, S. B. Yahia. “Galois Connection in Fuzzy Binary
Relations.” Applications for Discovering Association Rules and Decision Making.
RelMiCS (2000), pp. 141–149.

9. L. J. Kohout, W. Bandler, Use of fuzzy relations in Knowledge representation, ac-
quisition, and processing, in: L. Zadeh, J. Kacprzyk (Eds.), Fuzzy Logic for Man-
agement of Uncertainty, 1992, pp. 415-435.

10. S. Krajči. “A generalized concept lattice.” Logic J. IGPL 13 (5) (2005) pp. 543–550.
11. J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. “On multi-adjoint concept lat-

tices: definition and representation theorem.” Lect. Notes in Artificial Intelligence,
4390,(2007), pp 197–209.

12. S. Pollandt, Fuzzy Begriffe: Formale Begriffsanalyse unscharfer Daten, Springer
(1997).

13. R. Wille. “Restructuring lattice theory: an approach based on hierarchies of con-
cepts”,in: Rival I.(ed.),Ordered Sets, Reidel, Dordrecht-Boston (1982), pp. 445–470.

14. K.E. Wolff. “Conceptual interpretation of fuzzy theory”, in: Proc. 6th European
Congress on Intelligent techniques and Soft computing, 1, (1998), pp. 555–562.

Iterator-based Algorithms in Self-Tuning
Discovery of Partial Implications

José L. Balcázar1, Diego Garćıa-Sáiz2, and Javier de la Dehesa2

1 LSI Department, UPC, Campus Nord, Barcelona
jose.luis.balcazar@upc.edu

2 Mathematics, Statistics and Computation Department, University of Cantabria
Avda. de los Castros s/n, Santander, Spain

garciasad@unican.es

Abstract. We describe the internal algorithmics of our recent imple-
mentation of a closure-based self-tuning associator: yacaree. This system
is designed so as not to request the user to specify any threshold. In
order to avoid the need of a support threshold, we introduce an algo-
rithm that constructs closed sets in order of decreasing support; we are
not aware of any similar previous algorithm. In order not to overwhelm
the user with large quantities of partial implications, our system filters
the output according to a recently studied lattice-closure-based notion
of confidence boost, and self-adjusts the threshold for that rule quality
measure as well. As a consequence, the necessary algorithmics interact in
complicated ways. In order to control this interaction, we have resorted
to a well-known, powerful conceptual tool, called Iterators: this notion
allows us to distribute control among the various algorithms at play in
a relatively simple manner, leading to a fully operative, open-source,
efficient system for discovery of partial implications in relational data.

Keywords: Association mining, parameter-free mining, iterators, Python

.

1 Introduction

The task of identifying which implications hold in a given dataset has received
already a great deal of attention [1]. Since [2], also the problem of identifying
partial implications has been considered. Major impulse was received with the
proposal of “mining association rules”, a very closely related concept. A majority
of existing association mining programs follow a well-established scheme [3], ac-
cording to which the user provides a dataset, a support constraint, a confidence
constraint, and, optionally, in most modern implementations, further constraints
on other rule quality evaluation measures such as lift or leverage (a survey of
quality evaluation measures for partial implications is [4]). A wealth of algo-
rithms, of which the most famous is apriori, have been proposed to perform
association mining.

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 15

Besides helping the algorithm to focus on hopefully useful partial implica-
tions, the support constraint has an additional role: by restricting the process
to frequent (or frequent closed) itemsets, the antimonotonicity property of the
support threshold defines a limited search space for exploration and avoids the
often too wide space of the whole powerset of items.

Instead, however, the price becomes a burden on the user, who must supply
thresholds on rule evaluation measures and on support. Rule measure thresh-
olds may be difficult to set correctly, but at least they offer often a “semantic”
interpretation that guides the choice; for instance, confidence is (the frequentist
approximation to) the conditional probability of the consequent of the rule, given
the antecedent, whereas lift and leverage refer to the (multiplicative or additive,
respectively) deviation from independence of antecedent and consequent. But
support thresholds are known to be very difficult to set right. Some smallish
datasets are so dense that any exploration below 95% support, on our current
technology, leads to a not always graceful breakdown of the associator program,
whereas other, large but sparse datasets hardly yield any association rule un-
less the support is set at quantities as low as 0.1%, spanning a factor of almost
one thousand; and, in order to set the “right” support threshold (whatever that
means), no intuitive guidance is currently known, except for the rather trivial
one of trying various supports and monitoring the number of resulting rules and
the running time and memory needed.

The Weka apriori implementation automates partially the process, as follows:
it explores repeatedly at several support levels, reducing the threshold from one
run to the next by a “delta” parameter (to be set as well by the user), until a given
number of rules has been gathered. Inspired by this idea, but keeping our focus in
avoiding user-set parameters, we are developing an alternative association miner.
It includes an algorithm that explores closed itemsets in order of decreasing
support. This algorithm is similar in spirit to ChARM [5], except that some of
the accelerations of that algorithm require ordering some itemsets by increasing
support, which becomes inapplicable in our case. Additionally, our algorithm
keeps adjusting automatically the support bound as necessary so as to be able
to proceed with the exploration within the available memory resources. This
is, of course, more expensive in computation time, compared to a traditional
exploration with the “right” support threshold, as the number of closed frequent
sets that can be filtered out right away is much smaller; on the other hand,
no one can tell ahead of time which is the “right” support threshold, and our
alternative spares the user the need of guessing it. To our knowledge, this is the
first algorithm available for mining closed sets in order of descending support
and without employing a user-fixed support threshold.

Similarly, in order to spare the user the choice of rule measure thresholds,
we employ a somewhat complex (and slightly slower to evaluate) measure, the
closure-based confidence boost, for which our previous work has led to useful,
implementable bounds as well as to a specific form of self-tuning [6]. It can be
proved that this quantity is bounded by a related, easy to compute quantity:
namely, the closure-based confidence boost is always less than or equal to the

16 José L. Balcázar et al.

support ratio, introduced (with a less prononceable name) in [7], and defined
below; this bound allows us to “push” into the closure mining process a constraint
on the support ratio that spares computation of rules that will fail the rule
measure threshold. We do this by postponing the consideration of the closed
sets that, upon processing, would give rise only to partial implications below the
confidence boost threshold.

As indicated, our algorithm self-tunes this threshold, which starts at a some-
what selective level, by lowering it in case the output rules show it appropriate.
Then, the support ratio in the closure miner is to follow suit: the constraint is to
be pushed into the closure mining process with the new value. This may mean
that previously discarded closures are to be now considered. Therefore, we must
reconcile four processes: one of mining closed frequent sets in order of decreas-
ing support, filtering them according to their support ratio; two further ones
that change, along the way, respectively, the support threshold and the support
ratio threshold; and the one of obtaining the rules themselves from the closed
itemsets. Unfortunately, these processes interfere very heavily with each other.
Closed sets are the first objects to be mined from the dataset, and are to be
processed in order of decreasing support to obtain rules from them, but they are
to be processed only if they have both high enough support, and high enough
support ratio. Closed sets of high support and low support ratio, however, cannot
be simply discarded: a future decrease of the self-adjusting rule measure bound
may require us to “fish” them back in, as a consequence of evaluations made
“at the end” of the process upon evaluating rules; likewise, rules of low closure-
based confidence boost need to be kept on hold instead of discarded, so as to
be produced if, later, they turn out to clear the threshold after adjusting it to a
lower level. The picture gains an additional complication from the fact that con-
structing partial implications requires not only the list of frequent closures, but
also the Hasse edges that constitute the corresponding Formal Concept Lattice.

As a consequence, the varying thresholds make it difficult to organize the
architecture of the software system in the traditional form of, first, mining the
lattice of frequent closures and, then, extracting rules from them. We describe
here how iterators offer a simple and efficient solution for the organization of
our partial implication miner yacaree, available at SourceForge and shown at
the demo track of a recent conference [8]. The details of the implementation are
described here for the first time.

2 Concepts, Notation, and Overview

In our technological context (pure Python), “generators” constitute one of the
ways of obtaining iterators. An iterator constructed in this way is a method (in
the object-oriented sense) containing, anywere inside, the “yield” instruction;
most often, this instruction is inside some loop. This instruction acts as a “re-
turn” instruction for the iterator, except that its whole status, including values
of local variables and program counter, is stored, and put back into place at the
next call to the method. Thus, we obtain a “lazy” method that gives us, one

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 17

by one, a sequence of values, but only computes one more value whenever it is
called from the “consumer” that needs these values.

Generators as a comfortable way of constructing iterators are available only
in a handful of platforms: several quite specialized lazy functional programming
languages offer them, but, among the most common programming languages,
only Python and C# include generators. Java or C++ offer a mere “iterator”
interface that simply states that classes implementing iterators must offer, with
specific names, the natural operations to iterate over them, but the notion of
generators to program them easily is not available.

We move on to describe the essentials of our system, and the way iterators
defined by means of generators allow us to organize, in a clear and simple way,
the various processes involved.

A given set of available items U is assumed; its subsets are called itemsets.
We will denote itemsets by capital letters from the end of the alphabet, and use
juxtaposition to denote union of itemsets, as in XY . The inclusion sign as in
X ⊂ Y denotes proper subset, whereas improper inclusion is denoted X ⊆ Y .
For a given dataset D, consisting of n transactions, each of which is an itemset
labeled with a unique transaction identifier, we define the support sup(X) of an
itemsetX as the cardinality of the set of transactions that containX. Sometimes,
the support is measured “normalized” by dividing by the dataset size; then, it
is an empirical approximation to the probability of the event that the itemset
appears in a “random” transaction. Except where explicitly indicated, all our
uses of support will take the form of ratios, and, therefore, it does not matter at
all whether they come absolute or normalized.

An association rule is an ordered pair of itemsets, often written X → Y .
The confidence c(X → Y) of rule X → Y is sup(XY)/sup(X). We will refer
occasionally below to a popular measure of deviation from independence, often
named lift : assuming X ∩ Y = ∅, the lift of X → Y is

sup(XY)

sup(X) sup(Y)

where all three supports are assumed normalized (if they are not, then the
dataset size must of course appear as an extra factor in the numerator).

An itemset X is called frequent if its support is greater than or equal to
some user-defined threshold: sup(X) > τ . We often assume that τ is known; no
support bound is implemented by setting τ = 0. Our algorithms will attempt
at self-tuning τ to an appropriate value without concourse of the user. Given
an itemset X ⊆ U , its closure X of X is the maximal set (with respect to set
inclusion) Y ⊆ U such thatX ⊆ Y and sup(X) = sup(Y). It is easy to see thatX
is unique. An itemset X is closed if X = X. Closure operators are characterized
by the three properties of monotonicity, idempotency, and extensivity.

The support ratio was essentially employed first, to our knowledge, in [7],
where, together with other similar quotients, it was introduced with the aim
of providing a faster algorithm for computing representative rules. The support

18 José L. Balcázar et al.

ratio of an association rule X → Y is that of the itemset XY , defined as follows:

σ(X → Y) = σ(XY) =
sup(XY)

max{sup(Z) | sup(Z) > τ, XY ⊂ Z} .

For many quality measures for partial implications, including support, con-
fidence, and closure-based confidence boost (to be defined momentarily), the
relevant supports turn out to be the support of the antecedent and the support
of the union of antecedent and consequent. As these are captured by the corre-
sponding closures, we deem inequivalent two rules X → Y and X ′ → Y ′ exactly
when they are not “mutually redundant” with respect to the closure space de-
fined by the dataset: either X 6= X ′, or XY 6= X ′Y ′. We denote that fact as
(X → Y) 6≡ (X ′ → Y ′).

We now assume sup(XY) > τ . As indicated, our system keeps a varying
threshold on the following rule evaluation measure: β(X → Y) =

c(X → Y)

max{c(X ′ → Y ′) | (X → Y) 6≡ (X ′ → Y ′), sup(X ′Y ′) > τ, X ′ ⊆ X, Y ⊆ X ′Y ′ .

This notion, known as “closure-based confidence boost”, as well as the “plain
confidence boost”, which is a simpler variant where the closure operator reduces
to the identity, are studied in depth in [6]. Intuitively, this is a relative, instead
of absolute, form of confidence: we are less interested in a partial implication
having very similar confidence to that of a simpler one. A related formula mea-
sures relative confidence with respect to logically stronger partial implications
(confidence width, see [6]); the formula just given seems to work better in prac-
tice. For the value of this measure to be nontrivial, XY must be a closed set;
the following inequality holds:

Proposition 1. β(X → Y) ≤ σ(X → Y).

The threshold on β(X → Y) is self-adjusted along the mining process, on the
basis of several properties such as coincidence with lift under certain conditions;
all these details and properties are described in [6].

2.1 Architecture of yacaree

The diagram in Figure 1 shows the essentials of the class structure, for easier
reference along the description of the iterators. For simplicity, a number of ad-
ditional classes existing in the system are not shown. A couple of them, added
recently, find minimal generators via standard means and implement a plain
confidence boost version appropriate for full-confidence implications; their al-
gorithmics are not novel, pose no challenge, and are omitted here. We are also
omitting discussion of classes like the Dataset class, some heap-like auxiliary
data structures, user interfaces, and a class capturing a few static values, as
their role in our description is minor or easy to understand (or both).

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 19

Fig. 1. Partial class diagram of the associator

2.2 Class Overview

We give a brief explanation of the roles of the classes given in the diagram.
Details about their main methods (the corresponding iterators) come below.

Class ItemSet keeps the information and methods to prettyprint itemsets,
including information such as support; it inherits from sets all set-theoretic op-
erations. Class Rule keeps both antecedent and consequent (technically, it keeps
the antecedent and the union of antecedent and consequent, as in this case the
latter is always closed, which allows for more efficient processing), and is able to
provide rule evaluation measures such as confidence or lift.

Class ClMiner runs the actual closure mining, with some auxiliary methods
to handle all details. Its main method is the iterator mine closures() (described
below) which yields, one by one and upon being called, all closed sets having
support above the threshold, in order of decreasing support. This “decreasing
support” condition allows us to increase the support threshold, if necessary, to
continue the exploration. As explained below, when the internal data structures
of the closure miner are about to overflow, the support threshold is increased in
such a way that half the closures found so far and still pending consideration
are discarded.

20 José L. Balcázar et al.

Class Lattice runs its own iterator, candidate closures(), which, in turn, calls
mine closures() as new closed sets become needed. Its main task is to call meth-
ods that implement the algorithms from [9] and actually build the lattice of
closed sets, so that further iterators can expect to receive closures for which the
immediate predecessors have been identified. Version 1.0 of yacaree employed
the Border algorithm but in version 1.1 we have implemented the faster al-
gorithm iPred and indeed obtained around a 10% acceleration. The fact that
iPred could be employed in enumerations of closures by decreasing support was
proved in [10]. See [11] for futher discussions.

Additionally, the support ratio of each closed set is also computed here, and
the class offers yet another iterator that provides, for each closure, all the prede-
cessor closures having support above a local, additional support threshold that
can be specified at call time. In this way, we obtain all the candidate antecedents
for a given closed set as potential consequent. This internal iterator amounts to
a plain depth-first search, so that we do not discuss it further here.

Within class Lattice, two heap-structured lists keep, respectively, the closures
that are ready to be passed on as they clear both the support and the support
ratio thresholds (Lattice.ready) and the closures that clear the support threshold
but fail the support ratio threshold (Lattice.freezer); these will be recovered in
case a decrease of the confidence boost bound is to affect the support ratio
pruning.

Finally, class RuleMiner is in charge of offering the system an iterator over all
the association rules passing the current thresholds of support and closure-based
confidence boost: mine rules(). Its usage allows one to include easily further
checks of confidence, lift, or any other such quantity.

3 Details

This section provides details of the main iterators and their combined use to
attain our goals.

3.1 ClMiner.mine closures()

The closure miner is the iterator that supports the whole scheme; it follows a
“best-first” strategy, where here “best” means “highest support”. We maintain a
heap containing closures already generated, but which have not been expanded
yet to generate further closures after them. The heap can provide the one of
highest support in logarithmic time, as this is the closure that comes next. Then,
as this closure is passed on to the lattice constructor, items (rather, closures of
singletons) are added to it in all possible ways, and closure operations are applied
in order to generate its closed successors, which are added to the heap unless
they were already in it. The decreasing support condition ensures that they were
never visited before. For simplicity, we omit discussing the particular case of the
empty set, which, if closed, is to be traversed first, separately.

1: identify closures of singletons

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 21

2: organize them into a maxheap according to support
3: while heap nonempty do
4: consider increasing the support threshold by monitoring the available

memory
5: if the support threshold must be raised then
6: kill from the heap pending closures of support below new threshold,

which is chosen so that the size of the heap halves
7: end if
8: pop from heap the max-support itemset
9: yield it

10: try to extend it with all singleton closures
11: for such extensions with sufficient support do
12: if their closure is new then
13: add it to the heap
14: end if
15: end for
16: end while

In order to clarify how this algorithm works, we develop the following ex-
ample. Consider a dataset with 24 transactions over universe U = {a, b, c, d, e}
of 5 items: {abcde, bcde × 2, abe, cde, be, ae × 3, ab × 4, cd × 6, b × 2, a × 3}. For
this dataset, there are 12 closed sets, which we enumerate here with their cor-
responding supports: ∅/24, a/12, b/11, cd/10, e/9, ab/6, ae/5, be/5, cde/4, bcde/3,
abe/2, abcde/1. The empty set is treated first, separately, as indicated. Then, the
four next closures correspond to closures of singletons (the closures of c and d
coincide) and form an initial heap, containing: [a/12, b/11, cd/10, e/9].

The heap provides a as next closure in descending support; it is passed
on to further processing at the “yield” instruction, and it is expanded with
singleton closures in all possible ways, enlarging the heap into containing six
pending closures: [b/11, cd/10, e/9, ab/6, ae/5, abcde/1]: each of the new sets in the
heap is obtained by adding to a the closure of a singleton, and closing the
result. The next closure is b, which goes into the “yield” instruction and, subse-
quently, generates two further closures to be added to the heap, which becomes:
[cd/10, e/9, ab/6, ae/5, be/5, bcde/3, abcde/1]. The closure ab generated from b is
omitted, as it is repeated since it was already generated from a.

For illustration purposes, we assume now that the length of the heap, cur-
rently 7, is deemed too large. Of course, in a toy example like this one there is
no need of moving up the support threshold, but let’s do it anyway: assume that
the test indicates that the heap is occupying too much memory, incurring in a
risk of soon-coming overflow. Then, the support is raised as much as necessary
so as to halve the length of the heap. Pending closures of support 5 or less would
be discarded from the heap, the support threshold would be set at 6, and only
three closures would remain in the heap: [cd/10, e/9, ab/6]. Each of them would be
processed in turn, given onwards by the “yield” instruction, and expanded with
all closures of singletons; in all cases, we will find that expanding any of them
with a singleton closure leads to a closure of support below 6, which is therefore

22 José L. Balcázar et al.

omitted as it does not clear the threshold. Eventually, these three closures in the
heap are passed on, and the iterator will have traversed all closures of support
6 or higher.

As a different run, assume now that we accept the growth of the heap, so that
it is not reduced. The traversal of closures would go on yielding cd, which would
add cde to the heap; adding either a or b to cd leads to abcde which is already in
the heap. The next closure e adds nothing new to the heap, and the next is ab
which adds abe; at this point the heap is [ae/5, be/5, cde/4, bcde/3, abe/2, abcde/1].
All further extensions only lead to repeated closures, hence nothing is further
added to the heap, and, as it is emptied, the traversal of all the closures is
completed.

The main property that has to be argued here is the following:

Proposition 2. As the support threshold rises, all the closed sets delivered so
far by the iterator to the next phase are still correct, that is, have support at least
the new value of the threshold.

Proof. We prove this statement by arguing the following invariants: first, the
new threshold is bounded above by the highest support of a closure in the heap;
second, all the closed sets provided so far up to any “yield” statement have sup-
port bounded below by all the supports currently in the heap. These invariants
are maintained as we extract the closure C of maximum support in the heap,
and also when we add to it extensions of C: indeed, C having been freshly taken
off the heap, all previous deliveries have at least the same support, whereas all
extensions that are to enter the heap are closed supersets of C and must have
lower support, because C is closed.

Hence, all previous deliveries have support higher than the maximum support
in the heap, which, in turn, is also higher than the new threshold; transitivity
now proves the statement.

3.2 Lattice.candidate closures()

In order to actually mine rules from the closures traversed by the loop described
in the previous section, further information is necessary: data structures to allow
for traversing predecessors, namely, the Hasse edges, that is, the immediate,
nontransitive neighbors of each closure. These come from a second iterator that
implements the iPred algorithm [9].

Additionally, we wish to push into the closure mining the confidence boost
constraint. The way to do it is to compute the support ratio of each closure, and
only pass it on to mine rules from it if this support ratio is above the confidence
boost threshold; indeed, Proposition 1 tells us that, if the support ratio is below
the threshold, the confidence boost will be too.

Due to the condition of decreasing support, we know that the closed superset
that defines the support ratio is exactly the first successor to appear from the
closure mining iterator. As soon as one successor of C appears, if the support
ratio is high enough, we can yield C, as the Hasse edges to its own predecessors

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 23

are guaranteed to have been set before. If the support ratio is not enough, it is
kept on a “freezer” (again a heap-like structure) from where it might be “fished
back in” if the confidence boost threshold decreases later on.

One has to be careful that the same closed set, say C, may be the first
successor of more than one predecessor. As we set the predecessors C ′ of C, we
move to the “ready” heap those that have C as first successor, if their support
ratio is high enough; then we yield them all. Additionally, as we shall see, it may
happen that RuleMiner.mine rules() moves closures from “freezer” to “ready”.
We explain this below.

1: for each closed set C yielded by ClMiner.mine closures() do
2: apply a Hasse edges algorithm (namely iPred) to set up the lattice edges

connecting C to its predecessors
3: for each unprocessed predecessor C ′ do
4: compute the support ratio of C ′

5: if support ratio is over the rule evaluation threshold then
6: add C ′ to the “ready” heap
7: else
8: add C ′ to the “freezer” heap
9: end if

10: end for
11: for each closure in the “ready” heap do
12: yield it
13: end for
14: end for

We observe here that we are not guaranteeing decreasing support order in this
iterator, as the changes to the support ratio threshold may swap closures with
respect to the order in which they were obtained. What we do need is that the
most basic iterator, ClMiner.mine closures(), does provide them in decreasing
support order, first, to ensure that the support threshold can be raised if nec-
essary, and, second, to make sure that the support ratio is correctly computed
from the first successor found for each closure.

Along the same example as before, consider, for instance, what happens when
ClMiner.mine closures() yields the closure ab to Lattice.candidate closures().
The iPred algorithm identifies a and b as immediate predecessors of ab, and
the corresponding Hasse edges are stored. Then, both a and b are identified as
closures whose first successor (in decreasing support) has just appeared; indeed,
other successors have less support than ab. The support ratios of a and b, namely,
12/6 = 2 and 11/6, are seen to be higher than the confidence boost threshold
(which starts at 1.15 by default) and both a and b are moved to the “ready”
heap and yielded to the subsequent rule mining phase. On the other hand, if the
confidence boost threshold was, say, at 1.4, upon processing bcde we would find
4/3 < 1.4 as support ratio of cde, and this closure would wait in the freezer heap,
until (if at all) a revised lower value of the confidence boost threshold would let
it through, by moving it from the freezer queue to the ready queue.

24 José L. Balcázar et al.

3.3 RuleMiner.mine rules()

In the class RuleMiner, which inherits from Lattice, the iterator mine rules()
relies on the closures provided by the previous iterator in the pipeline:

1: reserved rules = []
2: for each closure from candidate closures() do
3: for each predecessor having high enough support so as to reach the con-

fidence threshold do
4: form a rule r with the predecessor as antecedent and the closure as

consequent
5: use it to revise the closure-based confidence boost threshold
6: if threshold decreased then
7: move from Lattice.freezer to Lattice.ready those closures whose sup-

port ratio now passes the new threshold
8: for each rule in reserved rules do
9: if its closure-based confidence boost threshold passes the threshold

then
10: yield it
11: else
12: keep it in reserved rules
13: end if
14: end for
15: end if
16: if the closure-based confidence boost of r passes the threshold then
17: yield r
18: else
19: keep it in reserved rules
20: end if
21: end for
22: end for

Each closure makes available an iterator over its predecessors in the closures
lattice (closed proper subsets), up to a given support level that we can specify
upon calling it. For instance, at the closure bcde, of support 3, and assuming
a confidence threshold of 0.6, we would explore predecessors be and cde, which
lead to rules be → cd and cde → b. The confidence boost has to be checked,
but part of the task is already made since the very fact that the closure bcde
arrived here implies that its support ratio is over the confidence boost threshold.
In this case, the support ratio of closure bcde is 3. We must test confidences with
smaller antecedents (see [6]). As the confidences of b → cd and e → cd are low
enough, the rule be → cd becomes indeed reported; cde → b does as well, after
checking how low the confidences of cd→ b and e→ b are.

The revision of the closure-based confidence boost threshold can be done
in a number of ways. The current implementation keeps computing the lift of
those rules whose antecedent is a singleton, as the condition on support ratio
ensures that, in this case, it will coincide with the confidence boost [6]; these lift
values enter a weighted average with the current threshold, and, if the average is

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 25

sufficiently smaller, the threshold is decreased. Only a partial justification exists
so far for this choice.

When the threshold for confidence boost decreases, closures whose support
ratio was too low may become now high enough; thus, the freezer is explored and
closures whose support ratio is now above the new confidence boost threshold
are moved into the ready queue (lines 6 and 7), to be processed subsequently.

3.4 System

The main program simply traverses all rules, as obtained from the iterator
mine rules(), in the class RuleMiner:

1: for each rule in RuleMiner.mine rules() do
2: account for it
3: end for

What is to be done with each rule depends on the instructions from the user
interface, but usually we count how many of them are obtained and we write
them all on disk, maybe up to a fixed limit on the number of rules (that can
be modified by editing the source code). In this case, we report those of highest
closure-based confidence boost.

4 A Second Implementation

With a view to offering this system in a more widespread manner, we have de-
veloped a joint project with KNIME GmbH, a small company that develops the
open source data mining suite KNIME. This data mining suite is implemented
in Java. Hence, we have constructed a second implementation in Java.

However, the issue is not fully trivial because of two main reasons. The first
is that the notion of iterator in Java is different from that in Python, and is not
obtained from generators: the “yield” instruction, which saves the state of an
iteration at the time it is invoked, does not exist in Java, which simply declares
that hasNext() and next() methods must be made available: respectively, to
know whether there are more elements to process and to get the next element.
A second significative change is that the memory control to ensure that the list
of pending closures does not overflow has to be made in terms of the memory
management API of KNIME, and requires one extra loop to check whether the
decrease in memory usage was sufficient.

Therefore, we have to use the Iterator class to “copy”, to the extent possible,
the “yield” behavior, saving all necessary information to continue in queues and
lists. The three most affected methods for this issue are, of course, mine rules(),
candidate closures() and mine closures(). We describe here only mine rules().

In this case, a queue, called ready rules, is needed in order to store the
rules that are built from the current closure among the candidates and have
achieved the support, confidence, and confidence boost requirements. Rules that
do not clear these thresholds are stored in another queue, reserved rules, as in
the Python implementation. The code is shown next:

26 José L. Balcázar et al.

1: reserved rules = empty queue of rules
2: ready rules = empty queue of rules
3: ready rules iterator = iterator for ready rules
4: while !ready rules iterator.hasNext() do
5: for each closure from candidate closures() do
6: for each predecessor having high enough support so as to reach the

confidence threshold do
7: form a rule r with the predecessor as antecedent and the closure as

consequent
8: use it to revise the threshold for the rule evaluation measure
9: if threshold decreased then

10: move from Lattice.freezer to Lattice.ready those closures whose
support ratio now passes the new threshold

11: for each rule in reserved rules do
12: if its rule measure passes the new threshold then
13: store it in ready rules
14: else
15: keep it in reserved rules
16: end if
17: end for
18: end if
19: if the rule measure of r passes the threshold then
20: store it in ready rules
21: else
22: keep it in reserved rules
23: end if
24: end for
25: end for
26: end while
27: return ready rules

In Lattices.candidate closures(), the candidate closures are likewise stored in
a list called cadidate closures list in order that mine rules method can obtain
them. The program is constructed in the same way as the one just described,
and is omitted here.

The last method that needs a change in the translation from Python to Java
and KNIME is clminer.mine closures(), and it consists of storing in a list called
max-support itemset list the candidate itemsets that obey the max-support re-
quirement, and of returning this list at the end of the method. In this case
iterators aren’t needed beacuse in this method is only required to store and
return the list, so next() and hastNext() methods are not used.

1: max-support itemset list = empty list of itemset
2: identify closures of singletons
3: organize them into a maxheap according to support
4: while heap nonempty do

Iterator-based Algorithms in Self-Tuning Discovery of Partial Implications 27

5: consider increasing the support threshold by monitoring the available
memory

6: if the support threshold must be raised then
7: kill from the heap pending closures of support below new threshold,

which is chosen so that the size of the heap halves
8: end if
9: pop from heap the max-support itemset and store it in max-support itemset list

10: try to extend it with all singleton closures
11: for such extensions with sufficient support do
12: if their closure is new then
13: add it to the heap
14: end if
15: end for
16: return max-support itemset list
17: end while

5 Conclusion

We have studied a variant of the basic association mining process. In our variant,
we try to avoid burdening the user with requests to fix threshold parameters.
We keep an internal support threshold and adjust it upwards whenever the
computation process shows that the system will be unable to run down to the
current threshold value. We tackle the problem of limiting the number of rules
through one specific rule measure, closure-based confidence boost, for which the
threshold is self-adjusted along the mining process. A minor detail is that for
full-confidence implications it is not difficult to see that closure-based confidence
boost is inappropriate, and plain confidence boost is to be used. Further details
about this issue will be given in future work.

The confidence boost constraint is pushed into the mining process through its
connection to the support ratio. Therefore, the closure miner has to coordinate
with processes that move upwards the support threshold, or downwards the
support ratio threshold.

Further study on the basis of our implementation is underway, and further
versions of our association miner, with hopefully faster algorithmics, will be
provided in the coming months. Another line of activity is as follows: granted
that our approach offers partial implications without user-defined parameters,
to what extent users that are not experts in data analysis are satisfied with the
results? Our research group explores that topic in a separate paper [12].

Additionally, we are aware of two independent works where an algorithm is
proposed to traverse the closure space in linear time [13], [14]; these algorithms
do not follow an order of decreasing support, and we find nontrivial to modify
them so that they fulfill this condition. Our research group is attempting at it,
as, if successful, faster implementations could be designed.

28 José L. Balcázar et al.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag (1999)

2. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et
Sciences Humaines 29 (1991) 35–55

3. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discov-
ery of association rules. In: Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press (1996) 307–328

4. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey.
ACM Comput. Surv. 38(3) (2006)

5. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4)
(2005) 462–478

6. Balcázar, J.L.: Formal and computational properties of the confidence boost in
association rules. Available at: [http://personales.unican.es/balcazarjl]. Extended
abstract appeared as ”Objective novelty of association rules: Measuring the confi-
dence boost. In Yahia, S.B., Petit, J.M., eds.: EGC. Volume RNTI-E-19 of Revue
des Nouvelles Technologies de lInformation., Cepadu‘es-Editions (2010) 297-302”
(2010)

7. Kryszkiewicz, M.: Closed set based discovery of representative association rules. In
Hoffmann, F., Hand, D.J., Adams, N.M., Fisher, D.H., Guimarães, G., eds.: Proc.
of the 4th International Symposium on Intelligent Data Analysis (IDA). Volume
2189 of Lecture Notes in Computer Science., Springer-Verlag (2001) 350–359

8. Balcázar, J.L.: Parameter-free association rule mining with yacaree. In Khenchaf,
A., Poncelet, P., eds.: EGC. Volume RNTI-E-20 of Revue des Nouvelles Technolo-
gies de l’Information., Hermann-Éditions (2011) 251–254

9. Baixeries, J., Szathmary, L., Valtchev, P., Godin, R.: Yet a faster algorithm for
building the Hasse diagram of a concept lattice. In Ferré, S., Rudolph, S., eds.:
Proc. of the 7th International Conference on Formal Concept Analysis (ICFCA).
Volume 5548 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2009)
162–177

10. Balcázar, J.L., T̂ırnăucă, C.: Border algorithms for computing Hasse diagrams
of arbitrary lattices. In Valtchev, P., Jäschke, R., eds.: ICFCA. Volume 6628 of
Lecture Notes in Computer Science., Springer (2011) 49–64

11. Kuznetsov, S.O., Obiedkov, S.A.: Algorithms for the construction of concept lat-
tices and their diagram graphs. In Raedt, L.D., Siebes, A., eds.: Proc. of the
5th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD). Volume 2168 of Lecture Notes in Artificial Intelligence., Springer-Verlag
(2001) 289–300

12. Garćıa-Sáiz, D., Zorrilla, M., Balcázar, J.L.: Closures and partial implications in
educational data mining. ICFCA, Supplementary proceedings (2012)

13. Ganter, B.: Two basic algorithms in concept analysis (preprint 1987). In Kwuida,
L., Sertkaya, B., eds.: ICFCA. Volume 5986 of Lecture Notes in Computer Science.,
Springer (2010) 312–340

14. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In Suzuki, E., Arikawa, S., eds.: Discovery
Science. Volume 3245 of Lecture Notes in Computer Science., Springer (2004) 16–
31

Completing Terminological Axioms with Formal
Concept Analysis

Alexandre Bazin and Jean-Gabriel Ganascia

Université Pierre et Marie Curie, Laboratoire d’Informatique de Paris 6
Paris, France

Alexandre.Bazin@lip6.fr

Jean-Gabriel@Ganascia.name

Abstract. Description logics are a family of logic-based formalisms used
to represent knowledge and reason on it. That knowledge, under the
form of concepts and relationships between them called terminological
axioms, is usually manually entered and used to describe objects in a
given domain. That operation being tiresome, we would like to automat-
ically learn those relationships from the set of instances using datamining
techniques. In this paper, we study association rules mining in the de-
scription logic EL. First, we characterize the set of all possible concepts
in a given EL language. Second, we use those characteristics to develop
an algorithm using formal concept analysis to mine the rules more effi-
ciently.

Keywords: Description Logic, Association Rules Mining, Ontology

1 Introduction

Ontologies are knowledge representation tools used in various domains of appli-
cation. The semantic web, for example, makes an extensive use of them. They
are essentially composed of a list of concepts relevant to a particular domain
and relations (mainly inclusion and equivalence, i.e. hierarchical relations) ex-
isting between them. Description Logics (DL) are increasingly popular logical
frameworks used to represent ontologies and on which is based the OWL1 lan-
guage for the semantic Web. They have a great representation power and allow
powerful reasoning tools. However, the construction of ontologies, usually per-
formed manually by knowledge engineers, is both a tedious and tricky operation.
One of the difficulties is to ensure the consistency and the completeness of the
set of relations between concepts. in order to facilitate this step, we propose to
automatize, at least partially, the process of relation generation.

Based on the lattice theory, Formal Concept Analysis (FCA) is a mathemat-
ical framework that also deals with concepts and their hierarchical relationships.
FCA provides solid theoretical foundations for association rule learning tools.

1 OWL is an acronym for Ontology Web Language, which is a W3C standard

30 A. Bazin et al.

It therefore seems to be a good natural candidate for this task, i.e. for the au-
tomatic generation of relationships between concepts, from object descriptions,
i.e. from concept instances.

Despite differences between the use of the notion of concept in these two
formalisms, it would be interesting to combine them both and draw benefits
from their mutual advantages. This combination has already been investigated
and two main approaches exist. The first integrates operators of FCA to the
DL framework in order to be able to apply learning algorithms directly to a
knowledge base expressed in DL [4] [8], the second, which corresponds to our
present work, translates data from DL to a form comprehensible by FCA, in
other words, it interprets DL formalism within the lattice theory [2] [3] [7].

We claim that, by using the specific lattice structure of the set of concepts
of description logics, we will be able to modify classical FCA algorithms in
order to build complete and consistent sets of terminological axioms from object
descriptions given as assertions. This work, which constitutes a first attempt in
this direction, will make use of a simple description logic, which is EL. But, the
approach is not restricted to EL; it will certainly be possible to generalize it to
other DL, which will be investigated in further work.

Apart from the introduction and the conclusion, this paper is divided into
four parts. The first briefly recalls the usual definitions in both Description
Logics and Formal Concept Analysis, the second characterizes the structure of
the set of EL-concepts making use of the function Φ that is the set of subsets
of incomparable elements of a language, the third describes a simple association
rule learning algorithm that works within the set of EL-concepts previously
described. It then studies the properties of the set of terminological axioms that
it generates. The last part is dedicated to a brief example, which illustrates the
different notions presented in this paper.

2 Definitions and Recalls

2.1 Description Logics

Descriptions logics are decidable fragments of first-order logic used to represent
and reason on knowledge. Syntactically, every description logic language makes
use of a set of concept namesNC , a set of role namesNR and a set of object names
NO and combines them using constructors to build concept descriptions or, in
short, concepts. The set of constructors used defines the language’s expression
power and the complexity of its reasoning procedures. In this paper, we will
consider the logic EL. In it, every concept name is a concept description and, for
any concept descriptions A and B and any role r, AuB and ∃r.A are also concept
descriptions. Having only two constructors, this logic is one of the simplest.

Semantics are defined by means of interpretations. An interpretation is a pair
I = (∆I , .I) where ∆I is a set of objects called the domain and .I a function
mapping every concept name C to a subset CI of ∆I and every role name r

Completing Terminological Axioms with Formal Concept Analysis 31

to a binary relation rI ⊆ ∆I ×∆I . As such, concepts are defined by the set of
objects which belong to them.

An important notion in description logic systems is the subsumption relation
between concept descriptions. Given two concept descriptions C and D, we say
that D subsumes C (C v D) if the set of objects belonging to C is included in
the set of objects belonging to D (CI ⊆ DI) for all interpretations I. For a given
TBox T , we say that D subsumes C with respect to T (C vT D) if CI ⊆ DI

for every model of T . If C v D and D v C, it gives the definition C ≡ D.
Constructions such as C v D and C ≡ D expressing subsumption relations are
called terminological axioms.

For any given concept C, role r and object names o and o′, o : C and (o, o′) : r
are called assertional sentences. The constructions o : C means that the object
o belongs to the concept C and (o, o′) : r means that the object o′ fulfills the
role r for the object o.

A knowledge base consists of a TBox and an ABox. The TBox is constituted
of terminological axioms, which we try to learn in this paper, and concept defi-
nitions. The ABox is a set of assertional sentences and can be viewed as a set of
descriptions of objects.

2.2 Formal Concept Analysis

In formal concept analysis (FCA), we call formal context a triplet (O,A,R)
where O is a set of objects, A a set of attributes and R a binary relation between
objects and attributes. We say here that (o, a) ∈ R means that a describes o.

We have at our disposal two functions .′ such as

.′ : 2A 7→ 2O

A′ =
⋂

a∈A
{o ∈ O | (o, a) ∈ R} (1)

and

.′ : 2O 7→ 2A

O′ =
⋂

o∈O
{a ∈ A | (o, a) ∈ R} (2)

A′ is then the set of objects described by every attribute of A and O′ is the
set of attributes describing every object of O. If A ⊆ B, then B′ ⊆ A′ and if
O ⊆ P then P ′ ⊆ O′. As such, those two functions form a Galois Connection.

A formal concept is defined as a pair (E, I) ∈ AO × 2A where E = I ′

and I = E′. We say that E and I are closed. E and I are respectively called
the extent and the intent of the concept. In order to prevent confusion, formal

32 A. Bazin et al.

concept will not be abbreviated and the term concept will be used exclusively
for DL-concepts.

We call FC(O,A,R) the set of formal concepts we can find in (O,A,R).
We can define an order < (a relation “is more general than”) on this set such
as (E, I) < (F, J) ⇔ (F ⊂ E and I ⊂ J) and the pair (FC(O,A,R), <)
satisfies the properties of a complete lattice. Such a lattice is called a concept
(or Galois) lattice. For example, for a formal context in which O = {a, b, c, d, e},
A = {1, 2, 3, 4, 5} and R = {(a, 2), (a, 4), (b, 3), (b, 5), (c, 1), (c, 2), (c, 4), (d, 2),
(d, 3), (e, 2), (e, 4)} we obtain the following concept lattice.

({},{1,2,3,4,5})

({c},{1,2,4}) ({b},{3,5}) ({d},{2,3})

({a,c,e},{2,4}) ({b,d},{3})

({a,b,c,d,e},{})

Fig. 1. A Concept Lattice

FCA allows us to find implications in the formal context which are ordered
pairs (B,C), often written B → C. An implication B → C holds in a context if
every object described by every attribute in B is also described by every attribute
in C.

Definition 1. We say that a set X ∈ A respects an implication B → C if
B ⊆ X implies C ⊆ X.

An implication B → C follows from a set of implications L if every X ∈ A
that respects every implication in L respects B → C. A set L of implications
is then called a basis if every implication in L holds in the context and every
implication that holds in the context follows from L.

It is a known fact that {X → X ′′ | X ⊆ A} is an implicational basis which
means that, in order to obtain a basis of minimal cardinality, we need only to
find implications whose right-hand side are concept intents. Finding suitable
left-hand side has thus been the subject of many works.

Definition 2. A set X ∈ A is a pseudo-intent of the context (O,A,R) if X is
not a concept intent and, for all pseudo-intent Y ⊂ X, Y ′′ ⊆ X.

Completing Terminological Axioms with Formal Concept Analysis 33

Definition 3. The set of implications {X → X ′′ | X is a pseudo-intent} is
called a Duquenne-Guigues Basis.

The Duquenne-Guigues Basis is the minimal set of implication from which
we can find every other implications that hold through inference.

3 The Set of Concept Descriptions

Before using an association rules learning algorithm, we will study the structure
of the set of concepts one can build with the description logic EL.

We will use Ω to denote the set of terminological axioms A v B in an acyclic
TBox T . NC = AC ∪DC will denote the set of concept names used in T with
AC the set of atomic concepts and DC the set of defined concepts, appearing in
the left hand side of definitions. The set of pairs (C1, C2) such as C1 ≡ C2 will
be called Def(T). Ω induces a partial order on the set of equivalence classes of
concepts, noted NC≡ , used in axioms (if (x u y v z) ∈ Ω, we will consider there
is some d in DC such as d ≡ x u y). We will simply use b ≤ a for [a]≡ v [b]≡.
(NC≡ ,≤) is then a partially ordered set such as, for all x in NC , [>]≡ ≤ [x]≡.
For clarity purposes, we will now use CN0 to denote a set of concept names
containing a unique representative of each equivalence class together with the
order ≤. Obviously, CN0 is isomorphic to (NC≡ ,≤).

We are interested in the set of every possible concept we can construct with
NC , NR and the constructors u and ∃. Suppose there are two concepts A and
B such as A v B. This means that AI ⊆ BI so A uB ≡ A. Those two concept
descriptions being equivalent we consider they are the same and we do not want
to include both of them in the set of possible concepts. As such, we want the set
of concepts resulting from the conjunction of incomparable elements.

Definition 4. We call Φ(CN0) = {X ⊆ CN0 | x ∈ X ∧ y ∈ X ⇒ x||y} the set
of subsets of incomparable elements of CN0

We call Φ(CN0) the set of subsets of incomparable elements of CN0 and
uA the concept built from the conjunction of the elements of A. For any two
elements C,D ∈ Φ(CN0), we say that C ≤ D if and only if uD v uC. That
is, C ≤ D if and only if for every element c ∈ C there is some d ∈ D such
as c ≤ d. Evidently, Φ(CN0) is isomorphic to the set of ideals of CN0 ordered
by inclusion and its elements are the sets of maximal elements of those ideals.
Φ(CN0) is then a distributive lattice.

Proposition 1. For any two elements A,B ∈ Φ(CN0), A ∧ B = Max({x ∈
CN0 | ∃a ∈ A, ∃b ∈ B, x ≤ a & x ≤ b}) and A ∨B = Max(A ∪B).

u(A ∧ B) corresponds to the least common subsumer of uA and uB and
u(A ∨ B) to the most specific concept subsumed by uA and uB. They can be
easily computed from CN0.

Φ(CN0) being finite and distributive, for all A and B in Φ(CN0), there is a
least element X such as A∨X ≥ B called difference and noted B \A. It is equal

34 A. Bazin et al.

to Max(↓ B\ ↓ A) where ↓ A is the set of elements lower or equal to elements
of A in CN0.

Proposition 2. For a given linear extension σ of CN0, the relation A B ⇔
B \A = Maxσ(B) defines a spanning tree of the covering graph of Φ(CN0).

The spanning tree gives us, for every element A ∈ Φ(CN0), a unique path
from {>} to A in which A B ⇒ A ≤ B.

Φ(CN0) is the set of different conjunctions of concept names based on the
subsumption relation. However, the TBox can also contain equivalences between
elements of Φ(CN0). If (A,B u C) ∈ Def(T) then B ≤ A and C ≤ A in
CN0. In Φ(CN0), {A} is thus strictly greater than {B,C}. Those two concepts
being equivalent, every element greater or equal to {B,C} and lower than {A}
is considered redundant.

Definition 5. Φ(CN0)Def(T) = Φ(CN0) \ {B | (A,B) ∈ Def(T)} is the set of
subsets of incomparable elements of CN0 without the elements corresponding to
right-hand sides of definitions of Φ(C,≤X)Def(T) the TBox.

Proposition 3. For any two elements A,B ∈ Φ(CN0)Def(T), A ∧B in
Φ(CN0)Def(T) is equal to A ∧B in Φ(CN0).

Proposition 4. For all A and B in Φ(CN0)Def(T), the difference A \ B in
Φ(CN0) is an element of Φ(CN0)Def(T).

These operations on Φ(CN0)Def(T) are thus the same than on Φ(CN0). The
differences appear when we try to compute the upper cover of an element D, i.e.
elements immediately greater than D. We call Cand – for candidate – the set of
minimal elements not lower than elements of D in CN0. In Φ(CN0), the upper
cover of D is then {Max(D∪ c) | c ∈ Cand}. In Φ(CN0)Def(T), if there is some
(L,R) ∈ Def(T) such as L ≥ Max(D ∪ c) ≥ R, c must be removed from the
list of candidates and L added if it is minimal in Cand \ c. In order to find the
elements following D in the spanning tree of Φ(CN0)Def(T) induced by some σ
it would then be sufficient to remove the candidates c such as c ≤σ d for some d
in D. The algorithm is as follows :

Algorithm 1

Require: CNn, D
1: Cand = {c ∈ CNn | c ∈Min(CN0\ ↓ D) and ∀d ∈ D, c ≥σ d}
2: for each c ∈ Cand do
3: if ∃(L,R) ∈ Def(T) such as L ≥Max(D ∪ c) ≥ R then
4: Cand = Min((Cand \ c) ∪ L)
5: end if
6: end for
7: Return {Max(D ∪ c) | c ∈ Cand}

Completing Terminological Axioms with Formal Concept Analysis 35

Now, Φ(CN0)Def(T) is only the lattice of concepts built from a conjunction
of concept name without roles. However, it gives us informations on the struc-
ture of the set of role-concepts. We know that, for a given role r, A v B ⇒
∃r.A v ∃r.B. The partially ordered set of roles of a depth 1 is then isomorphic

to Φ(CN0)Def(T). We use CN1
r to denote it. If CN1 = CN0

⋃|NR|
i=1 CN1

ri is the
set of both concept names and roles of depth 1 together with the partial order
induced by Ω, then Φ(CN1)Def(T) is the lattice of concepts containing roles

up to a depth 1. Recursively, Φ(CNn)Def(T) where CNn = CN0
⋃|NR|
i=1 CNn

ri
with CNn

ri isomorphic to Φ(CNn−1)Def(T) is the set of every possible concept
descriptions up to an arbitrary role depth n.

4 Learning Axioms with Formal Concept Analysis

As we said previously, we take the approach of creating a formal context corre-
sponding to the DL-objects we want to manipulate. More precisely, we use the
formal context (O,A,R) where O is a set of objects, A = Φ(CNn)Def(T) is the
set of every possible concept descriptions defined in Section 2.2 and R ⊆ O×A
is the relation associating objects to the most specific concept to which they
belong. In that respect, it is very similar to contexts from Logical Concept Anal-
ysis [5] or the work of Baader [1] which also deals with finding implications in
EL.

We re-define the following operators :

.′ : A 7→ 2O

X ′ = {o ∈ O | oRa⇒ X ≤ a} (3)

and

.′ : 2O 7→ A

O′ =
∧
{a ∈ A | o ∈ O ⇒ oRa} (4)

The first operator maps a concept description to the set of objects belonging
to it while the second is the generalization of the most specific concepts describing
the objects, which corresponds to the infimum in the lattice.

Now, if we want to get implications of the form X → X ′′ \ X, we cannot
use the set-theoretic difference directly. The difference B \A in the distributive
lattice defined in the previous section corresponds to the most general concept
whose conjunction with A would be more specific than B. It can also be seen
intuitively as the part of B not covered by A. Thus, in the remainder of this
work, we will use this definition of the difference.

By using the structure of Φ(CNn)Def(T), we can enumerate concept descrip-
tions and get a set of implications by using the following algorithm :

36 A. Bazin et al.

Algorithm 2

Require: CNn, σ
1: Open = {{>}}
2: for every minimal element X of minimal role depth in Open do
3: C = X ′′

4: if C 6= X then
5: Update CNn with X → C \X
6: Add elements following X in the spanning tree of Φ(CNn)def(T) to Open
7: end if
8: end for

Beginning with {>}, the least element of Φ(CNn)def(T), we classically com-
pute its closure. We then compute the closure of every element of Φ(CNn)def(T)

immediately greater than {>} and so on. Of course, an element of the upper
cover of D should not be considered if it contains an element that does not sub-
sume any description of elements of D′. As soon as X ′′ is different from X a
new implication is found and CNn is updated, adding a new element to DC if
necessary, and X becomes a closed set of the new Φ(CNn)def(T).

For any minimal element X in Open, the elements of its lower cover are
closed sets. As such, for any Y ⊂ X, Y ′′ ⊆ X. If X 6= X ′′, X is a pseudo-intent.
Thus, by considering a minimal element of Open at every step of the algorithm,
we make sure we obtain the Duquenne-Guigues Basis of the original context. As
a new implication A → B changes the structure of the lattice for role concepts
we must select the minimal elements in ascending role-depth order.

As an element is added to NC for every AuB v C found and AuB becomes
a closed element of the new Φ(CNn)def(T), the algorithm terminates with CNn

isomorphic to the concept lattice of the formal context minus the maximal formal
concept.

The method we propose in this paper is similar to the one presented by
Rudolph in [6]. However, we feel some important differences must be pointed
out. First, our algorithm immediately considers all concepts up to the maximum
role depth instead of using a different learning phase for each depth. Second,
new implications are immediately included in the background knowledge. We
believe this is especially important for axioms of the form A v B u ∃r.C where
A v B would be found a first time before the step including roles.

5 Example

In our example, NC = {Man, Woman, Father, Mother, Parent, GrandFather,
GrandMother} and NR = {hasChild}. Moreover, we know that

Motherv Woman u Parent

We consider the following set of objects described by concept descriptions

Completing Terminological Axioms with Formal Concept Analysis 37

Bob : Man u Father u Parent u ∃hasChild.Man
Bill : Man
Benjamin : Man u GrandFather u Father u Parent ∃hasChild.(Man u Father u Parent)
Bertrand : Man u GrandFather u Father u Parent u ∃hasChild.(Mother u Parent)
Bernard : Man u Father u Parent u ∃hasChild.Woman
Clara : Mother u ∃hasChild.Woman
Coralie : Mother u GrandMother u ∃hasChild.(Man u Father u Parent)
Claire : Mother u GrandMother u ∃hasChild.(Mother u Parent)
Chloe : Woman

Initially, Open = {>} and CNn is as follows :

>

Father Woman GrandMother Parent ∃hasChild.> GrandFather Man

Mother
... ...

Fig. 2. CNn at Step 0 (irrelevant role-concepts omitted)

>′′ = ∅ so there is no new implication.

Open = {Woman, Father, GrandMother, Parent, ∃hasChild.>, GrandFather,
Man}

Woman′′ = ∅ so there is no new implication.

Open = {Father, GrandMother, Parent, ∃hasChild.>, GrandFather, Man,
Mother, {Woman, Father}, {Woman, GrandMother}, {Woman, Parent}, {Woman,
∃hasChild.>}, {Woman, GrandFather}, {Woman, Man}}

Father′′ ={Father, Man, Parent, ∃hasChild.>} so The implication Father →
{Man, Parent, ∃hasChild.>} is added.

CNn is then updated.

38 A. Bazin et al.

>

Woman GrandMother Parent Man ∃hasChild.> GrandFather

Mother Father
... ...

Fig. 3. CNn at Step 3 (irrelevant role-concepts omitted)

Open = {GrandMother, Parent, ∃hasChild.>, GrandFather, Man, Mother,
{Woman, Father}, {Woman, GrandMother}, {Woman, Parent}, {Woman, ∃hasChild.>},
{Woman, GrandFather}, {Woman, Man}, {Father, GrandMother}, {Father, Grand-
Father}, {Father, ∃hasChild.Parent}, {Father, ∃hasChild.Woman}, {Father, ∃hasChild.Man}}

Others implications are then found for GrandMother, Parent, ∃hasChild.>,
{Woman, Parent}, GrandFather, {Father, ∃hasChild.Parent}, {Man, Parent},
{Mother, ∃hasChild.Parent}, {Father, ∃hasChild.Parent}. The algorithm termi-
nates with CNn in the following state.

>

Woman Parent Man

Mother ∃hasChild.Parent Father

GrandMother GrandFather

Fig. 4. CNn at the end of the algorithm (irrelevant role-concepts omitted)

Note that ∃hasChild.> does not appear in CNn because it has been found
equivalent to Parent.

The following terminological axioms have been found :

Father ≡ Parent u Man
Mother ≡ Parent u Woman

GrandMother ≡ Mother u ∃hasChild.Parent
GrandFather ≡ Father u ∃hasChild.Parent

∃hasChild.> ≡ Parent

Completing Terminological Axioms with Formal Concept Analysis 39

6 Conclusion

As mentionned in the introduction, this research aims at completing the TBox
with terminological axioms learned from assertions contained in an ABox. Our
approach translates data from DL formalism, that is instances of the ABox,
to a form homogeneous to FCA, i.e. to lattices. More precisely, by using the
lattice structure of the set of concepts of description logics, we modify classical
FCA algorithms in order to build complete and consistent sets of terminological
axioms from object descriptions given as assertions.

In this paper, we have restricted our approach to EL. We have shown that
the set of EL-concept descriptions, ordered by the subsumption relation, is iso-
morphic to a certain subset – that depends on the definitions of the TBox –
of the lattice of ideals of the partially ordered set of equivalence classes built
on the union of concept names and role concepts. We then proposed a simple
algorithm exploiting this structure to learn terminological axioms from exam-
ples. Every implication found in the data is added to the TBox. We can easily
make this algorithm interactive. More precisely, it is possible to change it into
an attribute exploration-like algorithm in which experts are asked about each
axiom and may give counterexamples. In this work, we dealt with description
logic EL but the main idea of considering sets of incomparable concepts names
is also valid for DLs with the concept ⊥ or the constructor ∀. However, it no
longer works with constructors such as the negation because it adds new con-
straints between concept names. More complex DL languages will be the subject
of future investigations on our part.

References

1. Franz Baader and Felix Distel. A finite basis for the set of el-implications holding
in a finite model. In In ICFCA, vol.4933 of LNAI, pages 46–61. Springer Verlag,
2008.

2. Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Completing
description logic knowledge bases using formal concept analysis. In In Proc. of
IJCAI 2007, pages 230–235. AAAI Press, 2007.

3. Franz Baader and Baris Sertkaya. Applying formal concept analysis to description
logics. In Peter Eklund, editor, Concept Lattices, volume 2961 of Lecture Notes in
Computer Science, pages 593–594. Springer Berlin / Heidelberg, 2004.

4. Felix Distel. Learning Description Logic Knowledge Bases from Data Using Methods
from Formal Concept Analysis. PhD thesis, Technische Universität Dresden, 2011.

5. Sébastien Ferré and Olivier Ridoux. A logical generalization of formal concept
analysis. In Int. Conf. Conceptual Structures, LNCS 1867, pages 371–384. Springer,
2000.

6. Sebastian Rudolph. Exploring relational structures via fle. In Conceptual Structures
at Work: 12th International Conference on Conceptual Structures. Volume 3127 of
LNCS. Springer, 2004.

7. Sebastian Rudolph. Relational Exploration - Combining Description Logics and
Formal Concept Analysis for Knowledge Specification. Universitätsverlag Karlsruhe,
December 2006.

40 A. Bazin et al.

8. N. V. Shilov and S.-Y. Han. A proposal of description logic on concept lattices.
In Proceedings of the Fifth International Conference on Concept Lattices and their
Applications, 2007.

Structural properties and algorithms on the

lattice of Moore co-families

Laurent Beaudou1 and Pierre Colomb1 and Olivier Raynaud1

Université Blaise Pascal, Campus Universitaire des Cézeaux, 63173 Aubière, France

Abstract. A collection of sets on a ground set Un (Un denotes the set
{1, 2, ..., n}) closed under intersection and containing Un is known as a
Moore family. The set of Moore families for a �xed n is in bijection
with the set of Moore co-families (union-closed families containing the
empty set) denoted Mn. In this paper, we show that the set Mn can be
endowed with the quotient partition associated with some operator h.
This operator h is the main concept underlying a recursive description
of Mn. By this way each class of the partition contains all the families
which have the same image by h. Then we prove some structural results
linking any Moore co-family to its image by h. From these results we
derive an algorithm which computes e�ciently the image by h of any
given Moore co-family.

Key words: Moore co-families, Formal Concept Analysis, lattices

References

1. Barbut, M., Monjardet, B.: Ordre et classi�cation. Hachette (1970)

2. Birkho�, G.: Lattice Theory. Third edn. American Mathematical Society (1967)

3. Birkho�, G.: Rings of sets. Duke Mathematical Journal 3 (1937) 443�454

4. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and
implicational systems on a �nite set: a survey. Discrete Appl. Math. 127 (2003)
241�269

5. Cohn, P.: Universal Algebra. Harper and Row, New York (1965)

6. Colomb, P., Irlande, A., Raynaud, O.: Counting of Moore families on n=7. In:
ICFCA, Lecture Notes in Arti�cial Intelligence 5986, Springer. (2010)

7. Colomb, P., Irlande, A., Raynaud, O., Renaud, Y.: About the recursive décompo-
sition of the lattice of moore co-families. In: ICFCA. (2011)

8. Davey, B.A., Priestley, H.A.: Introduction to lattices and orders. Second edn. Cam-
bridge University Press (2002)

9. Demetrovics, J., Molnar, A., Thalheim, B.: Reasoning methods for designing and
surveying relationships described by sets of functional constraints. Serdica J. Com-

puting 3 (2009) 179�204

10. Demetrovics, J., Libkin, L., Muchnik, I.: Functional dependencies in relational
databases: A lattice point of view. Discrete Appl. Math. 40(2) (1992) 155�185

11. Doignon, J.P., Falmagne, J.C.: Knowledge Spaces. Springer, Berlin (1999)

12. Duquenne, V.: Latticial structure in data analysis. Theoretical Computer Science

217 (1999) 407�436

42 L. Beaudou et al.

13. Ganter, B., Wille, R.: Formal Concept Analysis. mathematical foundations, Berlin-
Heidelberg-NewYork, Springer (1999)

14. Habib, M., Nourine, L.: The number of Moore families on n=6. Discrete Mathe-

matics 294 (2005) 291�296
15. Sierksma, G: Convexity on union of sets. Compositio Mathematica volume 42

(1981) 391�400
16. van de Vel, M.L.J.: Theory of convex structures. North-Holland, Amsterdam (1993)

A Tool-Based Set Theoretic Framework for
Concept Approximation

Zoltán Csajbók1 and Tamás Mihálydeák2

1 Department of Health Informatics, Faculty of Health, University of Debrecen,
Sóstói út 2-4, H-4400 Nýıregyháza, Hungary

csajbok.zoltan@foh.unideb.hu
2 Department of Computer Science, Faculty of Informatics, University of Debrecen

Egyetem tér 1, H-4032 Debrecen, Hungary
mihalydeak.tamas@inf.unideb.hu

Abstract. Modelling positive and negative knowledge has a long-stand-
ing tradition in Formal Concept Analysis. To approximate concepts we
propose a tool-based set theoretic partial approximation framework in
which positive features and their negative counterparts of observed ob-
jects can be approximated simultaneously.

Key words: Concept approximation, positive-negative knowledge, rough
set theory, partial approximation framework

1 Introduction

Modelling of learning from positive and negative examples has a long-standing
tradition in machine learning, for a brief historical survey see, e.g. [16]. A possible
model in terms of Formal Concept Analysis was described in [10, 15].

The idea of knowing negatively was introduced explicitly by M. Minsky in
[19]. Negative knowledge has a number of beneficial effects in professional con-
texts which are discussed in detailed, e.g. in [12, 19]. The adjectives ‘positive’ and
‘negative’ do not imply a valuation per se. ‘Positive’ knowledge is not good, ad-
vantageous or benign, whereas ‘negative’ knowledge is not bad, disadvantageous
or malign in and of itself.

Both positive and negative knowledge have procedural [19] and declarative
aspects [23]. A procedural aspect of positive and negative knowledge can be para-
phrased as ‘to know what to do’ and ‘to know what not to do’ resp., whereas a
declarative aspect as ‘to know what one knows’ and ‘to know what one does not
know’ resp. In addition, both positive and negative knowledge have two different
degrees of knowing or not-knowing. Positive knowledge is informed (uninformed)
when one is (not) aware of his/her own relevant knowledge. Negative knowledge
is informed (uninformed) when one is (not) aware of his/her own lack of rele-
vant knowledge. Our discussion deals with the declarative aspect of positive and
negative knowledge and informed way of knowing/not-knowing.

54 Z. Csajbók et al.

In our approach, first, we consider a class of objects which is modelled as
an abstract set, called the universe of discourse. We assume that a concept is
defined over the universe as a subset. In real life the concepts are usually ex-
pressed in natural language and so their exact definition cannot be given. The
concept approximation is a fundamental problem in artificial intelligence in order
to be able to solve real-world problems [17, 22, 31]. A possible way to approx-
imate concepts is to induce their approximations from available experimental
(observed, measured) data which is also modelled as subsets over the universe
[29–31]. Concepts are generally rough, whereas measurements are always crisp.

It is also assumed that we have some well-defined, decidable features with
which an observed object possesses or not. These features assign crisp subsets
within the universe. In other words, we model an object of interest as a member
of an abstract set, called the universe, and its property ‘it possesses a feature’
as ‘it is the element of a crisp subset of the universe’.

In practice, a concept, of course, cannot be specified completely over the
universe. Instead, two relevant sample groups of objects can be established de-
termined by our currently available and necessarily constrained knowledge: a
group of which members characteristically possess some features concerning the
concept in question, and another group of which members do not substantially
possess the same features. Both groups correspond two crisp subsets of the uni-
verse. They are disjoint, and, in general, the union of them does not add up
to the whole universe. For obvious reasons, the former can be marked with the
adjective positive and called the positive sample set, whereas the latter with
negative and called the negative sample set.

Moreover, in real life, a feature of objects cannot be observed directly as well.
We need tools at our disposal with which we are able to measure one or more
constituents of a feature which are called properties. For instance, let us say that
we observe velocity (feature) of cars (objects). Velocity is a vector quantity with
speed and direction. They are two properties of velocity which can be measured
simultaneously and both of them can be expressed numerically. And so, a car
is modelled as a member of an abstract set, the universe, and its velocity as it
is a member of intersection of two subsets of cars with given speed and given
direction (tools) which were measured at the same time.

It is assumed that we are able to judge easily and unambiguously whether
an object possesses a property ascertained by a tool or not. It is expected that
tools can be used simply and quickly. The objects classified by a tool can be
modelled as a crisp subset of the universe. With a slight abuse of terminology,
this subset is also simply called tool.

Different tools form different subsets, but they are not necessarily disjoint.
Intersections of not disjoint tools are also viewed as tools. The complement of a
tool is not necessarily a tool at the same time. In practice, there are properties
which can be measured but their counterparts cannot. For instance, a given
disease can be diagnosed but the health cannot be measured. These significant
facts confirm the partial nature of our approach.

A Tool-Based Set Theoretic Framework for Concept Approximation 55

Let us distinguish two types of tools: positive and negative ones. It is a natural
assumption that a subset cannot be positive and negative tool simultaneously.

To manage the problem outlined above we need an approximation framework.
It may be built on the rough set theory because it provides a powerful foundation
to reveal and discover important structures in data and classify complex objects
[27, 28]. The rough set theory was introduced by the Polish mathematician, Z.
Pawlak in the early 1980s [24, 25]. It can be seen as a new mathematical approach
to vagueness [14]. According to Pawlak’s idea, the vagueness of a subset within
the universe U is defined by the difference of its upper and lower approximations
with respect to a partition of U . Using partitions, however, is a very strict
requirement. Our starting point is an arbitrary family of subsets of U which
does not cover the universe necessarily. The lower and upper approximations
are straightforward point-free generalizations of Pawlak’s ones [2–6]. We apply
them to build a set theoretic tool-based partial approximation framework in which
positive features and their negative counterparts of any clump of observed objects
can be approximated simultaneously.

The rest of the paper is organized as follows. Section 2 sums up the most im-
portant features of rough set theory and partial approximation spaces. Classical
rough set theory and formal concept analysis use similar structures to represent
information which is briefly described in Section 3. In Section 4 we will propose a
tool-based set theoretical framework for concept approximation based on partial
approximation spaces. Its main notions are illustrated in Section 5. Finally, in
Section 6, we conclude the paper.

2 Partial Approximation of Sets

First, we summarize the most important concepts and properties of rough set
theory [13, 25]. Let U be a nonempty set and ε be an equivalence relation on U .
Let U/ε denote the partition of U generated by ε. Members of the partition are
called ε-elementary sets. X ⊆ U is ε-definable, if it is a union of ε-elementary
sets, otherwise ε-undefinable. By definition, the empty set is considered to be an
ε-definable set.

The pair 〈U, ε〉 is called a Pawlakean approximation space. The lower and
upper ε-approximations of X ⊆ U can be defined as follows.

The lower ε-approximation of X is3

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ⊆ X},

and the upper ε-approximation of X is

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ∩X 6= ∅}.

The set Bε(X) = ε(X)\ε(X) is the ε-boundary of X. X is ε-crisp, if Bε(X) =
∅, otherwise X is ε-rough.

3 If A ⊆ 2U , we define
⋃

A = {x | ∃A ∈ A(x ∈ A)}, and
⋂

A = {x | ∀A ∈ A(x ∈ A)}.
If A is an empty family of sets,

⋃ ∅ = ∅ and
⋂ ∅ = U .

56 Z. Csajbók et al.

Let DU/ε denote the family of ε-definable subsets of U . Clearly, ε(X), ε(X) ∈
DU/ε, and the maps ε, ε : 2U → DU/ε are monotone, total and many-to-one. It
can easily be seen ([25], Proposition 2.2, points 1, 9, 10) that the map ε is
contractive and ε is extensive, i.e. ∀X ∈ 2U (ε(X) ⊆ X ⊆ ε(X)). In other words,
X is bounded by its lower and upper approximations.

Now, let us turn to the theory of partial approximation of sets [2, 4, 5]. Its
most fundamental notion is the base system.

Definition 1. Let B ⊆ 2U be a nonempty family of nonempty subsets of U .
B is called the base system, its members are the B-sets.

An extension of the base system is specified by the next definition.

Definition 2. A nonempty subset X ⊆ U is B-definable if there exists a family
of sets D ⊆ B in such a way that X =

⋃
D, otherwise X is B-undefinable.

The empty set is considered to be a B-definable set.
Let DB denote the family of B-definable sets of U .

Note that neither the base system B nor DB covers the universe necessarily.
Let us define the lower and upper approximations of sets based on partial

covering of the universe.

Definition 3. Let B ⊆ 2U be a base system and X be any subset of U .
The lower B-approximation of X (Fig. 1) is

C[B(X) =
⋃
{Y | Y ∈ B, Y ∩X = Y },

the upper B-approximation of X (Fig. 2) is

C]B(X) =
⋃
{Y | Y ∈ B, Y ∩X 6= ∅}.

Remark 1. In Definition 3, the members of the base system may be seen as the
elements of the lattice 2U , and instead of set theoretic operations may be used
lattice operations. In this way, point-free generalizations of Pawlakean lower and
upper approximations can be obtained.

Clearly, C[B(X),C]B(X) ∈ DB, and the maps C[B,C]B : 2U → DB are total,
monotone and in general many-to-one.

Fig. 1. Lower Fig. 2. Upper Fig. 3. Lower and

approximation approximation upper approximations

A Tool-Based Set Theoretic Framework for Concept Approximation 57

Proposition 1 ([6], Proposition 4.8). Let B ⊆ 2U be a base system. Then

1. ∀X ∈ 2U (C[B(X) ⊆ C]B(X));
2. ∀X ∈ 2U (C[B(X) ⊆ X)—that is, C[B is contractive;

3. ∀X ∈ 2U (X ⊆ C]B(X)) if and only if
⋃
B = U—that is, C]B is extensive if

and only if B covers the universe.

Using the previous notations, the notion of the partial approximation space
can be introduced.

Definition 4. The ordered quadruple 〈U,DB,C[B,C]B〉 is called the (weak) par-
tial B-approximation space.

Let (P,≤P) and (Q,≤Q) be two posets.

Definition 5. The pair of maps f : P → Q and g : Q → P forms a (regular)
Galois connection between P and Q, in notation G(P, f, g,Q), if

∀p ∈ P ∀q ∈ Q (f(p) ≤Q q ⇔ p ≤P g(q)).

If P = Q, G(P, f, g, P) is called a Galois connection on P .

Remark 2. Here we adopted the definition of Galois connection in which the
maps are monotone. It is also called monotone or covariant form. For more
details on Galois connections, see, e.g. [8]. Note that since Galois connections
are not necessarily symmetric, the order of the maps is important.

It is well known fact ([13], Proposition 138) that upper and lower ε-approx-
imations form a Galois connection G(2U , ε, ε, 2U) on (2U ,⊆). Next theorem
shows the conditions under which upper and lower B-approximations also form
a Galois connection.

Theorem 1 ([6], Theorem 4.14). Let 〈U,B,C[B,C]B〉 be a partial B-approxi-
mation space. The upper and lower B-approximations form a Galois connection
G(2U ,C]B,C[B, 2U) on (2U ,⊆) if and only if the base system B is a partition of
U .

According to Proposition 1, point 3, X ⊆ C]B(X) if and only if the base
system B covers the universe.

Definition 6. A subset X ⊆ U is B-approximatable if X ⊆ C]B(X), otherwise
it is said that X has a B-approximation gap.

A B-approximation gap may be interpreted so that our knowledge about the
universe encoded in the base system is incomplete and not enough to approxi-
mate X.

Definition 7. Let 〈2U ,DB,C[B,C]B〉 be a partial B-approximation space, and
X be any subset of U .

The partial upper B-approximation of X is

∂C]B(X) =

{
C]B(X), if X is B-approximatable;
undefined, otherwise.

(1)

58 Z. Csajbók et al.

There exists at least one nonempty B ∈ B B-set by Definition 2. Then
B ⊆ C]B(B) according to Definition 3. Hence, ∂C]B is defined on at least one
nonempty subset of U .

Notice that C[B(X) ⊆ X ⊆ ∂C]B(X) holds provided X is B-approximatable.
As Theorem 1 shows, the upper and lower B-approximations form a Galois

connection on (2U ,⊆) if and only if the base system B is a partition of U . The
question naturally arises whether the Galois connection could be generalized
so that the maps ∂C]B and C[B may form a Galois connection in any sense.
Moreover, if the answer is yes, then what conditions have to be fulfilled by a
partial B-approximation space so that ∂C]B and C[B form a Galois connection of

this special type. Recall that C[B is a total and ∂C]B is a partial map on 2U .
To answer this question, first of all, we need a suitable modified notion of

Galois connections.

Definition 8 ([18], Definition 2.2.2). The pair of maps f : P → Q and
g : Q → P forms a partial Galois connection between P and Q, denoted by
∂G(P, ∂f, g,Q), if

1. f : P → Q is a monotone partial map,
2. g : Q→ P is a monotone total map,
3. f(g(q)) exists for all q ∈ Q, and
4. ∀p ∈ P and ∀q ∈ Q such that f(p) is defined, f(p) ≤Q q ⇔ p ≤P g(q).

Remark 3. In [18], A. Miné actually introduced the concept of F-partial Galois
connection ∂G(P, ∂f, g,Q) between the concrete domain P and the abstract
domain Q, where F is a set of concrete operators. We apply this notion in the
simplest form when P = Q = 2U and F = ∅. It is allowed by Miné’s definition.

Theorem 2 ([6], Theorem 4.22). Let 〈U,B,C[B,C]B〉 be a partial B-approxi-
mation space.

The partial upper B-approximation and the lower B-approximation form a
partial Galois connection ∂G(2U , ∂C]B,C[B, 2U) on (2U ,⊆) if and only if the B-
sets are pairwise disjoint.

A natural question is how we can form a base system from an arbitrary one
of which members are pairwise disjoint. In practice, this problem can be reduced
to finite base systems. A possible way to construct such a base system is the
following.

First, let us form an intersection structure from an arbitrary finite base
system. Formally, a nonempty family S ⊆ 2U is an intersection structure if
∀S′(6= ∅) ⊆ S (

⋂
S′ ∈ S), i.e. it is closed under intersection but does not

contain U necessarily [7].
Let us take an arbitrary finite base system B and create its intersection

structure IS(B) as the smallest set which satisfies the following two properties:

1. B ⊆ IS(B).
2. If B′ ⊆ IS(B), then

⋂
B′ ∈ IS(B).

A Tool-Based Set Theoretic Framework for Concept Approximation 59

Having given the intersection structure IS(B), we can create a family of sets
ISΠ(B) of which members are pairwise disjoint. ISΠ(B) is the smallest family
of sets which satisfies the following property:

If u ∈ U and B′ = {B : B ∈ B ∧ u ∈ B}, then
⋂
B′ ∈ ISΠ(B).

3 Rough Set Theory and Formal Concept Analysis

Let G and M denote a set of objects and a finite set of attributes, respectively.
Note that the formal concept analysis allows that G and M to be empty sets,
but the rough set theory does not.

3.1 Information Systems

First, we reformulate the rough set theory [9, 24]. Let S = 〈G,M, Vm∈M , f〉 be
an information system, where G and M as before, Vm is a nonempty set of values
of attribute m ∈M , and f : G×M → V =

⋃
m∈M Vm is an information function

with ∀g ∈ G∀m ∈ M (f(g,m) ∈ Vm). Informally, f(g,m) represents the value
which object g takes at attribute m.

The information system is often represented by a table, as shown in Table 1.
It is an information table containing a shortened student grade history from an
information technology course held for hospital nurses at the Faculty of Health,
University of Debrecen. It contains 20 students and their results in three home-
work assignments, and one final examination.

Table 1. Information system Table 2. Information system

of a shortened student grade history of a shortened student grade history

(complete) (partial)

Student Hw1 Hw2 Hw3

Final

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 1 2 1 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 4 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 2 2 2 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4

Student Hw1 Hw2 Hw3

Final

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 2 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4

60 Z. Csajbók et al.

With each N ⊆M we associate an equivalence relation EN ⊆ G×G by

(g1, g2) ∈ EN if ∀n ∈ N (f(g1, n) = f(g2, n)).

If g ∈ G, then [g]EN
is the equivalence class of EN containing g. Let G/N denote

the set of equivalence classes generated by EN .
A concept X ⊆ G is EN -definable or EN -exact if X is a union of some

equivalence classes, otherwise X is EN -undefinable or EN -inexact.
Lower and upper EN -approximations of X are:

EN (X) =
⋃
{[g]EN

∈ G/N | [g]EN
⊆ X},

EN (X) =
⋃
{[g]EN

∈ G/N | [g]EN
∩X 6= ∅}.

3.2 Formal Context

In formal concept analysis a formal context is a triple 〈G,M,R〉 [11], where G
and M as above and R ⊆ G×M is a binary relation. Choosing

∀m ∈M (Vm = {0, 1}) and f(g,m) =

{
1, if (g,m) ∈ R;
0, otherwise

,

we may transform information systems into formal contexts. For instance, Table
3 shows a formal context representation of the same example shown in Table 1.

Table 3. Formal context Table 4. Incomplete formal context

of a shortened student grade history of a shortened student grade history

Final

Student 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 exam

S 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2

S 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 4 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 6 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

S 7 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1

S 8 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2

S 9 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2

S 10 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

S 11 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2

S 12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 13 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 14 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3

S 15 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 4

S 16 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 4

S 17 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

S 18 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 3

S 19 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2

S20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Homework1 Homework2 Homework3

S20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Final

Student 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 exam

S 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2

S 3 1 0 0 0 0 1

S 4 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 6 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

S 7 1 0 0 0 0 0 0 1 0 0 1

S 8 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2

S 9 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2

S 10 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

S 11 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2

S 12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 13 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 14 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3

S 15 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 4

S 16 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 4

S 17 4

S 18 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 3

S 19 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2

S 20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Homework3Homework1 Homework2

S 20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

A Tool-Based Set Theoretic Framework for Concept Approximation 61

Given the formal context 〈G,M,R〉 we define

AB = {m ∈M | ∀g ∈ A ((g,m) ∈ R)}, for A ⊆ G,

BC = {g ∈ G | ∀m ∈ B((g,m) ∈ R)}, for B ⊆M,

called the polars of A, B, respectively [26].
Informally, AB is the set of attributes common to all the objects in A, BC is

the set of all objects which possess all of the attributes in B.
Given A ⊆ G and B ⊆ M we have A× B ⊆ R ⇔ A ⊆ BC ⇔ AB ⊇ B. The

pair (A,B) is called a formal concept if

A = BC and AB = B.

Formal concepts are usually ordered by inclusion on the first co-ordinate
and/or reverse inclusion on the second:

(A1, B1) � (A2, B2)⇔ A1 ⊆ A2 and B1 ⊇ B2 ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2.

Formal concepts with this ordering form a concept hierarchy for the context
〈G,M,R〉 and denoted by B(G,M,R). The fundamental theorem of formal con-
cept analysis states that B(G,M,R) with the ordering � is a complete lattice
called the concept lattice [11].

4 A Tool-Based Set Theoretic Approximation Framework

Let U be any nonempty set. Let A+, A− ⊆ U be two nonempty subsets of U in
such a way that A+ ∩ A− = ∅. A+ and A− are called the positive and negative
reference set, respectively. The adjectives positive and negative claim nothing
else but that the sets A+ and A− are well separated.

In general, the constraint A+ ∩ A− = ∅ is the only requirement for A+ and
A−. Of course, additional relations between them may be supposed.

Furthermore, let T+ and T− ⊆ 2U be two nonempty finite families of subsets
of U . The members of T+ are called positive or T+-tools, whereas the members
of T− are called negative or T−-tools.

Requirements for positive and negatives tools are the following:

(T1) For each subset T+ ∈ T+ (resp., T− ∈ T−) it is easy to decide whether
an element of U belongs to T+ (resp., T−) or not.

(T2) Sets in T+ are not necessarily pairwise disjoint, neither are those in T−.
(T3) T+ ∩ T− = ∅.
(T4) Neither

⋃
T+ nor

⋃
T− covers U necessarily.

(T5) It is assumed that

∀T+
1 , T+

2 ∈ T+ (T+
1 ∩ T+

2 ∈ T+), and ∀T−1 , T−2 ∈ T− (T−1 ∩ T−2 ∈ T−),

i.e. the T+ and T− are closed under intersection.

62 Z. Csajbók et al.

Positive (resp., negative) tools provide an opportunity to locate or approxi-
mate the positive (resp., negative) reference set. Positive and negative tools
together also yield useful information about the reference sets. To do this, we
can use the following three partial approximation spaces relaying on T+ and T−:

〈U,DT+ ,C[T+ ,C
]
T+〉, 〈U,DT− ,C[T− ,C

]
T−〉, 〈U,DT+∪T− ,C[T+∪T− ,C

]
T+∪T−〉.

Within these spaces, any clump of observed objects can be approximated
with the help of the lower and upper T+(T−-,T+ ∪ T−-)-approximations.

5 An Illustrative Example

To illustrate our framework let us see a simple example. We want to approxi-
mately estimate the achievement of students and their results in the final ex-
amination in higher education [20, 21]. We have at our disposal an information
table (Table 5) containing the student grade history (5 = excellent, 4 = good, 3
= fair, 2 = pass, 1 = fail).

Table 5. Information table with student grade history

Student Hw1 Hw2 Hw3

Final

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 1 2 1 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 4 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 2 2 2 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4

Positive tools:

T+
Hw1=4 = {S7, S15, S18, S19, S20}

T+
Hw2=4 = {S8, S18, S20}

T+
Hw1=4∧Hw2=4 = {S18, S20}

Negative tools:

T−Hw1=1 =

{S1, S2, S3, S4, S5, S6, S9, S10, S12, S13, S14}
T−Hw2=1 =

{S1, S2, S3, S5, S6, S7, S10, S11, S12, S14, S16}
T−Hw3=1 =

{S1, S3, S4, S5, S8, S9, S11, S12, S13, S16}
T−Hw1=1∧Hw2=1 =

{S1, S2, S3, S5, S6, S10, S12, S14}
T−Hw1=1∧Hw3=1 = {S1, S3, S4, S5, S9, S12, S13}
T−Hw1=2∧Hw3=1 = {S1, S3, S5, S11, S12, S16}
T−Hw1=1∧Hw2=1∧Hw3=1 = {S1, S3, S5, S12}

Of course, there is no way to accurately measure the achievement of students
and their success or failure on the final exam. Moreover, students cannot exactly
appreciate ‘what they know’ or ‘what they do not know’. However, with the

A Tool-Based Set Theoretic Framework for Concept Approximation 63

apparatus of partial approximation spaces, we can analyze student grade history
contained in Table 5 in order to understand how the results in assignments
approximately relate to success or failure on the final exam.

For the sake of simplicity, students’ success and failure on homework assign-
ments or the final exam are measured by grade 4 and grade 1, respectively. Based
on these prerequisites, the positive tools (Fig. 4) and negative tools (Fig. 5) are
the following (see also Table 5):

T+ = {T+
Hw1=4, T

+
Hw2=4, T

+
Hw1=4∧Hw2=4},

T− = {T−Hw1=1, T
−
Hw2=1, T

−
Hw3=1, T

−
Hw1=1∧Hw2=1, T

−
Hw1=1∧Hw3=1,

T−Hw1=2∧Hw3=1, T
−
Hw1=1∧Hw2=1∧Hw3=1}

U

S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

S16

S1 S3

S12S11

S5

S14

S6

S10

S2

S7 S4

S9

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15S17 S18 S19 S20

S8

Fig. 4. Positive tools (homework = 4). Fig. 5. Negative tools (homework = 1).
〈U,DT+ ,C[

T+ ,C
]

T+〉 partial 〈U,DT− ,C[
T− ,C]

T−〉 partial

approximation space approximation space

Students who have successful final exams can be evaluated with both positive
and negative tools (Fig. 6, Fig. 7):

– C[T+(XFinal exam=4) = ∅
Informally: there is no combination of successful homework in which case
the final exam surely succeeds.

– C]T+(XFinal exam=4) = T+
Hw1=4 ∪ T+

Hw2=4 ∪ T+
Hw1=4∧Hw2=4

Informally: if one of the Homework 1, 2 or both of the two succeed, the final
exam possibly succeeds.

– C[T−(XFinal exam=4) = ∅
Informally: there is no combination of failed homework in which case the
final exam surely succeeds.

– C]T−(XFinal exam=4) = T−Hw3=1

Informally: if the Homework 3 fails, the final exam may succeed.

64 Z. Csajbók et al.

U

S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

S16

S1 S3

S12S11

S5

S14

S6

S10

S2

S7 S4

S9

XFinal exam=4

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15

S17

S18 S19

S20

S8

XFinal exam=4

Fig. 6. Evaluation of successful final Fig. 7. Evaluation of successful final

exams with positive tools exams with negative tools

Students who have failed their final exams can also be evaluated with both
positive and negative tools (Fig. 8, Fig. 9):

– C[T+(XFinal exam=1) = ∅
Informally: there is no combination of successful homework in which case
the final exam surely fails.

– C]T+(XFinal exam=1) = T+
Hw1=4

Informally: if the only Homework 1 succeeds, the final exam possibly fails
(because, e.g., Homework 1 is the simplest part of the course).

– C[T−(XFinal exam=1) = T−Hw1=1∧Hw2=1∧Hw3=1

Informally: If all homework fail, the final exam surely fails.
– C]T−(XFinal exam=1) =

⋃
T−

Informally: if at least one homework fails, the final exam possibly fails.

U

S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19

S15

S17

S16S1 S3

S12

S11

S5

S14

S6

S10

S2

S7

S4

S9

XFinal exam=1

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15S17 S18 S19 S20

S8

XFinal exam=1

Fig. 8. Evaluation of failed final exams Fig. 9. Evaluation of failed final exams

with positive tools with negative tools

A Tool-Based Set Theoretic Framework for Concept Approximation 65

Evaluations can also be carried out over positive and negative tools together:

– C[T+∪T−(XFinal exam=4) = ∅ (see Fig. 10) informally means that there is no
combination of successful or failed homework in which case the final exam
surely succeeds.

– C]T+∪T−(XFinal exam=4) (see Fig. 10) informally means that if one of the
Homework 1, 2 or both of the two succeed, in addition, even if one of the
Homework 1, 3 or both of the two fail, then the final exam possibly succeed.

– C[T+∪T−(XFinal exam=1) (see Fig. 11) informally means that if at least one
homework fails, the final exam surely fails.

– C]T+∪T−(XFinal exam=1) (see Fig. 11) informally means that if at least one
homework fails, the final exam possibly fails even if the Homework 1 succeeds.

U

S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

T
¡

Hw2=1

T
¡

Hw3=1

S16

S1 S3

S12S11

S5

S14

S6

S10

S2

S7 S4

S9

XFinal exam=4

S13

C[T+∪T−(XFinal exam=4) = ∅

C]T+∪T−(XFinal exam=4)

= T+
Hw1=4 ∪ T+

Hw2=4

∪T+
Hw1=4∧Hw2=4

∪T−Hw2=1 ∪ T−Hw3=1

∪T−Hw2=1∧Hw3=1

Fig. 10. Evaluation of successful final exams with positive and negative tools

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T¡Hw1=1

S5

T¡Hw2=1

T¡Hw3=1

S15S17 S18 S19 S20

XFinal exam=1

T+
Hw1=4

S8

C[T+∪T−(XFinal exam=1)

= T−Hw1=1∧Hw2=1∧Hw3=1

C]T+∪T−(XFinal exam=1)

= T−Hw1=1 ∪ T−Hw2=1 ∪ T−Hw3=1

∪T−Hw1=1∧Hw2=1

∪T−Hw1=1∧Hw3=1

∪T−Hw2=1∧Hw3=1

∪T−Hw1=1∧Hw2=1∧Hw3=1

∪T+
Hw1=4

Fig. 11. Evaluation of failed final exams with positive and negative tools

66 Z. Csajbók et al.

6 Conclusion

We have presented in this paper a tool-based set theoretic framework for concept
approximation relying on partial approximation spaces. Positive features and
their substantially negative features of observed objects can simultaneously be
approximated with the help of this framework.

We have drawn up a simplified example to demonstrate our approach. We
have analyzed a student grade history and we have been able to evaluate the
students’ achievement, exploring ‘what they know’ and/or ‘what they do not
know’, and understand how the results in homework assignments approximately
relate to success or failure on the final exam. Of course, a more subtle definition
of the notions of ‘success’ and ‘failure’ could result in a more subtle evaluation.
A refined evaluation process can form a basis for quality insurance in higher
education properly building in the hierarchy of quality management.

Acknowledgement

The author would like to express his gratitude to the anonymous referees for
reading the paper carefully and their insightful comments and suggestions.

References

1. Proceedings of the International Multiconference on Computer Science and Infor-
mation Technology, IMCSIT 2009, Mragowo, Poland, 12-14 October 2009. Polskie
Towarzystwo Informatyczne - IEEE Computer Society Press (2009)

2. Csajbók, Z.: Partial approximative set theory: A generalization of the rough set
theory. In: Martin, T., Muda, A.K., Abraham, A., Prade, H., Laurent, A., Laurent,
D., Sans, V. (eds.) Proceedings of SoCPaR 2010, December 7-10, 2010., Cergy
Pontoise / Paris, France. pp. 51–56. IEEE (2010)

3. Csajbók, Z., Mihálydeák, T.: A general tool-based approximation framework based
on partial approximation of sets. In: Kuznetsov, S.O., et al. (eds.) Proceedings of
RSFDGrC 2011, June 25-27, 2011, Moscow, Russia. LNAI, vol. 6743, pp. 52–59.
Springer-Verlag Berlin Heidelberg (2011)

4. Csajbók, Z., Mihálydeák, T.: On the general set theoretical framework of set ap-
proximation. pp. 12–15 (2011), Proceedings of RST 2011, 14-16 September 2011,
Milan, Italy (2011)

5. Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of
the rough set theory. International Journal of Computer Information Systems and
Industrial Management Applications 4, 437–444 (2012)

6. Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Com-
puter Science 412(42), 5820–5833 (2011)

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

8. Denecke, K., Erné, M., Wismath, S. (eds.): Galois Connections and Applications.
Kluwer Academic Publishers (2004)

9. Düntsch, I., Gediga, G.: Statistical evaluation of rough set dependency analysis.
International Journal of Human-Computer Studies 46(5), 589–604 (1997)

A Tool-Based Set Theoretic Framework for Concept Approximation 67

10. Ganter, B., Kuznetsov, S.O.: Formalizing hypotheses with concepts. In: Mineau,
G., Ganter, B. (eds.) Proc. 8th Int. Conf. on Conceptual Structures, ICCC’2000.
Lecture Notes in Artificial Intelligence, vol. 1867, pp. 342–356. Springer, Berlin
(2000)

11. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations.
Springer, Berlin-Heidelberg (1999)

12. Gartmeier, M., Bauer, J., Gruber, H., Heid, H.: Negative knowledge: Understand-
ing professional learning and expertise. Vocations and Learning: Studies in Voca-
tional and Professional 1(2), 87–103 (2008)

13. Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch,
I., Grzyma la-Busse, J.W., Or lowska, E., Polkowski, L. (eds.) Transactions on
Rough Sets VI, LNCS, vol. 4374, pp. 400–498. Springer-Verlag (2007)

14. Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge
University Press, Cambridge, UK (2000)

15. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W.
(ed.) Concept Lattices, Second International Conference on Formal Concept Anal-
ysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004, Proceedings. Lecture
Notes in Computer Science, vol. 2961, pp. 287–312. Springer-Verlag, Berlin Hei-
delberg (2004)

16. Kuznetsov, S.O.: Galois connections in data analysis: Contributions from the soviet
era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.)
Formal Concept Analysis, Foundations and Applications. LNAI, vol. 3626, pp.
196–225. Springer (2005)

17. Marek, V.W., Truszczyński, M.: Approximation schemes in logic and artificial in-
telligence. In: Peters, J.F., Skowron, A., Rybinski, H. (eds.) Transactions on Rough
Sets IX. LNCS, vol. 5390, pp. 135–144. Springer-Verlag (2008)

18. Miné, A.: Weakly Relational Numerical Abstract Domains. Ph.D. thesis, École
Polytechnique, Palaiseau, France (December 2004)

19. Minsky, M.: Negative expertise. International Journal of Expert Systems 7(1), 13–
19 (1994)

20. Narli, S., Ozelik, Z.A.: Data mining in topology education: Rough set data analysis.
International Journal of the Physical Sciences 5(9), 1428–1437 (2010)

21. Narli, S., Yorek, N., Sahin, M., Usak, M.: Can we make definite categorization of
student attitudes? a rough set approach to investigate students implicit attitudinal
typologies toward living things. Journal of Science Education and Technology 19,
456–469 (2010)

22. Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory
Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic). Springer
Publishing Company, Incorporated (2008)

23. Parviainen, J., Eriksson, M.: Negative knowledge, expertise and organisations. In-
ternational Journal of Management Concepts and Philosophy 2(2), 140–153 (2006)

24. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11(5), 341–356 (1982)

25. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

26. Priestley, H.A.: Ordered sets and complete lattices: A primer for computer science.
In: Backhouse, R.C., Crole, R.L., Gibbons, J. (eds.) Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction. LNCS, vol. 2297, pp. 21–
78. Springer (2000)

27. Revett, K., Gorunescu, F., Salem, A.B.M.: Feature selection in parkinson’s disease:
A rough sets approach. In: IMCSIT [1], pp. 425–428

68 Z. Csajbók et al.

28. Salem, A.B.M., Revett, K., El-Dahshan, E.S.A.: Machine learning in electrocar-
diogram diagnosis. In: IMCSIT [1], pp. 429–433

29. Skowron, A.: Rough sets in perception-based computing. In: Pal, S.K., Bandy-
opadhyay, S., Biswas, S. (eds.) Pattern Recognition and Machine Intelligence, First
International Conference, PReMI 2005, Kolkata, India, December 20-22, 2005, Pro-
ceedings. LNCS, vol. 3776, pp. 21–29. Springer (2005)

30. Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in rough-granular
computing. Fundamenta Informaticae 100(1–4), 141–157 (2010)

31. Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions.
AI Magazine 22(1), 73–84 (2001)

Decision Aiding Software Using FCA

Florent Domenach and Ali Tayari

Computer Science Department, University of Nicosia, 46 Makedonitissas Av.,
P.O.Box 24005, 1700 Nicosia, Cyprus, domenach.f@unic.ac.cy

Abstract. The consensus problem arises from social choice theory and
systematic biology where we are looking for the common information
shared by a series of trees. In this paper we present a decision aiding
software to help systematic biologist to choose the consensus function
the most appropriate for their need. This software is based on a previous
study between consensus functions and axiomatic properties, and their
underlined concept lattice.

1 Introduction

The consensus problem, which [11] deemed a ”problem for the future”, consists
of summarizing a series of structures, usually trees, into one representative struc-
ture. Axiomatic studies of consensus functions is often [26] described as an ”ideal
situation [in which] the researcher formulates a list of desirable axioms that a
consensus function should satisfy, and search for the best method that satisfies
these axioms” [33]. We present here a software following this approach almost
to the letter. Unfortunatly, it is still missing critical GUI features and is not
available yet.

The motivation for the software is originating from the separation existing
between theorizers and practitioners of consensus theory, what [7] denotes as
abstract consensus theory and concrete consensus theory. On one hand, math-
ematicians are developing sophisticated mathematical tools. The modern devel-
opment of the consensus problem originates from Arrow’s work [3] (followed
by [25]) who considered the problem of aggregating votes and showed that any
voting system is either inconsistent, arbitrary or unstable. Since then, a lot of
functions, together with a set of equivalent axioms, were developed (see [15, 22]
for a comprehensive survey).

On the other hand, practitioners like systematic biologists are rarely using
more than a handful of consensus functions. If you consider the most popular
software available like PAUP∗1 [37] (majority), PHYLIP2 [20] (majority, strict),
or COMPONENT 2.03 [30] (strict, majority-rule, loose, Nelson and Adams con-
sensus trees), only a handful are available for use. It was pointed out [38] that
this gap between the two communities was detrimental to both.

1 http://paup.csit.fsu.edu/
2 http://evolution.genetics.washington.edu/phylip.html
3 http://taxonomy.zoology.gla.ac.uk/rod/cpw.html

70 F. Domenach et al.

The goal of this paper is to present an approach – based on FCA – to the con-
sensus problem that would fill the gap between both communities. We created
a software that asks the user to think of desirable properties that a consensus
method should possess, and then we advise on which consensus function satis-
fying these properties he/she should use. Each step is described in detail in the
paper.

This paper is organized in four sections, the first one being this introduction.
In Section 2, we give a precise definition of the consensus problem, as well as the
definitions of the consensus functions (Section 2.1) and of the axiomatic proper-
ties (Section 2.2) that we implemented. We present in Section 3 the structure of
our program, and explain for every step why and how we are doing it. Finally a
brief conclusion is given in Section 4.

2 The Consensus Problem

Consider a finite set S, |S| = n. In phylogeny, the elements of S are called
operational taxonomic units, or taxa. A hierarchy H on S, also called n-tree, is
a family of subsets of S (called the classes or clusters of H) such that S ∈ H,
∅ 6∈ H, {s} ∈ H for all s ∈ S, and A ∩ B ∈ {∅, A,B} for all A,B ∈ H. We will
indifferently use the terms trees or hierarchies in the paper. We denote the set of
all hierarchies on S by H. Fig. 1 shows the graphical representation of different
trees; usually the internal nodes are simply denoted by the leaves underneath.

Consensus trees are summarizations of the information shared by two or more
classification trees of the same set of taxa. Given a profile H∗ of trees on S, i.e.
a series of trees, we want to know what they have in common - we want to
aggregate H∗ in a unique tree H. We consider in this paper the case where all
the trees of the profile are defined on the same set of taxa, as the generalization
to super-trees [34] (where the trees can have different sets of taxa) can create
computational problems.

2.1 Consensus Functions

Let H∗ = (H1, H2, ...,Hk) be a profile of hierarchies on S, and K will denote
the set of indices of the hierarchies of H∗, K = {1, ..., k}. Formally, a consensus
function on H is a map c : Hk → H with k ≥ 2 and Hk the k cartesian product,
which associate to any profile H∗ a unique hierarchy consensus, c(H∗). We do
not aim to have an exhaustive list of consensus functions, a classification based
on refinement is available in [13]. Consensus functions can be divided in three
main categories:

Quota-based consensus functions. Consider a grouping and the associated index
defined as:

NH∗(A) = {i ∈ K : A ∈ Hi} and nH∗(A) = |NH∗(A)|

Decision Aiding Software Using FCA 71

a bc d e

(H1)

a bc d e

(H2)

a bc d e

(H3)

a bc d e

(HStrict)

a bc d e

(HMaj)

a bc d e

(HLoose)

Fig. 1. Different trees defined on the set of taxa S = {a, b, c, d, e}. For the profile
H∗ = (H1, H2, H3), the strict consensus tree is given by (HStrict), the majority by
(HMaj) and the loose by (HLoose)

We associate the consensus function c(p) : Hk → H to the index nH∗ for any p ∈
K. A subset A is called p-frequent if nH∗(A) ≥ p, and the p-frequent consensus
of H∗, denoted as c(p)(H

∗), is the family of all p-frequent subsets. Quota-based
consensus functions are particular cases of federation consensus functions [23].
Recall that a federation (simple game) is a family F of subsets of K such that
A ∈ F , B ⊇ A imply B ∈ F . A federation consensus function cF is then defined
as cF (H∗) = ∨S∈F (∩i∈SHi). If we take the simple case where, for some j ∈ K,
F = {S ⊆ K : j ∈ S}, we have cF (H∗) = Hj , a single hierarchy dictating the
result of the consensus, the so called projection consensus function.

Projection: ∃j ∈ K : Prj(H∗) = Hj

When we extend this to a subset J of K, we have the oligarchic consensus
function using F = {S ⊆ K : J ⊆ S}, and cF (H∗) =

⋂
j∈J Hj .

Oligarchy: ∃J ⊆ K : Ol(H∗) =
⋂

j∈J
Hj

In the family of quota-based consensus functions, one can notice c(k)(H
∗) =⋂

i∈K Hi the set of classes present in all trees of the profile, i.e. the strict con-
sensus function [36]. In Fig. 1, (HStrict) is the strict consensus of the profile
(H1, H2, H3).

Strict: Str(H∗) =
⋂

i∈K
Hi

If we take p = dk+1
2 e, the smallest natural number greater than k

2 , we have the
majority consensus function [24] which considers clusters appearing in at least

72 F. Domenach et al.

half of the trees. An example of the majority consensus function is given in Fig.
1, where (HMaj) = Maj(H1, H2, H3).

Majority: Maj(H∗) = {X ⊆ S : nH∗(X) >
k

2
}

Unfortunately, if p is less than dk+1
2 e, it cannot be guaranteed that the resulting

family will be a tree. In order to keep the structure of a tree, different strategies
can be used.

Frequency-based consensus functions A first approach considers the idea of com-
patibility, i.e. two sets A and B are compatible if A ∩B ∈ {∅, A,B}, denoted as
A‖B, and a set A is compatible with a hierarchy H if it is compatible with every
cluster of H (or, equivalently, if A ∪ H ∈ H). We then can define a consensus
function called loose consensus [6] (originally called combinable component [12],
also called semi-strict) which considers subsets as long as they are compatible
with every tree of the profile. Fig. 1 shows (HLoose), the loose consensus tree
obtained from (H1, H2, H3).

Loose: L(H∗) =
⋃
{X ⊆ S : ∃j ∈ K,X ∈ Hj and ∀i ∈ K,X ∪Hi ∈ H}

The loose consensus function was extended by [18] to two different consensus
functions. The first one is combining the classes obtained by the majority con-
sensus function with those of the loose consensus function:

Loose and Majority Function Property: LM(H∗) = Maj(H∗) ∪ L(H∗)

The second extension is to add classes that are more often compatible than not.
Define NH∗(X) = {i ∈ K : X ∪Hi 6∈ H} as the set of trees not compatible with
a subset X, then the majority (+) consensus function will take subsets that are
more often compatible than incompatible. It obviously contains all the classes
obtained by the majority function and by the loose function.

Majority-rule (+) : Maj+(H∗) = {X ⊆ S : |NH∗(X)| > |NH∗(X)|}

Consider the weight function w(X) = nH∗(X)− 1 on classes. The Nelson-Page
consensus tree is the tree constructed from the clique G containing the com-
ponents most frequently replicated in the profile. If two or more cliques have
the same, maximal number of replications of components, then the consensus
tree is constructed from those components common to all those cliques. In the
literature, the Nelson-Page tree [27, 29] has often been confused with the strict
consensus tree.

The frequency difference consensus function consider the subsets of S that
are more frequent than any other subsets non-compatible.

Freq. Diff.: FD(H∗) = {X : nH∗(X) > max
Y not compatible with X

{nH∗(Y)}}

Previous consensus functions may miss some structural features of the trees,
particularly if the data is noisy. For example, a desirable feature would be that

Decision Aiding Software Using FCA 73

if two taxa are closer than a third one, we want these two taxa to be separated
from the third one in the consensus hierarchy - which is what Adams’ function [1]
achieves. Historically the first one, an Adams consensus tree contains the nestings
common to all trees in a profile. X nests in Y in H, denoted as X <H Y if and
only if X ⊂ Y and there is Z ∈ H such that X ⊆ Z and Y 6⊆ Z. π(H) is the
maximal cluster partition for H with blocks equal to the maximal clusters of H.
Adams’ consensus function is best described algorithmically (from [13]):

Procedure AdamsTree(H1, ...,Hk)
Construct π(H), the product of π(H1), ..., π(Hk).
For each block B of π(H) do

AdamsTree(H1|B , ...,Hk|B)

Distance-based consensus functions Another consensus family is based on dis-
tance, either as a height function, or as distance between trees. Durchschnitt [28]
consensus function takes the intersection of all classes at the same height. The
canonical height η0(X) of a class X ⊆ S is defined as η0(S) = 0 and η0(X) = h if
and only if there is a maximal sequence S ⊃ X1 ⊃ ... ⊃ Xh−1 ⊃ Xh = X. Define
ω = mini∈KmaxX∈Hiη0(X) as the height of the smallest tree of the profile.

Durchschnitt: Dur(H∗) =

ω⋃

j=1

{
⋂

i∈K
Xi : Xi ∈ Hi and η0(Xi) = j}

The median and asymmetric median consensus functions both use a distance
between trees, i.e. a distance on H. The median consensus is the tree minimizing
the distance of the symmetric difference from it to every tree of the profile.
The median consensus was extensively studied, particularly in the case of semi-
lattices [35] (as trees can be seen as semi-lattices).

Median: Med(H∗) = minH∈H

k∑

i=1

|H4Hi|

The asymmetric median consensus [32] on the other hand is the tree minimiz-
ing the distance between each tree and the consensus tree, i.e. minimizing the
number of classes in Hi that are not present in c(H∗).

Asymmetric Median: AMed(H∗) = minH∈H

k∑

i=1

|Hi −H|

2.2 Axiomatic Properties of Consensus Functions

Historically, consensus functions were studied through a series of (desirable) ax-
ioms proved to be equivalent to the function. Arrow’s pioneer work proved the
impossibility of a non-dictatorial consensus function satisfying fundamental ax-
ioms (transitivity, Pareto and independence of irrelevant alternatives) on linear

74 F. Domenach et al.

orders. We implemented a series of axioms that a user may find desirable or
undesirable.

A consensus function is Pareto relatively to a specific kind of relationships
(classes, triplets, nestings) when the consensus tree will contain the relationship
present in all the trees, i.e. will contain the intersection of the trees of the profile
with respect to the relationship. For example, when we are interested in the
common classes, we have the Pareto optimal [31] axiom:

Pareto Optimality: (∀X ⊆ S)(X ∈
k⋂

i=1

Hi ⇒ X ∈ c(H∗))

Trees can also be defined [14] through triplets ab|c, a, b, c ∈ S, denoting the
grouping of a and b relative to c. We say that ab|c ∈ H if there exists a class
X ∈ H such that a, b ∈ X but c 6∈ X. The Pareto property on triplets is that a
common separation of two taxa from a third taxon among every input tree must
be respected and applied in the consensus tree.

Ternary Pareto Optimality: (∀x, y, z ∈ S)((∀i ∈ K)(xy|z ∈ Hi)⇒ xy|z ∈ c(H∗))

Adams [2] extended that idea to nestings, where if two clusters are separated
from each other in every input tree, therefore they must also be separated in the
consensus tree:

Nesting Preservation: (∀∅ 6= X,Y ⊆ S)((∀i ∈ K)(X <Hi
Y)⇒ (X <c(H∗) Y))

Conversely, a consensus function is co-Pareto for a particular relationship if one
can find every relationship of that kind of the consensus tree in one or more tree
of the profile. Every cluster from the consensus tree must appear in at least one
of the input tree, or in other words it should be a member of the union of all
input trees. We will consider here only co-Pareto optimally for classes.

co-Pareto Optimality: (c(H∗) ⊆
k⋃

i=1

Hi)

In order to characterize his consensus function, Adams introduced a reciprocal
property of nesting preservation, although stronger than just a co-Pareto prop-
erty. It states that if two subsets are nested in the consensus tree, they must be
nested in all the trees of the profile.

Strong Presence: (∀∅ 6= X,Y ⊆ S)(X <c(H∗) Y ⇒ (∀i ∈ K)(X <Hi
Y))

It happened that Strong Presence property was too constraining, so instead of
considering all possible nested subsets, Adams considered only the nested classes.
Any two clusters of the consensus tree that are separated from each other must
also be separated in every input tree.

Qualified Strong Presence: (∀X,Y ∈ c(H∗))(X <c(H∗) Y ⇒ (∀i ∈ K)(X <Hi
Y))

Decision Aiding Software Using FCA 75

Qualified strong presence was weakened to consider the clusters of the consensus
tree to be nested in S in each tree of the profile:

Upper Strong Presence: (∀X ∈ c(H∗))(X <c(H∗) S ⇒ (∀i ∈ K)(X <Hi S))

The dictatorship property (an input tree dictates over the consensus tree by
having all of its clusters included in the consensus tree) is often consider unde-
sirable; however, this can change if there is a particular tree that can be consider
an oracle, i.e. for which we want the consensus tree to refine it.

Dictatorship: (∃j ∈ K)(∀X ⊆ S)(X ∈ Hj ⇒ X ∈ c(H∗))
Another desirable property, also called faithful, is the following: for every group
of clusters containing only one cluster from each input tree there must be a
cluster in the consensus tree such that it includes the intersection of the group
of the group of clusters and it is included in the union of the groups of the group
of clusters.

Betweenness: (∀i ∈ K with Xi ∈ Hi)(∃Y ∈ c(H∗))(
k⋂

i=1

Xi ⊆ Y ⊆
k⋃

i=1

Xi)

3 Decision Aiding Software

We used Formal Concept Analysis (FCA) [21] as our formal background. FCA is
particularly suitable as it provides a structure on the power set of attributes, here
the consensus functions and axioms, and allow calculations of distances on that
structure. Since we assume the reader familiar with FCA, we will only briefly
recall main terminologies and results used in our program: a formal context
(G,M, I) is defined as a set G of objects, a set M of attributes, and a binary
relation I ⊆ G × M . (g,m) ∈ I is read as ”object g has attribute m”. To
this formal context, one can associate to a set of objects A ⊆ G its intension
A′ = {m ∈M : ∀g ∈ A, (g,m) ∈ I} of all properties shared by A. Dually, we can
define B′ = {g ∈ G : ∀m ∈ B, (g,m) ∈ I}, the extension of a set of properties
B ⊆ M . A pair (A,B), A ⊆ G,B ⊆ M , is a formal concept if A′ = B and
B′ = A. The set of all formal concepts, ordered by inclusion, forms a lattice [5],
called concept lattice. For more terms and definitions on lattice theory, one can
refer to [10, 16].

This D.A. software has three different functional layout (see Fig. 2): a pre-
processing is first done on consensus functions and axioms in order to create the
context that then will be used, with the associated lattice, in order to advise
users on which consensus function to use. The last layer is concerned with the
obtainment of the tree itself from some input profile.

3.1 Pre-processing

The first layer of the D.A. software concerns the pre-processing of the data that
will be used. In order to insure scientific validity of the decision aiding, we imple-
mented the previous consensus functions of Sec. 2.1 and the axiomatic properties

76 F. Domenach et al.

Fig. 2. D.A. software functional layout.

of Sec. 2.2 in C++ on a laptop Intel Core i5, 2.3 GHz. Initially, it generates all
possible hierarchies based on a given set of n taxa, and traverses through all pos-
sible profiles of k hierarchies, together with all possible consensus trees. Then
we exhaustively list what we called configurations, each configuration is a pair
consisting of a profile and a consensus tree. Every configuration was systemati-
cally compared against axiomatic properties and consensus functions in order to
create a first (raw) context. Attributes of the context are the consensus functions
and the axiomatic properties, while the objects are every possible configuration.
We discussed in [17] the implications generated by the context.

During the pre-processing phase, we encountered a series of computational
challenges, as the number of n-trees grows exponentially [19] and some consen-
sus functions are NP-hard [32]. We were able to exhaustively investigate the
configurations only up to n = 5, for which we obtained around 9.57× 1012 con-
figurations. Since the running time of the simulation increases exponentially with
slight addition to n or k, in order to have partial results, controlled randomly
selected configurations were chosen in order to have a more accurate - and so a
more refine - context.

3.2 Underlined Structure

Given the number of objects in our context (over one trillion), we first eliminate
duplicates. If several configurations share the same attributes, we simply keep
the first one as representative. No information is lost as we are interested in

Decision Aiding Software Using FCA 77

the structure of the attributes, and the objects (the configurations) sole purpose
is to systematically investigate this structure. Our simplified context has 5379
objects for 23 attributes, and Fig. 3 shows the overall concept lattice, having
3718 concepts. In order to derive the lattice, we followed The Next Closure [21]
algorithm. This algorithm uses the lectic order on the set of attributes M , which
is a total order on P(M). Given two subsets A and B of M , A is said to be
lectically smaller than B at position i, and we denote it by A ≺i B, if and only
if i = min(A∆B) and i ∈ B. Finally, we say that A is lectically smaller than B
if A = B or A ≺i B for some i ∈ K. We used Next Closure algorithm as it is an
efficient and easy to implement.

Fig. 3. Concept lattice associated with the configurations with minimal labeling of the
properties (drawn with ConExp [39]).

78 F. Domenach et al.

After constructing the list of concepts and listing them in ascending order,
the program also keeps track of the children and parents of each concept of
the lattice. The user can then select a set of axiomatic properties depending
on the one he/she finds desirable or undesirable: each axiom can be preferred
(positive), disliked (negative), or neutral. Based on that input, the program
finds the meet of the selected properties, i.e. the concept C associated to his/her
choices. Concept C is the smallest concept containing all the positive user’s
choices and no negative ones if it exists. If the user’s choices are conflicting, i.e.
C doesn’t exist, positive choices will be given priority over negative ones.

3.3 Distances in the lattice

In order to advise which consensus function would be suitable depending on the
user’s choices, for each consensus function, we first find the smallest concepts Ci

containing that consensus function. Then we used different distances between C
(the concept representing the user’s choice) and each Ci (the concepts associated
with consensus function i) in order to find the consensus function the closest to
the user’s choice. The use of different distances lets the user freely choose which
distance is more suitable.

We can consider two types of distances in a lattice: distances based on con-
cepts and distances on the covering graph (or Hasse diagram) of the lattice. For
the first type, we used the distance of the symmetric difference between con-
cepts, d1(C,Ci) = |C∆Ci|, i.e the number of properties present in either C or
Ci but not in both. For the second type, distances in the covering graph, we
considered four distinct distances:

– Any Path Distance: weight of the shortest path (topological distance) be-
tween the corresponding attribute concepts; the closer the two concepts are
in the graph, the greater their likelihood.

– Any Path Distance Without ⊥L and >L: we remove the top and the bot-
tom concepts of the lattice to compute the topological distance because such
concepts don’t bear any information (even if 1L can have attributes associ-
ated, it still doesn’t have any meaning). It is particularly important when
we consider the co-atoms of the lattice (such as Pareto Optimal or co-Pareto
Optimal, see Fig. 3), as the shortest path could go through 1L and short-
circuit the ”real” distance.

– Meet Distance: It is the topological distance between C and Ci passing
through their meet, i.e. the distance from C to C ∧ Ci plus the distance
from Ci to C ∧ Ci.

– Join Distance: Dual to the meet distance, it is the topological distance be-
tween C and Ci passing through their join.

Since each previous distance has its own advantages and disadvantages, we also
implemented a weighted average distance for which the user can freely assign
the weights. It is a weighted average of all the above distances based on user’s
preference. Fig. 4 shows an example of user’s choice and the advised consensus
function.

Decision Aiding Software Using FCA 79

Fig. 4. Screen shot of the second layer of the software, with an example of user’s
choices.

3.4 Decision Aiding

In the third layer, the D.A. Software recognizes input trees which are given
in Newick format. The Newick tree format is a well-known representation of
graph-theoretical trees which denotes trees using parentheses and commas. The
simplicity and standard nature of Newick makes it a suitable method for scien-
tists to provide the software with their input. There are several ways through
which trees can be represented, however the representation that contains only
the information about the leaves are recognized as the valid ones. For example, in
Fig. 1, (H1) has the Newick format (((a, c), b), d, e), while (H2) is ((a, c), (b, d, e)).

Upon selection of consensus functions by the user, the D.A. software generates
the unique (or set of all possible consensus trees) for the selected functions, so
that the user can compare them with each other. Using this feature, the user is
able to find out which model would be more suitable for the nature of their work,
for which he/she will be provided with respective consensus tree(s). This allows
the user to have a narrowed list of candidates for the representative consensus
trees as well as having a hands-on experience to find out the most suitable
functional property and consensus tree.

4 Conclusion and Future Work

In this paper, we presented a decision aiding software which explore via Formal
Concept Analysis the space of consensus functions and their axioms. It provides
the user with means to generate consensus tree(s) representative(s) depending
on their choices. It initially imports the raw context obtained via pre-processing,
constructs the associated lattice and, depending on the user’s preferences, advise

80 F. Domenach et al.

based on distances in the lattice on which function to use. Upon selection of
functions, the program generates the consensus trees of the collection of user’s
input tree using selected functional properties.

In continuation of this project, we are planning to expand the capabilities
of this software. Firstly, besides the (rooted) trees that are currently supported
as input and output, the program will be able to support super-trees as well
as unrooted trees as its input and output. Another possibility would be the
addition of other types of structures of sets such as pyramids [9], weak-trees
[4], and, more generally, lattices. In addition, the concept of independence and
neutrality as axiomatic properties are planned to be incorporated. Moreover,
other commonly used consensus functions are going to be added to the result,
therefore with a further refined and exhaustive approach, the program’s precision
and usefulness would be improved.

References

[1] Adams III, E.N.: Consensus Techniques and the Comparison of Taxonomic Trees.
Systematic Zoology 21 (1972) 390–397

[2] Adams III, E.N.: N-trees as nestings: Complexity, similarity, and consensus. J.
Classif 3 (1986) 299-317

[3] Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)

[4] Bandelt, H.-J., Dress, A.: Weak hierarchies associated with similarity measures: an
additive clustering technique Bull. Math. Biology 51 (1989) 133-166

[5] Barbut, M., Monjardet, B.: Ordres et classification: Algèbre et combinatoire (tome
II). Hachette, Paris (1970)

[6] Barthélemy, J.-P., McMorris, F.R., Powers, R.C: Dictatorial consensus functions
on n-trees. Math. Soc. Sci. 25 (1992) 59-64

[7] Barthélemy, J.-P., Brucker, F.: Average Consensus in Numerical Taxonomy. In
Data analysis, Eds. W. Gaul, O. Opitz, and M. Schader, Springer (2000) 95-104

[8] Bertrand, P.: Set Systems and Dissimilarities. Europ. J. Combinatorics 21 (2000)
727-743

[9] Bertrand, P., Diday, E.: A visual representation of compatibility between an order
and a dissimilarity index: the pyramids. Comput. Stat. Quart. 2 (1985) 31-44

[10] Birkhoff, G.: Lattice Theory, 3rd ed. Amer. Math. Soc., Providence (1967)

[11] Bock, H.H.: Classification and clustering: Problems for the future. In Diday, E.,
Lechevallier, Y., Schader, M., Bertrand, P., Burtschy, B.: New approaches in clas-
sification and data analysis. Springer-Verlag, Berlin (1994) 3–24

[12] Bremer, K.: Combinable component consensus. Cladistics 6 (1990) 369-372

[13] Bryant, D.: A Classification of Consensus Methods for Phylogenetics. In: Janowitz,
M., Lapointe, F.J., McMorris, F., Mirkin, B., Roberts, F. (eds.) Bioconsensus,
DIMACS (2003) 163-184

[14] Colonius, H., Schulze, H.-H.: Tree structure for proximity Data. Brit. J. of Math.
Stat. Psych. 34 (1981) 167-180

[15] Day, W.H.E., McMorris, F.R.: Axiomatic Consensus Theory in Group Choice and
Biomathematics. Siam, Philadelphia (2003)

[16] Davey, B.A., Priestley, H. A.: Introduction to Lattices and Order, 2nd ed. Cam-
bridge University Press (2002)

Decision Aiding Software Using FCA 81

[17] Domenach, F., Tayari, A.: Implications of Axiomatic Consensus Properties. To
appear (2012)

[18] Dong, J., Fernández-Baca, D., McMorris, F.R., Powers. R.C.: An Axiomatic Study
of Majority-rule (+) and associated Consensus Functions on Hierarchies. Disc. App.
Math. 159 (2011) 2038-2044

[19] Felsenstein, J.: The Number of Evolutionary Trees. Syst. Zool. 27 (1978) 27-33
[20] Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics

5 (1989) 164-166
[21] Ganter, B., Wille, R.: Formal Concept Analysis : Mathematical Foundations.

Springer (1996)
[22] Hudry, O., Monjardet, B.: Consensus Theories. An Oriented Survey. Math. Sci.

hum 190 (2010) 139-167
[23] Leclerc, B. Monjardet, B.: Latticial theory of consensus. In: Barnett, V., Moulin,

H., Salles M., Schofield N. (eds.) Social choice, Welfare and Ethics. Cambridge
University Press, Cambridge (1995) 145-159

[24] Margush, T., McMorris, F.R.: Consensus n-trees. Bull. Math. Biol. 43 (1981)
239-244

[25] May, K.O.: A Set of Independent Necessary and Sufficient Conditions for Simple
Majority Decision. Econometrica 20 (1952) 680-684

[26] McMorris, F.R.: : Axioms for consensus functions defined on undirected phyloge-
netic trees. Math. Biosciences 74 (1985) 77-80

[27] Nelson, G.: Cladistic analysis and synthesis: Principles and definitions, with a
historical note on Adanson’s Famille des Plantes (1763-1764). Syst. Zool. 28 (1979)
1-21

[28] Neumann, D.A.: Faithful consensus methods for n-trees. Math. Biosci 63 (1983)
271-287

[29] Page, R.D.M.: Tracks and Trees in the Antipodes: A Reply to Humphries and
Seberg. Syst. Zool. 39 (1990) 288-299

[30] Page, R.D.M.: User’s manual for COMPONENT, Version 2.0. Natural History
Museum, London (1993)

[31] Pareto, V.: Cours d’économie politique. F. Rouge, Lausanne (1896)
[32] Phillips, C., Warnow, T.J.: The aymmetric median tree - A new model for building

consensus trees. Disc. App. Math. 71 (1996) 311-335
[33] Powers, R.C., White, J.M.: Wilson’s theorem for consensus functions on hierar-

chies. Disc. Appl. Math. 156 (2008) 1321–1329
[34] Semple, M., Steel, C.: A supertree method for rooted trees. Disc. App. Math. 105

(2000) 147-158
[35] Sholander M.: Medians, Lattices, and Trees. Proceedings of the American Math-

ematical Society 5 (1954) 808-812
[36] Sokal, R.R., Rohlf, F.J., Taxonomic congruence in the Leptopodomorpha re-

examined. Syst. Zool. 30 (1981) 309-325
[37] Swofford, D.L.: PAUP: Phylogenetic Analysis Using Parsimony, version 3.0. Illinois

Natural History Survery, Champaign (1990)
[38] Wilkinson, M., Thorley, J.L., Pisani, D.E., Lapointe, F.-J., McInerney, James O.:

Some Desiderata for Liberal Supertrees. In: Phylogenetic Supertrees: Combining
Information to Reveal the Tree of Life, Kluwer Academic Publishers (2004) 564-582

[39] Yevtushenko, S.A.: System of data analysis ”Concept Explorer”. Proceedings of
the 7th national conference on Artificial Intelligence KII-2000, Russia (2000) 127-
134

Analyzing Chat Conversations of Pedophiles
with Temporal Relational Semantic Systems

Paul Elzinga1, Karl Erich Wolff2, Jonas Poelmans3,4, Guido Dedene3,5, and
Stijn Viaene3,6

1 Amsterdam-Amstelland Police
James Wattstraat 84, 1097DM Amsterdam, The Netherlands

paul.elzinga@amsterdam.politie.nl
2 Ernst-Schröder-Center, Darmstadt University of Technology

Schloßgartenstr. 7, D-64289 Darmstadt, Germany
karl.erich.wolff@t-online.de

3 K.U.Leuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven,
Belgium

4 National Research University Higher School of Economics (HSE)
Pokrovskiy boulvard 11, 101000 Moscow, Russia

jonas.poelmans@econ.kuleuven.be
5 Universiteit van Amsterdam Business School

Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
Guido.Dedene@econ.kuleuven.be

6 Vlerick Leuven Gent Management School, Vlamingenstraat 83, 3000 Leuven,
Belgium

Stijn.Viaene@econ.kuleuven.be

Abstract. Grooming is the process by which pedophiles try to find chil-
dren on the internet for sex-related purposes. In chat conversations they
may try to establish a connection and escalate the conversation towards
a physical meeting. Till date no good methods exist for quickly analyzing
the contents, evolution over time, the present state and threat level of
these chat conversations. In this paper we propose a novel method based
on Temporal Relational Semantic Systems, the main structure in the
temporal and relational version of Formal Concept Analysis. For rapidly
gaining insight into the topics of chat conversations we combine a lin-
guistic ontology for chat terms with conceptual scaling and represent
the dynamics of chats by life tracks in nested line diagrams. To show-
case the possibilities of our approach we used chat conversations of a
private American organization which actively searches for pedophiles on
the internet.

Keywords: Formal Concept Analysis, Temporal Concept Analysis, Con-
ceptual Scaling, Relational Systems, Nested Line Diagrams, Transition
Diagrams

Acknowledgment Jonas Poelmans is Aspirant of the “Fonds voor Wetenschap-
pelijk Onderzoek – Vlaanderen” (FWO) or Research Foundation – Flanders.

Analyzing Chat Conversations of Pedophiles 83

References

[1] Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation. Computa-
tional Foundations of Conceptual Graphs. Springer-Verlag London Limited (2009)

[2] Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: (2004) Crime data
mining: a general framework and some examples. IEEE Computer, April (2004)

[3] Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship
to Predicate Logic. LNAI 2892, Springer, Heidelberg (2003).

[4] Dombrowski, S.C., Gischlar, K.L., Durst, T.: Safeguarding young people from
cyber pornography and cyber sexual predation: a major dilemma of the internet.
Child abuse review, Vol. 16, pp. 153–170 (2007).

[5] Elzinga, P., Poelmans, J., Viaene, S., Dedene, G., Morsing, S. : Terrorist threat
assessment with Formal Concept Analysis. Proc. IEEE International Conference
on Intelligence and Security Informatics. May 23-26, 2010 Vancouver, Canada.
ISBN 978-1-42446460-9/10, pp.77–82. (2010)

[6] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)

[7] Gottschalk, P.: A dark side of computing and information sciences: characteristics
of online groomers. The Journal of Emerging Trends in Computing and Informa-
tion Sciences, Vol. 2, No. 9, pp. 447–455, September (2011).

[8] Huchard, M., Rouane-Hacene, M., Cyril Roume, Valtchev, P.: Relational con-
cept discovery in structured datasets. Ann. Math. Artif. Intell. 49(1–4), pp. 39–
76.(2007)

[9] IALEIA: Law Enforcement Analytic Standards. Richmond, VA: Global Justice
Information Sharing Initiative.(2004)

[10] Krippendorf, K.: The Content analysis Reader. With M. A. Bock (Eds.). Thou-
sand Oaks, CA: Sage, 481 pp.(2008)

[11] Poelmans, J., Elzinga, P., Viaene, S., Dedene, G. . A case of using formal concept
analysis in combination with emergent self organizing maps for detecting domestic
violence, Lecture Notes in Computer Science, 5633, pp. 247 - 260, Advances in
Data Mining. Applications and Theoretical Aspects, 9th Industrial Conference
(ICDM), Leipzig, Germany, July 20–22, 2009, Springer (2009)

[12] Poelmans, J., Elzinga, P., Viaene, S., Dedene, G. : Curbing domestic violence:
Instantiating C-K theory with Formal Concept Analysis and Emergent Self Or-
ganizing Maps. Intelligent Systems in Accounting, Finance and Management 17,
(3–4), pp. 167–191. Wiley and Sons, Ltd. doi 10.1002/isaf.319 (2010)

[13] Poelmans, J., Elzinga, P., Viaene, S., Dedene, G., Kuznetsov, S. : A concept
discovery approach for fighting human trafficking and forced prostitution. Lecture
Notes in Computer Science 6828, pp. 201–214, 19th International conference on
conceptual structures, July 25–29, Derby, England. Springer (2011)

[14] Poelmans, J., Elzinga, P., Neznanov, A., Kuznetsov, S., Dedene, G., Ignatov,
D., Viaene, S. : Concept relation discovery and innovation enabling technology
(CORDIET). D. Ignatov et al. (Eds.): Proceedings of the International Workshop
on Concept Discovery in Unstructured Data, 25 June, Moscow, Russia, pp. 53 –
62. ISSN 1613-0073.(2011)

[15] Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur Re-
strukturierung der mathematischen Logik. Dissertation, TU Darmstadt 1998.
Shaker, Aachen (1998)

[16] Ratcliffe, J.: Intelligence-Led Policing. Collumpton, UK Willan Publishing (2008)

84 P. Elzinga et al.

[17] Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Adison-Wesley, Reading (1984)

[18] Sowa, J.F.: Knowledge representation: logical, philosophical, and computational
foundations. Brooks Cole Publ. Comp., Pacific Grove, CA (2000)

[19] Wille, R.: Restructuring Lattice Theory: an Approach based on Hierarchies of
Concepts. In: Rival, I. (ed.): Ordered Sets. pp. 445–470, Reidel, Dordrecht-Boston
(1982). Reprinted in: Ferr’e, S., Rudolph, S. (eds.): Formal Concept Analysis.
ICFCA 2009. LNAI 5548, pp. 314–339. Springer, Heidelberg (2009)

[20] Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose, H.
Delugach, M. Keeler, L. Searle, J.F. Sowa (eds.): Conceptual Structures: Fulfilling
Peirce’s Dream. LNAI 1257, pp. 290–303. Springer, Heidelberg (1997)

[21] Wolak, J., Finkelhor, D., Mitchell, K.J., Ybarra, M.L.: Online predators and their
victims - myths, realities and implications for prevention and treatment. American
Psychologist Vol. 63, No. 2, pp. 111–128 (2008).

[22] Wolff, K.E.: Temporal Concept Analysis. In: E. Mephu Nguifo et al. (eds.): ICCS-
2001 International Workshop on Concept Lattices-Based Theory, Methods and
Tools for Knowledge Discovery in Databases, Stanford University, Palo Alto, CA,
91–107 (2001)

[23] Wolff, K.E.: ’Particles’ and ’Waves’ as Understood by Temporal Concept Analysis.
In: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (eds.): Conceptual Structures at Work.
LNAI 3127, pp. 126–141. Springer, Heidelberg (2004)

[24] Wolff, K.E.: States of Distributed Objects in Conceptual Semantic Systems. In: F.
Dau, M.L.Mugnier, G.Stumme (eds.): Common Semantics for Sharing Knowledge.
LNAI 3596, pp. 250–266. Springer, Heidelberg (2005)

[25] Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis.
In: B. Ganter, G. Stumme, R. Wille (eds.): Formal Concept Analysis State of the
Art. LNAI 3626, pp. 127–148. Springer, Heidelberg (2005)

[26] Wolff, K.E.: Relational Semantic Systems, Power Context Families, and Concept
Graphs. In: Wolff, K.E. et al (eds.): Contributions to ICFCA 2009, pp. 63–78.
Verlag Allgemeine Wissenschaft, Darmstadt (2009)

[27] Wolff, K.E.: Relational Scaling in Relational Semantic Systems. In: Rudolph, S. et
al (eds.): Conceptual Structures: Leveraging Semantic Technologies. LNAI 5662,
pp. 307–320. Springer-Verlag, Heidelberg (2009)

[28] Wolff, K.E.: Temporal Relational Semantic Systems. In: Croitoru et al (eds.):
Conceptual Structures: From Information to Intelligence. LNAI 6208, pp. 165–
180. Springer-Verlag, Heidelberg (2010)

[29] Wolff, K.E.: Applications of Temporal Conceptual Semantic Systems. In: Wolff,
K.E. et al (eds.): Knowledge Processing and Data Analysis. LNAI 6581, pp. 59–78.
Springer-Verlag, Heidelberg (2011)

[30] Wollbold, J., Wolff, K.E., Huber, R., Kinne, R.: Conceptual Representation of
Gene Expression Processes. In: Wolff et al (eds.): Knowledge Processing and Data
Analysis. LNAI 6581, pp. 79–100. Springer, Heidelberg (2011)

Closures and Partial Implications
in Educational Data Mining

Diego Garćıa-Saiz1, Marta Zorrilla1, and José L. Balcázar2

1 Mathematics, Statistics and Computation Department, University of Cantabria
Avda. de los Castros s/n, Santander, Spain

garciasad@unican.es marta.zorrilla@unican.es
2 LSI Department, UPC, Campus Nord, Barcelona

jose.luis.balcazar@upc.edu

Abstract. Educational Data Mining (EDM) is a growing field of use of
data analysis techniques. Specifically, we consider partial implications.
The main problems are, first, that a support threshold is absolutely nec-
essary but setting it “right” is extremely difficult; and, second, that, very
often, large amounts of partial implications are found, beyond what an
EDM user would be able to manually inspect. Our program yacaree,
recently developed, is an associator that tackles both problems. In an
EDM context, our program has demonstrated to be competitive with
respect to the amount of partial implications output. But “finding few
rules” is not the same as “finding the right rules”. We extend the eval-
uation with a deeper quantitative analysis and a subjective evaluation
on EDM datasets, eliciting the opinion of the instructors of the courses
under analysis to assess the pertinence of the rules found by different
association miners.

Keywords: Closure Lattices, Partial Implications, Association Rules

1 Introduction

Education is evolving at all levels since the appearance of e-learning environ-
ments: Learning Content Management Systems (LCMS), Intelligent Tutoring
Systems, or Adaptive Educational Hypermedia Systems. These systems log all
the activity carried out by students and instructors, and this raw data, ade-
quately analyzed, might help instructors to obtain a better understanding of
the students and of their learning processes. In remote learning, instructors may
never see their students in person. Data analysis techniques could help them to
detect problems (lack of motivation, under-performance, drop-out. . .) and, pos-
sibly, to take action. Yet, unless the course itself is on data mining, it is unlikely
that the instructors know much about data mining techniques. If we want to
help teachers of, say, philology or law, we need to work out data mining tools
that do not require much tuning or technical understanding.

Closures and Partial Implications in Educational Data Mining 99

Here we focus on the particular case of mining partial implications [1] (a
relaxed form of implication analysis in concept lattices [2]), and their close rel-
atives: association rules [3]. Most of the available algorithms depend on one or
more parameters whose value is to be set by the user, and whose semantics are
unlikely to be easy to understand by teachers of other disciplines.

We have explored the output of five association algorithms on datasets from
educational sources, and evaluated not only the amounts of partial implications
found but also the subjective pertinency of the rules obtained. For this last task
we kept close cooperation with the end user, namely, the teachers of the online
courses from which the datasets were obtained. Our conclusions are in the form
of strengths and weaknesses of each of the five algorithms compared.

One of the algorithms participating in the evaluation was a contribution of
our group, demonstrated at [4] and described in more detail in [5]: the yacaree as-
sociation miner. This associator extracts partial implications from the “iceberg”
(frequent part of the) FCA lattice [6]; it attempts at offering a more user-friendly,
parameter-less interface, through self-tuning the support threshold and a thresh-
old on a relative form of confidence studied in [7]: the closure-based confidence
boost.

In [8], a two-page poster publication, we have provided a preliminary initial
description of this study, containing only the quantitative analysis (a part of
Table 2 below) but using a version of yacaree which did not report yet rules of
confidence 100%. This paper extends it largely with further quantitative analy-
ses and a qualitative, user-based, subjective evaluation of the usefulness of the
resulting rules. The main question to study is whether a price, in terms of use-
fulness of the output for the end user, was being paid for the parameter-less
interface. Any parameter-free alternative should stand a comparison of its out-
put with that of other, “expert”-oriented algorithms, to clarify whether, for the
subjective perception of the teacher, the outcome does make sense and results
useful. Actually, our main conclusion is that they do, and that, developed accord-
ing to our strategy, a self-tuning associator is able to provide sensible quantities
of partial implications that result useful and informative to the end user.

1.1 Related work

In the educational context, data mining techniques are used in order to un-
derstand learner behaviour [9], to recommend activities or topics [10], to offer
learning experiences [11] or to provide instructional messages to learners [12]
with the aim of improving the effectiveness of the course, promoting group-based
collaborative learning [13], or even predicting students’ performance [9]. Two in-
teresting papers which detail and summarize the application of data mining to
educational systems are [14] and [15].

The FCA community has also contributed in this arena. We must name
Romashkin et al. [16] who used closed sets of students and their marks to reveal
some interesting patterns and implications in student assessment data, especially
to trace dynamic; and Ignatov et al. [17] who showed that FCA taxonomies are
a useful tool for representing object-attribute data which helps to reveal some

100 D. Garćıa-Saiz et al.

frequent patterns and to present dependencies in data entirely at a certain level
of details. They carried out the analysis of university applications to the Higher
School of Economics as case study. Another interesting work in this research
line was previously carried out by Belohlávek et al. [18] in order to evaluate
questionnaires.

In the particular case of the association rules technique, we find works such
as [19] in which association rules are used to find mistakes often made together
while students solve exercises in propositional logic, [20] where rules are used to
discover the tools which virtual students employ frequently together during their
learning sessions, and [21] where association rules and collaborative filtering are
used inside an architecture for making recommendations in courseware.

However, association rule algorithms still have some drawbacks, as analyzed
in [22]: mainly, first, as most often the instructors are not data mining experts,
the decisions about setting to useful values the parameters of the algorithms
present difficulties. Then, a second difficulty is the large number of rules often
obtained as output, most of which are redundant and non-interesting for decision
making and, in many occasions, exhibit low understandability. The authors of
[22] offer some solutions although none of them is automatized or gathered in
an algorithm. For example, they propose to use Predictive Apriori, rather than
the implementation of Apriori in Weka [23], since it only requires one parameter
which is the number of rules that the user wants to obtain. In [24], it is argued
that cosine and added value (or equivalently lift) are well suited to educational
data, and that instructors can interpret their results easily. In our opinion, these
measures lack actionability since they are symmetric, which reduces the use of
the rules in decision making tasks. Orientation is a crucial and very suggestive
property of association rules and partial implications, and we consider that it
must be preserved in an effective but asymmetric measure, as close as possible
to confidence. Many measures of intensity of implication are described e.g. in
[25],[26].

2 Case Studies

This section contains our major contributions: we compare the output of five
well-known association rule miners on five educational datasets and evaluate the
subjective pertinency of the rules obtained in close cooperation with the teachers
involved in the two virtual courses analyzed.

2.1 Association rule miners

There is a long list of association rule miners; large sets of references and surveys
appear e.g. in http://michael.hahsler.net/research/bib/association rules/ and in
all main Data Mining reference works. Among them, we have chosen the following
algorithms for our comparison: the implementation of Apriori by Borgelt [27],
the implementation of Apriori in the Weka package [23], the Predictive Apriori

Closures and Partial Implications in Educational Data Mining 101

implementation in Weka [28], the implementation of ChARM [29] available in
the Coron System [30], and our own closure-lattice-based associator yacaree [4].

The implementation of Apriori by Borgelt [27] is a representative of the stan-
dard usage of association rules in data mining, as per [3], particularly in the way
support and confidence parameters are handled, as well as in the restriction to
association rules with a single item in the consequent. In this fully standard ap-
proach, first, one constructs all frequent sets, and then each item in each frequent
set is tried as consequent with the rest of the frequent itemset as antecedent,
and the confidence of the rule evaluated; the rule is reported if its confidence
is high enough. This implementation is amazingly well streamlined for speed. It
offers, additionally, an ample repertory of additional evaluation measures (lift,
normalized chi-square. . .), and we must warn that a specific flag must be set
(as we did, “-o”) so that support is computed accordingly with the notion of
support in other tools.

Weka is one of the oldest and most extended open-source data mining suites,
and all implementations there are widely used. The implementation of Apriori
in the Weka package is similar to the one just described, employing confidence
and support constraints; it departs slightly from [3], though. First, the rules
generated can have more than one item in the consequent. Also, instead of fixing
the support at the given threshold at once, the user is requested to indicate a
number of rules and a “delta” parameter. Then, support is set initially at 100%
and iteratively reduced by “delta” until either the support threshold is reached
or the requested number of rules is collected.

The Predictive Apriori implementation in Weka follows [28]. The advantage
of this algorithm is that it only requires from the user to set the number of
rules to be discovered, which is appropriate for users that are not data mining
experts, provided that, in some sense, “the right rules” are found. The algorithm
automatically attempts at balancing optimally support and confidence on the
basis of Bayesian criteria related to the so-called expected predictive accuracy. A
disadvantage of this method is that it often requires longer running times than
the previous ones.

These three implementations construct partial implications on the basis of all
frequent itemsets. Our other two systems work on the basis of frequent closures,
which allow one to know the support of any frequent itemset without storing
all of them. The Coron system [30] offers several implementations of different
closed-set-based algorithms. These methods return the same set of closure-based
partial implications, although they compute them in different ways. We have
used ChARM [29], but the specific method is not relevant here because we do
not include yet running times in our evaluation: we concentrate on the usefulness
of the output.

The fifth implementation is our own association miner yacaree [4]. Like
ChARM, it is based on closures, and allows for several items in the consequent
of the partial implications. In the partial implications output by this system,
both antecedent and total set of items in each rule will be closed sets. The cur-
rently most recent version 1.2.0 is the first to report rules of confidence 100%.

102 D. Garćıa-Saiz et al.

First, it constructs the Closure Lattice up to a support bound that is adjusted
autonomously during the run, on the basis of the technological limitations, so
that the user does not need to select it. Second, it constructs a basis of partial
implications out of these closures. Third, it filters the partial implications along
the way, on the basis of the closure-based confidence boost [7], whereby the con-
fidence of an association rule is compared to that of other similar rules: a rule
must offer a clear improvement on similar ones to be considered useful.

2.2 Datasets

For the case studies, we used the data from two courses offered in the University
of Cantabria. Both courses are eminently practical. The first one, entitled “Intro-
duction to multimedia methods”, has the objective of teaching the students how
to use a particular multimedia tool (in what follows, we refer to it as the mul-
timedia dataset) and the second one, “Basic administration of a UNIX-LINUX
system” (the Linux dataset) teaches the students the basic utilities and tools to
install and configure correctly a LINUX operating system.

The multimedia course is designed by means of web pages and includes some
video tutorials, flash animations and interactive elements. The students must
perform 4 exercises, 2 projects and one final exam online. The course is open to
all degrees and the number of students enrolled was 79.

Unlike the multimedia course, the Linux course only allows 24 students to
be enrolled, all of them from a telecommunications degree. All materials of the
course are available since the first day of the course. Furthermore, the contents
of a previous edition of the course is also offered in pdf; these files have the
advantage that they can be kept locally and used for study in case any technical
problem would prevent access to the updated files, but do not include all the
contents of the present edition. Additionally, during the course, the students
must deliver 6 practical exercises and pass two online exams. The course includes
38 self-tests, one for each topic of the course. The instructor indicates the topics
and self-tests that they must perform every week on the calendar.

We worked with five datasets. The first one, “linux materials”, gathers the ac-
cess logs to materials prepared by the instructor (html pages, pdf files, tests, and
so on) as used by each student in each learning session of the Linux course. The
datasets “linux resources” and ”multimedia resources” are the session-wise log of
the resources and tools used by each student in each learning session(assessment,
content-pages, forum, and so on). It was immediately apparent that, in these
datasets, one specific resource led to some “noise”: the “organizer” resource acts
as front page of most sessions (near 84% in Linux and 85% in multimedia, as
the only other alternative is the access through the forum) and hence it appears
in many rules and creates many variants, mostly of low information contents.
Thus, we prepared two datasets, named “linux resources reduced” and “mul-
timedia resources reduced” respectively, which are identical to the second and
third dataset, except that the “organizer” resource is fully removed. The number
of different items and transactions of each dataset is shown in Table 1. For the

Closures and Partial Implications in Educational Data Mining 103

sake of better understanding, we show a diagram of the intents of the concept
lattice of the linux dataset above 13% support in Fig. 1.

∅

contentpage assignment assessment discussion mygrades

contentpage

assignment

assignment

assessment

assignment

discussion

assessment

discussion

assignment

mygrades

assessment
mygrades discussion

mygrades

assignment assessment discussion

Fig. 1. Intents of at least 13% support.

Table 1. Datasets description

Name Transactions Items

Dataset1 (linux materials) 407 22
Dataset1 (linux resources) 2486 27
Dataset2 (linux resources reduced) 2346 26
Dataset4 (multimedia resources) 5892 27
Dataset5 (multimedia resources reduced) 5643 26

2.3 Datasets results

With the aim of comparing several association programs, one difficulty is always
the setting of the parameters, particularly the support, as the value chosen might
favor one particular algorithm in larger degree. In our case, there is an extra
level of difficulty, as one of the participating algorithms, yacaree, self-tunes the

104 D. Garćıa-Saiz et al.

support on itself. In order to find fair comparison grounds, we performed a brief
preprocessing.

Running on one of the “Linux resources” dataset, yacaree took about four
minutes (a bit long for a non-expert to wait) and delved down to 0.02% support;
however, for this low threshold, both Weka alternatives were substantially worse
(Predictive Apriori took 40 minutes and Apriori led to overflow even when given
2GB of memory). Similar facts happened for the other datasets.

Given this information, we decided to fix at 1% the support threshold for all
the computations, and at 66% the confidence threshold (initial value set up by
yacaree). In all the runs, we left unbounded, or, in the case of Weka tools, we set
very high (10000) the number of rules to be found, even if this meant overriding
their default value for this quantity. We show the number of rules obtained
utilizing the different algorithms on our datasets in Table 2. The entries marked
“—” on the table are cases where the corresponding algorithm was unable to
complete in 6 hours.

Table 2. Number of rules obtained on our datasets with the five algorithms

Dataset Number of rules s=1% c=66%

Weka Predictive Borgelt ChARM yacaree
Apriori Apriori Apriori

Dataset1 (linux materials) 2272 1730 524 366 40
Dataset2 (linux resources) 7523 over 10000 3751 5610 255
Dataset3 (linux resources reduced) 4249 over 10000 1876 2586 93
Dataset4 (multimedia resources) 1442 — 1023 1427 182
Dataset5 (multimedia resources reduced) 488 — 404 469 46

Results from “resources reduced” datasets If we analyze the results ob-
tained with Apriori from Weka, we can see that the number of rules is unman-
ageable, e.g. 4249 rules for Linux resources reduced dataset. The first 243 are
implications of full confidence, 100%, low support, and high redundancy: see
rules 2 and 3 and 235 and 236 and the followings in Table 3. Had we used the
tool’s default settings of the parameters, we would have found essentially no
information. The same happens with multimedia dataset (we do not show the
table for space reasons).

The analysis of the results obtained from Predictive Apriori is very costly,
as it generates as many rules as we allow it to. With 10000 rules required, they
are obtained on dataset2 and dataset3 waiting for more than 20 minutes, and
the accuracy is still high, so that many further rules could be obtained. If we
restrict ourselves to the first few rules returned, they turn out to offer a very low
support and quite some redundancy (see Table 4).

The output offered by Borgelt’s implementation presents a large number of
rules: 1876 and 404 rules in Linux and multimedia reduced datasets respectively,

Closures and Partial Implications in Educational Data Mining 105

Table 3. Subset of association rules obtained with Apriori from Weka on the ”Linux
resources reduced” dataset

No. Association rule (Sup., Conf.)

2 announcement tracking ⇒ assessment (1.7, 100)
3 announcement mygrades tracking⇒ assessment (1.6, 100)

235 assignments calendar contentpage discussion medialibrary syllabus
⇒ assessment (1.0, 100)

236 assessment calendar contentpage discussion medialibrary syllabus
⇒ assignments (1.0, 100)

2523 announcement assessment calendar syllabus
⇒ assignments contentpage (1.2, 78.0)

2524 announcement assessment calendar syllabus
⇒ assignments discussion (1.2, 78.0)

2530 announcement calendar mail ⇒ contentpage (1.0, 78.0)
2534 announcement assignments calendar chat ⇒ contentpage (1.0, 78.0)

Table 4. Subset of association rules obtained with Predictive Apriori from Weka on
the “linux resources reduced” dataset

No. Association rule (Support, Accuracy)

122 assignments calendar search ⇒ syllabus (0.85, 0.95439)
123 assignments chat weblinks ⇒ assessment syllabus (0.85, 0.95439)
124 assignments chat weblinks ⇒ discussion syllabus (0.85, 0.95439)
125 assignments discussion search ⇒ assessment syllabus (0.85, 0.95439)

of which 141 and 2 are implications. Coming up with specific conclusions becomes
harder. The rules tend to be small, exhibit high redundancy and involve low-
support tools that are almost never used, so that they offer little interest to the
instructor. As shown in Table 5, where the rules 11, 12, 13 differ slightly from
the rules 99, 100 and 101 which contain the announcement tool in the antecedent
with a very low support and similar confidence.

Table 5. Subset of association rules obtained with Borgelt’s apriori implementation
on the “linux resources reduced” dataset

No. Association rule (Supp. , Conf.)

11 chat ⇒ discussion (3.7, 84.9)
12 chat ⇒ assignments (3.7, 75.6)
13 chat ⇒ assessment (3.7, 81.4)

99 chat announcement ⇒ discussion (2.0, 84.8)
100 chat announcement ⇒ assignments (2.0, 87.0)
101 chat announcement ⇒ assessment (2.0, 93.5)

ChARM returns a higher number of rules, 2586 and 469 with 193 and 2
implications in Linux and multimedia resources reduced datasets respectively.

106 D. Garćıa-Saiz et al.

As in previous cases, the rules also present high redundancy (see rules 3 to 6
and 7 and 8 in Table 6 and rules 10,11,12 and 31,32,33 in Table 7).

Table 6. Subset of association rules obtained with ChARM on the “linux resources
reduced” dataset

No. Association rule (Supp. , Conf.)

3 announcement, contentpage, medialibrary, syllabus ⇒ assessment (1.02, 96.00)
4 announcement, assessment, medialibrary, syllabus ⇒ contentpage (1.02, 88.89)
5 announcement, assessment, contentpage, medialibrary ⇒ syllabus (1.02, 70.59)
6 announcement, medialibrary, syllabus ⇒ assessment, contentpage (1.02, 82.76)

7 announcement, medialibrary, syllabus ⇒ contentpage (1.07, 86.21)
8 announcement, contentpage, medialibrary ⇒ syllabus (1.07, 67.57)

Table 7. Subset of association rules obtained with ChARM algorithm on the “multi-
media resources reduced” dataset

No. Association rule (Supp. , Conf.)

10 chat, contentpage, discussion ⇒ assessment (1.13, 81.01)
11 assessment, chat contentpage ⇒ discussion (1.13, 94.12)
12 chat, contentpage ⇒ assessment, discussion (1.13, 71.91)

31 contentpage, discussion, syllabus, ⇒ assessment (1.12, 84.00)
32 assessment, discussion, syllabus, ⇒ contentpage (1.12, 66.32)
33 assessment, contentpage, syllabus, ⇒ discussion (1.12, 79.75)

Despite the fact that the number of rules obtained with yacaree on reduced
resources datasets is a bit high, 93 for dataset3 and 46 for dataset5, it is possible
to discover the resources which students use frequently together in each learning
session and, at the same time, the kind of sessions which they perform. It is
remarkable the reduction in the number of rules due to the use of confidence
boost parameter. A subset of the most relevant rules obtained with yacaree on
Linux resources reduced dataset is shown in Table 8. However, there appear as
well quite a few trivial and non-interesting rules for the instructor. For instance,
rule 1 is trivial because it is obvious that to send a task is necessary to use the
file manager tool. The rules 6, 18 and 19 do not offer new information to the
instructor given that he uses the forum in order to establish the date of the
exams. So that these kind of sessions are known to the instructor. The rules 7,
12, 36 and 50 gather sessions in which students want to know specific dates:
deadlines for tasks or assessments, exam dates. Rule 16 indicates quite a few
sessions in which the students are interested in knowing their progress, and rules
8 and 10 gather the study sessions in which the students combine reading of
content pages with tackling self-tests.

Table 9 depicts a subset of the most relevant rules obtained with yacaree
on multimedia resources reduced dataset. As in the previous result, there are

Closures and Partial Implications in Educational Data Mining 107

Table 8. Subset of association rules obtained with yacaree on the “linux resources
reduced” dataset

No. Association rule (Supp., Conf., Lift, Cboost)

1 filemanager ⇒ assignments (4.6, 93.9, 1.908, 1.908)

6 discussion whoisonline ⇒ assessment (3.0, 75.5, 1.648, 1.379)
18 discussion mail ⇒ assessment (3.2, 72.1, 1.574, 1.268)
19 announcement mail ⇒ assessment discussion (1.6, 80.9, 3.381, 1.267)

7 announcement ⇒ assessment (7.6, 88.1, 1.923, 1.369)
12 calendar ⇒ assessment (9.1, 75.9, 1.656, 1.337)
36 calendar ⇒ assignments (8.1, 67.0, 1.362, 1.219)
50 announcement calendar ⇒ assessment assignments (2.6, 77.2, 2.941, 1.200)

16 tracking ⇒ mygrades (6.8, 80.3, 2.409, 1.272)

8 contentpage mygrades ⇒ assessment (3.8, 84.8, 1.850, 1.369)
10 contentpage discussion ⇒ assessment (7.3, 75.1, 1.639, 1.339)

some trivial and non-interesting rules for the instructor. For example, rule 1
already explained, and rule 2 and 40 which gather sessions in which students
wanted to know specific dates for assignments. Instead, other rules as rule 7, 14
and 36 allowed the teacher to discover the students visited the content pages
and the forum in working sessions with the aim at solving problems or doubts
in the resolution of the tasks. Furthermore, she was happy when observed that
learning objectives tool was used while studying the contents (rule 3). This
means that students played the videotutorials which she had recorded with great
effort. Additionally, rule 4 informed her about the joint use of contents and
weblinks tools. This last one contains the links to downloadable material. This
reinforced her idea that the material should be presented in both formats, online
and downloadable.

Table 9. Subset of association rules obtained with yacaree on the ”multimedia re-
sources reduced” dataset

No. Association rule (Supp., Conf., Lift, Cboost)

1 filemanager ⇒ assignments (5.1, 71.5, 1.871, 1.871)

2 calendar ⇒ assignments (6.1, 74.9, 1.961, 1.610)
40 announcement ⇒ assignments (3.9, 67.2, 1.759, 1.153)

3 weblinks ⇒ contentpage (3.7, 78.2, 2.105, 1.588)
4 learningobjectives ⇒ contentpage (4.5, 81.4, 2.192, 1.530)

7 contentpage mygrades ⇒ assignments (2.7, 66.7, 1.746, 1.421)

14 assignments whoisonline ⇒ discussion (1.7, 72.5, 1.612, 1.301)
36 discussion weblinks ⇒ assignments (1.9, 73.4, 1.923, 1.180)

Results from “resources” datasets, not reduced From the point of view
of a virtual course instructor who is not an expert in Data Mining, the decision

108 D. Garćıa-Saiz et al.

of removing the “organizer” item from the “resources” dataset is debatable. This
would be rather an action typical of a Data Mining expert. We consider that it
was appropriate to do it, as the designers of the e-learning platform could easily
predict that this “organizer” item was to be extremely frequent, and thus the
option of discarding it could be incorporated by design into a set of related data
mining tools ahead of time. However, we briefly discuss now what happens if one
works with the complete “resources” dataset.

With yacaree we obtain 255 and 182 rules in dataset2 and dataset4 respec-
tively. In both cases, one of them indicates that “organizer” is used in near 84%
and 85% of the sessions respectively (see Tables 10 and 11). For this format
of rule, with empty antecedent, support and confidence clearly must coincide.
Essentially, the output of yacaree is not that different from the previous cases:
many rules from the previous analysis reappear now in pairs, once with “orga-
nizer” and once without; when such a pair appears, the rule having “organizer”
may look sometimes redundant, but its confidence boost value shows that it has
high enough confidence so as to make it nonredundant (see Tables 10 and 11).

Table 10. Subset of association rules obtained with yacaree on the ”Linux resources”
dataset

No. Association rule (Supp., Conf., Lift, Cboost)

2 ⇒ organizer (83.9, 83.9, 1.000, 1.982)

158 mygrades tracking ⇒ assessment organizer (4.6, 71.7, 1.888, 1.109)
287 mygrades tracking ⇒ assessment (5.0, 78.6, 1.818, 1.096)

Table 11. Subset of association rules obtained with yacaree on the ”multimedia re-
sources” dataset

No. Association rule (Supp., Conf., Lift, Cboost)

1 ⇒ organizer (84.9, 84.9, 1.000, 2.421)

9 chat ⇒ discussion organizer (2.0, 77.6, 2.324, 1.283)
113 chat ⇒ discussion (2.2, 84.2, 1.954, 1.085)

The extra effort to be spent on the yacaree output is not that high compared
with the alternative algorithms. ChARM and Borgelt’s Apriori runs into the
same difficulties indicated for the reduced datasets, increased by the fact that
the number of rules is, with ChARM, 5610 in dataset2 and 1427 in dataset4, and
with Borgelt, 3751 in dataset2 and 1023 in dataset4, which include a considerable
number of rules whose only consequent is “organizer”. Intuitively, all of them are
pointing out to the fact that this item is so prevalent. Similarly, Weka Apriori
obtains over 7000 rules in dataset2 and 1442 in dataset4, of which the first
568 are implications of 100% confidence, 474 of which are again rules that only
have “organizer” as consequent. Predictive Apriori, beyond taking 45 minutes

Closures and Partial Implications in Educational Data Mining 109

to complete, also generates a large amount of rules (which we limited to 10000
again); and again the first ones have as single consequent “organizer”, and the
next ones are long rules of very low support.

Results from the “linux materials” dataset We show in the Table 12 some
of the most relevant rules among the 40 rules, of which 16 are implications of
confidence 100%, selected by yacaree on this dataset. Such a limited output size
allows for easy inspection by the instructor.

Table 12. Subset of association rules obtained with yacaree on the “materials” dataset

No. Association rule (Supp., Conf., Lift, Cboost)

1 topic6 ⇒ topic-pdf (13.3, 1.0, 2.544, 2.544)
2 topic7 ⇒ topic-pdf (9.8, 1.0, 2.544, 2.500)

3 topic4 topic-pdf ⇒ topic5 (6.4, 76.5, 5.764, 2.266)
18 topic1 topic3 ⇒ topic2 (3.9, 72.7, 4.055, 1.377)

6 topic9 ⇒ topic10 topic-pdf (0.057, 1.0, 7.537, 1.917)
7 topic10 topic7 ⇒ topic8 topic-pdf (0.037, 1.0, 14.536, 1.875)
23 topic-pdf topic10 topic6 ⇒ topic8 (2.9, 66.7, 9.690, 1.286)

40 exam2 topic-pdf ⇒ topic10 (1.7, 77.8, 5.862, 1.167)

9 test2 ⇒ test1 test3 (4.9, 71.4, 13.844, 1.667)
10 test9 ⇒ test6 test7 test8 topic-pdf topic10 (2.5, 66.7, 27.133, 1.667)
14 test7 topic-pdf topic10 ⇒ test6 test8 test9 (2.5, 76.9, 31.308, 1.538)
23 test9 ⇒ test8 topic-pdf topic10 (3.4, 93.3, 23.742, 1.273)
28 test3 test4 ⇒ test5 topic-pdf (2.7, 73.3, 14.213, 1.222)

The rules show that the course is divided clearly in two parts, up to topic
and test number 5 and the followings (see rules 2 and 18 and 6, 7 and 23 as
well as the set of rules from 9 to 28). The instructor observed that not all topics
get really studied: some are worked out only through self-tests (set rule from
9 to 28 with a higher support than the corresponding to topic rules). He was
very interested by these rules: first, as many of them indicate that students do
not really study their assigned materials, but rather they undertake the tests
and only look at the study materials when they do not know the answer, hence
reversing the intended order of use of the materials; second, because they show
that the outdated, incomplete materials from the earlier edition of the course
(topic-pdf appears in most rules), which were thought of as a remedial offer for
cases of technical connectivity difficulties only, were actually used much more
than intended, even in sessions devoted to learning through self-tests. The first
seven rules shown in the table also seems to suggest that students checked at
what extent the contents of each topic differs from the old compiled version
and as it was easier to manage and carry out searches, they frequently used it
with tests. Another piece of interesting information, as judged by the teacher, is
the fact that the topics in the second half of the course were consulted in more
sessions than the first; this did match his perception that he had had to offer

110 D. Garćıa-Saiz et al.

more “moral support” to students on the brink of failure towards the end of the
course. Rule 38 shows a good support for exam2, which is not the case for exam1;
in fact, the exams are one-shot events. This unexpected support for exam2 was
due to technical problems: half the students lost their connections and had to
reconnect later in order to finish their exams, accounting for a misleadingly high
number of sessions. (The instructor was surprised that our association rules could
detect this.).

With Coron’s ChARM many of the rules generated are somewhat redundant
variants of the rules found by yacaree. Many other rules are also found: essen-
tially, longish rules of confidence 100% (see Table 13). The task of browsing
through the hundreds of rules, however, is slow and not user-friendly, and we do
not believe a regular instructor would display enough patience to find out the
most instructive rules among those returned by the algorithm.

Table 13. Subset of association rules obtained with Coron’s ChARM implementation
on the “materials” dataset

No. Association rule (Supp. , Conf.)

6 topic7 topic9 topic10 topic-pdf ⇒ topic8 (1.23, 100.00)
7 topic7 topic8 topic9 topic-pdf ⇒ topic10 (1.23, 100.00)
8 topic7 topic8 topic9 topic10 ⇒ topic-pdf (1.23, 100.00)
9 topic7 topic9 topic-pdf ⇒ topic8 topic10 (1.23, 100.00)

65 test5 test7 test8 test9 topic10 topic-pdf ⇒ test6 (1.47, 100.00)
66 test5 test6 test8 test9 topic10 topic-pdf ⇒ test7 (1.47, 100.00)
67 test5 test6 test7 test9 topic10 topic-pdf ⇒ test8 (1.47, 100.00)

This objection also happens in Borgelt’s implementation and worsens with
the Weka Apriori, which produces 2272 rules, of which 1522 are again longish
implications of confidence 100%. Still, one can see that some of the rules having
several items as consequent subsume into a single line several rules that the
classical scheme separates into one rule per consequent item. Predictive Apriori
generates 1730 rules, of which the first handful are 100% confidence implications
with topic-pdf (the old material) as consequent, and the rest consists mostly of
rules of rather low support.

3 Conclusions

One of the drawbacks of some data mining algorithms is a dependence on suit-
able parameter settings which can be difficult for “non-expert data miners” to
determine. Another aspect is the degree of difficulty of interpretation of the re-
sults. Although the results obtained by association rule miners can be considered
easy to interpret by end-users, the large number of rules generated by the more
commonly used algorithms, most of which contain facts that, intuitively, will
be seen as redundant by users, makes their interpretation and comprehension
difficult.

Closures and Partial Implications in Educational Data Mining 111

Our comparison of different associators shows that they are vastly different
in mere quantitative terms (already advanced in [8] and confirmed in this work);
most associators lead to voluminous output; on the other hand, yacaree provides
several dozen rules that may contain good knowledge yet will not overwhelm the
user.

The main question, then, is: are they “the right ones?” Our educational
datasets seem to require a low support threshold, but do include items of rather
high support; and this combination seriously hinders the ability of traditional
association miners to offer interesting output. On the other hand, the most
recent version of yacaree, which includes implications of confidence 100%, seems
particularly well-suited to these cases, and finds rules of both high and low
supports; and indeed we find that in most cases these rules “say different things”.
All our conclusions have been thoroughly discussed with the instructors of the
virtual courses to which the datasets refer.

Summarizing, we can say that yacaree offers several advantages for non-
expert data miners. First, it offers a parameter-less interface, which makes its
usage easier. Second, it generates a reduced number of rules, as it works with
closed frequent itemsets, mines only a rule basis, and prunes the rules through
the confidence boost parameter. Third, it shows the support, confidence, lift
and confidence boost in the output at the same time, which allows end-users to
better assess the rules, once these measures are conveniently explained.

The current (and previous) versions of yacaree present a limitation: by de-
fault, it sets up the number of output rules to 50; our study reveals that this con-
dition should be removed or, at least, relaxed. Previous versions did not search
for full implications, and only the latest current version (1.2.0) does; our studies
confirm that this must be maintained, as a number of interesting implications
for our external user were missed in previous versions.

As final conclusion, our interaction with the instructors involved in the vir-
tual courses analyzed indicates that the results of yacaree are superior, in the
case of analyzing datasets coming from logs of educational learning systems, in
comparison with the rest of the algorithms used in our case study. This program
can be freely downloaded from SourceForge, and a link has been provided in the
web page on FCA software kindly maintained by prof. Uta Priss.

References

1. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques et
Sciences Humaines 29 (1991) 35–55

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag (1999)

3. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discov-
ery of association rules. In: Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press (1996) 307–328

4. Balcázar, J.L.: Parameter-free association rule mining with yacaree. In Khenchaf,
A., Poncelet, P., eds.: EGC. Volume RNTI-E-20 of Revue des Nouvelles Technolo-
gies de l’Information., Hermann-Éditions (2011) 251–254

112 D. Garćıa-Saiz et al.

5. Balcázar, J.L., Garćıa-Sáiz, D., de la Dehesa, J.: Iterator-based algorithms in
self-tuning discovery of partial implications. ICFCA, Supplementary proceedings
(2012)

6. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with Titanic. Data Knowl. Eng. 42(2) (2002) 189–222

7. Balcázar, J.L.: Formal and computational properties of the confidence boost in
association rules. Available at: [http://personales.unican.es/balcazarjl]. Extended
abstract appeared as [31] (2010)

8. Zorrilla, M.E., Garćıa-Sáiz, D., Balcázar, J.L.: Towards parameter-free data min-
ing: Mining educational data with yacaree. [32] 363–364

9. Hung, J.L., Zhang, K.: Revealing online learning behaviors and activity patterns
and making predictions with data mining techniques in online teaching. Journal
of Online Learning and Teaching 4(4) (2008) 426–436

10. Zäıane, O.R.: Building a recommender agent for e-learning systems. In: Proc.
of the International Conference on Computers in Education (ICCE), Washington,
DC, USA, IEEE Computer Society (2002) 55–59

11. Au, T.W., Sadiq, S., Li, X.: Learning from experience: Can e-learning technology
be used as a vehicle? In: Proceed ings of the fourth International Conference on
e-Learing, Toronto: Academic Publishing Limited (2009) 32–39

12. Ueno, M., Okamoto, T.: Bayesian agent in e-learning. IEEE International Confer-
ence on Advanced Learning Technologies (2007) 282–284

13. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zäıane, O.R.: Clustering and sequen-
tial pattern mining of online collaborative learning data. IEEE Transactions on
Knowledge and Data Engineering 21(6) (2009) 759–772

14. Romero, C., Ventura, S.: Educational data mining: A review of the state-of-the-
art. IEEE Tansactions on Systems, Man and Cybernetics, part C: Applications
and Reviews 40(6) (2010) 601–618

15. Castro, F., Vellido, A., Nebot, A., Mugica, F.: Applying data mining techniques
to e-learning problems. In Kacprzyk, J., Jain, L., Tedman, R., Tedman, D., eds.:
Evolution of Teaching and Learning Paradigms in Intelligent Environment. Vol-
ume 62 of Studies in Computational Intelligence. Springer Berlin Heidelberg (2007)
183–221 10.1007/978-3-540-71974-8 8.

16. Romashkin, N., Ignatov, D.I., Kolotova, E.: How university entrants are choosing
their department? mining of university admission process with fca taxonomies. [32]
229–234

17. Ignatov, D.I., Mamedova, S., Romashkin, N., Shamshurin, I.: What can closed sets
of students and their marks say? [32] 223–228

18. Belohlávek, R., Sklenar, V., Zacpal, J., Sigmund, E.: Evaluation of questionnaires
supported by formal concept analysis. In Eklund, P.W., Diatta, J., Liquiere, M.,
eds.: CLA. Volume 331 of CEUR Workshop Proceedings., CEUR-WS.org (2007)

19. Merceron, A., Yacef, K.: Mining student data captured from a web-based tutoring
tool: Initial exploration and results. Journal of Interactive Learning Research 15(4)
(2004) 319–346

20. Zorrilla, M.E., Garćıa-Saiz, D.: Mining service to assist instructors involved in
virtual education. In Zorrilla, M.E., Mazón, J.N., Óscar Ferrández, Garrigós,
I., Daniel, F., Trujillo, J., eds.: Business Intelligence Applications and the Web:
Models, Systems and Technologies. Information Science Reference (IGI Global
Publishers) (September 2011)

21. Garćıa, E., Romero, C., Ventura, S., de Castro, C.: An architecture for making
recommendations to courseware authors using association rule mining and collab-
orative filtering. User Model. User-Adapt. Interact. 19(1-2) (2009) 99–132

Closures and Partial Implications in Educational Data Mining 113

22. Garćıa, E., Romero, C., Ventura, S., Calders, T.: Drawbacks and solutions of
applying association rule mining in learning management systems. In: Procs of the
International Workshop on Applying Data Mining in e-Learning. (2007) 13–22

23. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques (2ed). Morgan Kaufmann (2005)

24. Merceron, A., Yacef, K.: Interestingness measures for associations rules in
educational data. In de Baker, R.S.J., Barnes, T., Beck, J.E., eds.: EDM,
www.educationaldatamining.org (2008) 57–66

25. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey.
ACM Comput. Surv. 38(3) (2006)

26. Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures
for association rules: User oriented description and multiple criteria decision aid.
European Journal of Operational Research 184(2) (2008) 610–626

27. Borgelt, C.: Efficient implementations of apriori and eclat. In Goethals, B., Zaki,
M.J., eds.: FIMI. Volume 90 of CEUR Workshop Proceedings., CEUR-WS.org
(2003)

28. Scheffer, T.: Finding association rules that trade support optimally against confi-
dence. In: In: 5th European Conference on Principles of Data Mining and Knowl-
edge Discovery. (2001) 424–435

29. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4)
(2005) 462–478

30. Kaytoue, M., Marcuola, F., Napoli, A., Szathmary, L., Villerd, J.: The Coron
System. In Boumedjout, L., Valtchev, P., Kwuida, L., Sertkaya, B., eds.: 8th
International Conference on Formal Concept Analsis (ICFCA) - Supplementary
Proceedings. (2010) 55–58 (demo paper).

31. Balcázar, J.L.: Objective novelty of association rules: Measuring the confidence
boost. In Yahia, S.B., Petit, J.M., eds.: EGC. Volume RNTI-E-19 of Revue des
Nouvelles Technologies de l’Information., Cépaduès-Éditions (2010) 297–302

32. Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero, C., Stamper,
J.C., eds.: Procs of the 4th International Conference on Educational Data
Mining, Eindhoven, The Netherlands, July 6-8, 2011. In Pechenizkiy, M.,
Calders, T., Conati, C., Ventura, S., Romero, C., Stamper, J.C., eds.: EDM,
www.educationaldatamining.org (2011)

Attribute Exploration in a Fuzzy Setting

Cynthia Vera Glodeanu

Technische Universität Dresden,
01062 Dresden, Germany

Cynthia_Vera.Glodeanu@mailbox.tu-dresden.de

Abstract. Since its development attribute exploration was successfully
applied in different fields, proving itself as a strong tool for knowledge
acquisition. However, the disadvantage of this method is that it can be
applied only for binary data. The growing number of applications of fuzzy
logic in numerous domains including formal concept analysis makes it a
natural wish to generalise the powerful technique of attribute exploration
for fuzzy data. It is this paper’s purpose to fulfill this wish and present
a generalisation of attribute exploration to the fuzzy setting.

Keywords: Attribute exploration, knowledge discovery, fuzzy data

1 Introduction

Attribute exploration, as introduced in [1], is a tool for knowledge discovery by
interactive determination of the implications holding between a given set of at-
tributes. This method is especially useful when the examples, objects having the
considered attributes, are infinite, hardly to enumerate or (partially) unknown.
The user is asked whether some implications (the smallest set of implications
from which all the other implications can be derived) hold. If the answer is affir-
mative, the next implication is considered. If, however, the implication is false,
the user has to provide a counterexample. This method assumes that the user can
distinguish between true and false implications and that he can provide coun-
terexamples for false implications. The result of the attribute exploration is a set
of implications which are true in general for the attributes under consideration
and a representative set of examples for the whole theory.

Attribute exploration was successfully applied in different areas of research,
for a brief overview see Subsection 2.1.

Formal fuzzy concept analysis goes back to [2, 3]. Its need arose by the fact
that objects can have attributes with some truth degree instead of either having
or not having them, reflecting that life is not just black and white. In such a
fuzzy setting one can also be interested in the implications between attributes.
These are formulas like A ⇒ B, where A and B are fuzzy sets of attributes.
Such implications can be interpreted in fuzzy contexts, meaning that if objects
have the attributes from A to at least the degree a, then they also have the at-
tributes from B to at least the degree b. Attribute implications in a fuzzy setting
were mainly developed and investigated by R. Belohlavek and V. Vychodil in

Attribute Exploration in a Fuzzy Setting 115

a series of papers, see for example [4, 5]. Due to the large number of fuzzy at-
tribute implications in a formal fuzzy context, one is interested in the smallest
set of attribute implications, the so-called stem base, from which all the other
implications can be derived. The problem of determining the stem bases for the
crisp case was studied in [6], see also [1]. However, in the fuzzy setting these
stem bases need neither to be unique nor to exist. These facts split the problem
of fuzzy attribute exploration into two cases, as we will see in Sections 3 and 4.
We will show under which conditions an attribute exploration in a fuzzy setting
can be performed successfully. The research in attribute exploration in the fuzzy
setting is still at its beginning. We expect for it at least the same popularity in
applications as its crisp variant has gained.

The article is structured as follows: In Section 2 we give short introductions
to attribute exploration in the crisp setting, fuzzy sets and fuzzy logic, formal
fuzzy concept analysis and implications in such a setting. Section 3 first presents
how the stem bases can be computed in a fuzzy setting using the globalisation
and afterwards it focuses on attribute exploration in such a setting. In Section 4
we treat the same subject as in the section before but this time we use a general
hedge in the residuated lattice for the exploration. The last section contains
concluding remarks and further topics of research.

2 Preliminaries

2.1 Crisp Attribute Exploration

We assume basic familiarities with Formal Concept Analysis and refer the reader
to [1].

Attribute exploration ([1]) permits the interactive determination of the im-
plications holding between the attributes of a given context. However, there are
situations when the object set of a context is too large (possibly infinite) or
difficult to enumerate. With the examples (possibly none) of our knowledge we
build the object set of the context step-by-step. The stem base of this context
is built stepwise and we are asked whether the implications of the base are true.
If an implication holds, then it is added to the stem base. If however, an impli-
cation does not hold, we have to provide a counterexample. While performing
an attribute exploration we have to be able to distinguish between true and
false implications and to provide correct counterexamples for false implications.
This is a crucial point since the algorithm is naive and will believe whatever
we tell it. Once a decision was taken about the validity of an implication the
choice cannot be reversed. Therefore, the counterexamples may not contradict
the so-far confirmed implications. The procedure ends when all implications of
the current stem base hold in general. This way we obtain an object set which
is representative for the entire theory, theory which may also be infinite.

The following proposition justifies why we do not have to reconsider the
already confirmed implications:

Proposition 1. ([1]) Let K be a context and P1, P2, . . . , Pn be the first n pseudo-
intents of K with respect to the lectic order. If K is extended by an object g the

116 C.V. Glodeanu

object intent g↑ of which respects the implications Pi → P ↓↑i , i ∈ {1, . . . , n},
then P1, P2, . . . , Pn are also the lectically first n pseudo-intents of the extended
context.

As mentioned in the introductory section, attribute exploration was success-
fully applied in both theoretical and practical research domains. On the one hand
it facilitated the discovery of implications between properties of mathematical
structures, see for example [7–9]. On the other hand it was also used in real-life
scenarios, for instance in civil engineering ([10]), chemistry ([11]), information
systems ([12]), etc.

The algorithm is implemented in different formal concept analytical tools, as
for example in ConExp1 and Conexp-clj2.

There are also further variants of attribute exploration, for instance attribute
exploration with background knowledge for the case that the user knows in ad-
vance some implications between the attributes that hold ([13, 14]). Another
possibility is to perform concept exploration as presented in [15]. By replacing
the implications with Horn clauses from predicate logic one obtains the so-called
rule exploration developed in [16].

2.2 Fuzzy Sets and Fuzzy Logic

In this subsection we present some basics about fuzzy sets and fuzzy logic. The
interested reader may find more details for instance in [17, 3].

A complete residuated lattice with truth-stressing hedge (shortly,
a hedge) is an algebra L := (L,∧,∨,⊗,→,∗ , 0, 1) such that: (L,∧,∨, 0, 1) is a
complete lattice; (L,⊗, 1) is a commutative monoid; 0 is the least and 1 the
greatest element; the adjointness property, i.e., a⊗ b ≤ c⇔ a ≤ b→ c, holds for
all a, b, c ∈ L. The hedge ∗ is a unary operation on L satisfying the following:

i) a∗ ≤ a,

ii) (a→ b)∗ ≤ a∗ → b∗,
iii) a∗∗ = a∗,
iv)

∧
i∈I a

∗
i = (

∧
i∈I ai)

∗,

for every a, b, ai ∈ L (i ∈ I). Elements of L are called truth degrees, ⊗ and →
are (truth functions of) “fuzzy conjunction” and “fuzzy implication”. The hedge
∗ is a (truth function of) logical connective “very true”, see [17, 18]. Properties
(i)-(iv) have natural interpretations, i.e., (i) can be read as “if a is very true,
then a is true”, (ii) can be read as “if a→ b is very true and if a is very true, then
b is very true”, etc. From the mathematical point of view, the hedge operator is
a special kernel operator which controls the size of the fuzzy concept lattice.

A common choice of L is a structure with L = [0, 1], ∧ and ∨ being minimum
and maximum, ⊗ being a left-continuous t-norm with the corresponding→. The

1 http://conexp.sourceforge.net/
2 http://daniel.kxpq.de/math/conexp-clj/

Attribute Exploration in a Fuzzy Setting 117

three most important pairs of adjoint operations on the unit interval are:

Lukasiewicz: a⊗ b := max(0, a + b− 1) with a→ b := min(1, 1− a + b),

Gödel: a⊗ b := min(a, b) with a→ b :=

{
1, a ≤ b
b, a � b

,

Product: a⊗ b := ab with a→ b :=

{
1, a ≤ b
b/a, a � b

.

Typical examples for the hedge are the identity, i.e., a∗ := a for all a ∈ L, and
the globalization, i.e., a∗ := 0 for all a ∈ L \ {1} and a∗ := 1 if and only if a = 1.

Let L be the structure of truth degrees. A fuzzy set (L-set) A in a uni-
verse U is a mapping A : U → L, A(u) being interpreted as “the degree
to which u belongs to A”. If U = {u1, . . . , un}, then A can be denoted by
A = {a1/u1, . . . ,

an /un} meaning that A(ui) equals ai for each i ∈ {1, . . . , n}.
Let LU denote the collection of all fuzzy sets in U . The operations with fuzzy
sets are defined component-wise. For example, the intersection of fuzzy sets
A,B ∈ LU is a fuzzy set A ∩ B in U such that (A ∩ B)(u) = A(u) ∧ B(u) for
each u ∈ U , etc. Binary fuzzy relations (L-relations) between G and M can be
thought of as fuzzy sets in the universe G×M . For A,B ∈ LU , the subsethood
degree is defined as

S(A,B) :=
∧

u∈U
(A(u)→ B(u)),

which generalises the classical subsethood relation ⊆. Therefore, S(A,B) repre-
sents a degree to which A is a subset of B. In particular, we write A ⊆ B iff
S(A,B) = 1.

2.3 Formal Fuzzy Concepts and Concept Lattices

In the following we give brief introductions to Formal Fuzzy Concept Analysis
[2, 3].

A triple (G,M, I) is called a formal fuzzy context if I : G×M → L is
a fuzzy relation between the sets G and M and L is the support set of some
residuated lattice. Elements from G and M are called objects and attributes,
respectively. The fuzzy relation I assigns to each g ∈ G and each m ∈ M the
truth degree I(g,m) ∈ L to which the object g has the attribute m. For fuzzy
sets A ∈ LG and B ∈ LM the derivation operators are defined by

A↑(m) :=
∧

g∈G
(A(g)∗ → I(g,m)), B↓(g) :=

∧

m∈M
(B(m)→ I(g,m)), (1)

for g ∈ G and m ∈ M . Then, A↑(m) is the truth degree of the statement “m
is shared by all objects from A” and B↓(g) is the truth degree of “g has all
attributes from B”. The operators ↑,↓ form a so-called Galois connection with
hedges ([19]). A formal fuzzy concept is a tuple (A,B) ∈ LG×LM such that

118 C.V. Glodeanu

A↑ = B and B↓ = A. Then, A is called the (fuzzy) extent and B the (fuzzy)
intent of (A,B). We denote the set of all fuzzy concepts of a given context
(G,M, I) by B(G∗,M, I). Concepts serve for classification. Consequently, the
super- and subconcept relation plays an important role. A concept is called
superconcept of another if it is more general, i.e., if it contains more objects. More
formally, (A1, B1) is a subconcept of (A2, B2), written (A1, B1) ≤ (A2, B2), iff
A1 ⊆ A2 (iff B1 ⊇ B2). Then, we call (A2, B2) the superconcept of (A1, B1).
The set of all fuzzy concepts ordered by this concept order forms a complete fuzzy
lattice (with hedge), the so-called fuzzy concept lattice which is denoted by
B(G∗,M, I) := (B(G∗,M, I),≤), see [20].

The fuzzy lectic order ([21]) is defined as follows: Let L = {l0 < l1 < · · · < ln}
be the support set of some residuated lattice. For a := (i, j) and b := (h, k), where
a, b ∈M × L, we write

a ≤ b :⇐⇒ (i < h) or (i = h and lj ≥ lk).

For B ∈ LM and (i, j) ∈M × L we define

B ⊕ (i, j) := ((B ∩ {1, 2, . . . , i− 1}) ∪ {aj/i})↓↑.

Furthermore, for B,C ∈ LM define

B <(i,j) C :⇐⇒ B ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1} and B(i) < C(i) = aj .

We say that B is lectically smaller than C, written B < C, if B <(i,j) C for
some (i, j). As in the crisp case we have that B+ := B⊕ (i, j) is the least intent
which is greater than a given B with respect to < and (i, j) is the greatest with
B <(i,j) B ⊕ (i, j).

Example 1. Consider the formal fuzzy context (G,M, I) given in Figure 1. Us-
ing the Lukasiewicz logic with the identity as hedge we obtain 15 formal fuzzy
concepts. For example ({Mo, T,0.5 /W}, {c, r}) is a fuzzy concept. We could
name it the concept of cold and rainy days because of its intent. Then, Mon-
day, Tuesday and partially Wednesday belong to this concept, i.e., they are cold
and rainy days. Another example is ({0.5/W, Th, F}, {w}) which corresponds to
warm days. Yet another example are the warm and partially rainy days given
by ({0.5/W, Th,0.5 /F}, {w,0.5 /r}). The fuzzy concept lattice is displayed on the
left side in Figure 2. For better legibility we did not use all the labels. Using the
globalisation instead of the identity, we obtain 10 formal fuzzy concepts which
are displayed on the right in Figure 2. The concepts obtained through the global-
isation need not be a subset of those obtained with the identity. In this example
this case does not appear. Using the Gödel structure one obtains 13 concepts
with the identity and 10 with the globalisation.

2.4 Fuzzy Implications and Non-redundant Bases

As already mentioned, fuzzy implications were studied in a series of papers by
R. Belohlavek and V. Vychodil, for instance in [4, 5].

Attribute Exploration in a Fuzzy Setting 119

warm (w) cold (c) rainy (r)

Monday (Mo) 0 1 1
Tuesday (T) 0 1 1

Wednesday (W) 0.5 0.5 1
Thursday (Th) 1 0 0.5

Friday (F) 1 0 0

Fig. 1. Example of a fuzzy formal context

0.5/c

r

c

Mo, T W

Th

F

0.5/r

r,0.5 /c

c

Mo, T W Th

F

0.5/r

0.5/w

w

0.5/w

w

Fig. 2. Formal fuzzy concept lattices

A fuzzy attribute implication (over the attribute set M) is an expression
A⇒ B, where A,B ∈ LM . The verbal meaning of A⇒ B is: “if it is (very) true
that an object has all attributes from A, then it also has all attributes from B”.
The notions “being very true”, “to have an attribute”, and logical connective
“if-then” are determined by the chosen L. For a fuzzy set N ∈ LM of attributes,
the degree ||A⇒ B||N ∈ L to which A⇒ B is valid in N is defined as

||A⇒ B||N := S(A,N)∗ → S(B,N).

If N is the fuzzy set of all attributes of an object g, then ||A ⇒ B||N is the
truth degree to which A ⇒ B holds for g. For a set N ⊆ LM , the degree
||A⇒ B||N ∈ L to which the implication A⇒ B holds in N is defined by

||A⇒ B||N :=
∧

N∈N
||A⇒ B||N .

For a fuzzy context (G,M, I), let Ig ∈ LM (g ∈ G) be a fuzzy set of attributes
such that Ig(m) = I(g,m) for each m ∈ M . Clearly, Ig corresponds to the row
labelled g in (G,M, I). The degree ||A⇒ B||(G,M,I) ∈ L to which A⇒ B holds
in (each row of) K = (G,M, I) is defined by

||A⇒ B||K = ||A⇒ B||(G,M,I) := ||A⇒ B||N ,

120 C.V. Glodeanu

where N := {Ig | g ∈ G}. Denote by

Int(G∗,M, I) := {B ∈ LM | (A,B) ∈ B(G∗,M, I) for some A}

the set of all intents of B(G∗,M, I). Since N ∈ LM is the intent of some concept
if and only if N = N↓↑, we have Int(G∗,M, I) = {N ∈ LM | N = N↓↑}.
The degree ||A ⇒ B||B(G∗,M,I) ∈ L to which A ⇒ B holds in (the intents of)
B(G∗,M, I) is defined by

||A⇒ B||B(G∗,M,I) := ||A⇒ B||Int(G∗,M,I).

Lemma 1. ([22]) Let (G,M, I) be a fuzzy context. Then,

||A⇒ B||(G,M,I) = ||A⇒ B||B(G∗,M,I) = S(B,A↓↑)

for each fuzzy attribute implication A⇒ B.

Example 2. Consider once again the fuzzy context given in Figure 1. Using the
Lukasiewicz logic and the globalisation as the hedge we have ||c⇒ r||(G,M,I) = 1,
i.e., this is a true implication. However, in the fuzzy case, there are implications
which are valid to a certain degree different from 1, for instance we have the
implication ||c ⇒ {0.5/w, r}||(G,M,I) = 0.5. We obtain the same truth value
for these implications also by using the identity. Consider the Gödel logic with
the globalisation. For example, we have the implication ||w, r ⇒ c||(G,M,I) = 1
but using the identity this implication holds with the truth value 0. This is
due to the fact that we have {w, r}↓↑ = {w, r, c} with the globalisation and
{w, r}↓↑ = {w, r} with the identity.

Due to the large number of implications in a fuzzy and even in a crisp formal
context, one is interested in the stem base of the implications. The stem base
is a set of implications which is non-redundant and complete. The problem for
the fuzzy case was studied in [5, 22, 23]. Neither the existence nor the uniqueness
of the stem base for a given fuzzy context is guaranteed in general. How these
problems can be overcome is the topic of the rest of this subsection. For a more
detailed description we refer the reader to the papers cited above.

Let T be a set of fuzzy attribute implications. A fuzzy attribute set N ∈ LM

is called a model of T if ||A ⇒ B||N = 1 for each A ⇒ B ∈ T . The set of all
models of T is denoted by Mod (T), i.e.,

Mod (T) := {N ∈ LM | N is a model of T}.

The degree ||A ⇒ B||T ∈ L to which A ⇒ B semantically follows from T is
defined by ||A⇒ B||T := ||A⇒ B||Mod(T). T is called complete (in (G,M, I))
if ||A ⇒ B||T = ||A ⇒ B||(G,M,I) for each A ⇒ B. If T is complete and no
proper subset of T is complete, then T is called a non-redundant basis.

Theorem 1. ([5]) T is complete iff Mod (T) = Int(G∗,M, I).

As in the crisp case the stem base of a given fuzzy context can be obtained
through the pseudo-intents.

Attribute Exploration in a Fuzzy Setting 121

Definition 1. P ⊆ LM is called a system of pseudo-intents if for each
P ∈ LM we have:

P ∈ P ⇐⇒ (P 6= P ↓↑ and ||Q⇒ Q↓↑||P = 1 for each Q ∈ P with Q 6= P).

For each (G,M, I) there exists a unique system of pseudo-intents, if ∗ is the
globalisation and M is finite (this does not hold for the other hedges in general).

Theorem 2. ([22]) T := {P ⇒ P ↓↑ | P ∈ P} is complete and non-redundant.
If ∗ is the globalization, then T is unique and minimal.

3 Fuzzy Attribute Exploration with Globalisation

Attribute exploration is a very powerful tool. However, its theoretical basis lies
in Proposition 1 which represents its key to success. Thus, the crucial step is to
generalise this proposition to the fuzzy setting. After developing the theoretical
ingredients for a successful attribute exploration in a fuzzy setting, we turn our
attention to its practical parts. First, we develop an appropriate algorithm for
this technique and afterwards illustrate the method by an example.

In case we choose for ∗ the globalisation, then the formalisation of pseudo-
intents from Definition 1 becomes: P ⊆ LM is a system of pseudo-intents if

P ∈ P ⇐⇒ (P 6= P ↓↑ and Q↓↑ ⊆ P for each Q ∈ P with Q & P). (2)

Theorem 3. ([22]) Let L be a residuated lattice with globalization. Then, for
each (G,M, I) with finite M there is a unique system of pseudo-intents P given
by (2).

For Z ∈ LM we put

ZT∗
:= Z ∪

⋃
{B ⊗ S(A,Z)∗ | A⇒ B ∈ T and A 6= Z},

ZT∗
0 := Z,

ZT∗
n := (ZT∗

n−1)T
∗
, for n ≥ 1,

where B ⊗ S(A,Z)∗ is computed component-wise, and we define an operator
clT∗ on L-sets in M by

clT∗ (Z) :=

∞⋃

n=0

ZT∗
n .

Theorem 4. ([5]) If ∗ is the globalisation, then clT∗ is an L∗-closure operator
and

{clT∗ (Z) | Z ∈ LM} = P ∪ Int(X∗, Y, I).

According to this theorem, if ∗ is the globalisation, then we can obtain all
intents and all pseudo-intents of a given fuzzy context by computing the fixed
points of clT∗ . In [5] an algorithm for the computation of all intents and all
pseudo-intents in lectic order was proposed. Therefore, the following result holds:

122 C.V. Glodeanu

Proposition 2. Let L be a residuated lattice with hedge and let ∗ be the glob-
alisation. Further, let P be the unique system of pseudo-intents of the fuzzy
context (G,M, I) such that P1, P2, . . . , Pn ∈ P are the first n pseudo-intents in
P with respect to the lectic order. If (G,M, I) is extended by an object g the

object intent g↑ of which respects the implications Pi → P ↓↑i , i ∈ {1, . . . , n},
then P1, P2, . . . , Pn remain the lectically first n pseudo-intents of the extended
context.

Proof. Easy, by induction on the number of pseudo-intents in P.

With this result we are able to generalise the attribute exploration algorithm
to the fuzzy setting, as displayed below.

(1) L := ∅; A := ∅
(2) if (A = A↓↑)
(3) then add A to Int(K)
(4) else Ask expert whether ||A⇒ A↓↑||K = 1
(5) If yes, add A⇒ A↓↑ to L
(6) else ask for counterexample g and add it to K
(7) end if
(8) do while (A 6= M)
(9) for i = n, . . . , 1 and for l = maxL, . . . ,minL with A(i) < l do

(10) B :=clT∗ (A)
(11) if (A↘ i = B ↘ i) and (A(i) < B(i)) then
(12) A := B
(13) if (A = A↓↑)
(14) then add A to Int(K)
(15) else Ask expert whether ||A⇒ A↓↑||K = 1
(16) If yes, add A⇒ A↓↑ to L
(17) else ask for counterexample g and add it to K
(18) end if
(19) end if
(20) end for
(21) end do

Fig. 3. Algorithm for attribute exploration with globalisation

The first intent or pseudo intent is the empty set. If it is an intent, add it to
the set of intents of the context. Otherwise, ask the expert whether the impli-
cation is true in general. If so, add this implication to the stem base else ask
for a counterexample and add it to the context (line 2− 6). Until A is different
from the whole attribute set, repeat the following steps: Search for the largest
attribute i in M with its largest value l such that A(i) < l. For this attribute
compute its closure with respect to the clT∗ -closure operator and check whether
the result is the lectically next intent or pseudo-intent (line 9 − 12). Thereby,

Attribute Exploration in a Fuzzy Setting 123

A↘ i := A ∩ {1, . . . , i− 1}. If the result is an intent, add it to the set of intents
(line 13 − 14), otherwise ask the user whether the implication provided by the
pseudo-intent holds. If the implication holds, add it to the stem base otherwise
ask the user for a counterexample (line 15− 17).

The algorithm generates interactively the stem base of the formal fuzzy con-
text. As in the crisp case we enumerate the intents and pseudo-intents in the
lectic order. Hence, we go through the list of all such elements. Due to Propo-
sition 2 we are allowed to extend the context by objects whose object intents
respect the already confirmed implications. This way, the pseudo-intents already
used in the stem base do not change. Hence, the algorithm is sound and correct.

Example 3. We want to explore the size and distance of the planets. We include
some of them into the object set and obtain the context given in Figure 4. In this
example we will be using the Lukasiewicz logic with the globalisation as hedge.

small (s) large (l) far (f) near (n)

Earth 1 0 0 1
Mars 1 0 0.5 1
Pluto 1 0 1 0

Fig. 4. Initial context

We start the attribute exploration. The first pseudo-intent is ∅ and we are
asked

All objects have the attribute s to degree 1?

This is of course not true and we provide a counterexample:

small (s) large (l) far (f) near (n)

Jupiter 0 1 1 0.5

The next pseudo-intent is n and we are asked

Objects having attribute n to degree 1 also have attribute s to degree 1?

This is a true implication and we confirm it. The next pseudo-intent is {f,0.5 /n}
which yields the following question:

Objects having attribute f and n to degree 1 and 0.5, respectively,
also have attribute l to degree 1?

This is a true implication and we confirm it. The algorithm proceeds with

Objects having attribute l to degree 0.5 also have the attributes
l, f, n to degree 1, 1, 0.5, respectively?

This implication is not true for our planet system and we give a counterexample:

124 C.V. Glodeanu

small (s) large (l) far (f) near (n)

Uranus 0.5 0.5 1 0

The following four implications are true, so we will confirm them:

0.5/l⇒ f,

l, f ⇒0.5 /n,
0.5/s,0.5 /n⇒ s, n,

s,0.5 /l, f ⇒ l, n.

And the attribute exploration has stopped. Now we have an extended formal
fuzzy context, namely the one containing Jupiter and Uranus besides the ob-
jects given in Figure 4. Note that we did not have to include all the planets
into the object set, just a representative part of them. The other planets with
their attributes are displayed in Figure 5. These objects contain just redundant
information and the knowledge provided by them is already incorporated into
the stem base of the extended context.

small (s) large (l) far (f) near (n)

Mercury 1 0 0 1
Venus 1 0 0 1
Saturn 0 1 1 0.5

Neptune 0.5 0.5 1 0

Fig. 5. Superfluous planets

4 Fuzzy Attribute Exploration with General Hedges

As the title of this section suggests, we will now turn our attention to attribute
exploration with general hedges. After introducing the necessary background
information, we will focus on the exploration. As it turns out, there are several
obstacles that make a straight-forward generalisation of attribute exploration
in such a setting impossible. At the end of the section we will discuss which
approaches may lead to a successful exploration. However, it is also an open
question whether an exploration in such a setting is desirable.

The computation of the systems of pseudo-intents for general hedges was
studied in [23]. For a fuzzy context (G,M, I) we compute the following:

V := {P ∈ LM | P 6= P ↓↑}, (3)

E := {(P,Q) ∈ V × V | P 6= Q and ||Q⇒ Q↓↑||P 6= 1}. (4)

Attribute Exploration in a Fuzzy Setting 125

In case of a non-empty V , G := (V,E ∪ E−1) is a graph. For Q ∈ V , P ⊆ V
define the following subsets of V :

Pred (Q) := {P ∈ V | (P,Q) ∈ E},
P red (P) :=

⋃

Q∈P
Pred (Q).

Described verbally, Pred (Q) is the set of all elements from V which are prede-
cessors of Q (in E). Pred (P) is the set of all predecessors of any Q ∈ P.

We will compute the systems of pseudo-intents through maximal independent
sets. Therefore, the following result is useful:

Lemma 2. ([23]) Let ∅ 6= P ⊆ LM . If V \ P =Pred (P), then P is a maximal
independent set in G.

The next theorem characterises the systems of pseudo-intents of a fuzzy con-
text using general hedges:

Theorem 5. ([23]) Let P ⊆ LM . P is a system of pseudo-intents if and only if
V \ P = Pred(P).

It is well-known that the maximal independent sets of a graph can be effi-
ciently enumerated in lexicographic order with only polynomial delay between
the output of two successive independent sets ([24]). In [25] it was shown that
the pseudo-intents cannot be enumerated in lexicographic order with polynomial
delay unless P = NP. These two results do not contradict each other because
they address different issues. The first one in encountered when we enumerate
the maximal independent sets of the graph G which is the input of the cor-
responding algorithm. These sets correspond to the systems of pseudo-intents.
Whereas the result from [25] is for the globalisation and takes as input a formal
context enumerating its pseudo-intents.

In the following we will exemplify the computation of the systems of pseudo-
intents. Afterwards, we illustrate how an attribute exploration with general
hedge could be performed.

Example 4. We start with a very simple example. Let ({g}, {a, b}, I) be the
formal fuzzy context with I(g, a) = 0.5 and I(g, b) = 0. Further, we use the
three-element Lukasiewicz chain with ∗ being the identity. First, we compute V
as given by (3) and obtain

V = {{0.5/a,0.5 /b}, {0.5/b}, {}, {0.5/a, b}, {b}, {a}}.
Afterwards, we compute the binary relation E as given by (4) which is displayed
in Figure 6. Considering the undirected diagram of Figure 6 we obtain the graph
G. There, we have four maximal independent sets, namely

P1 = {{}, {0.5/a, b}, {a}},
P2 = {{0.5/b}, {a}},
P3 = {{b}, {a}},
P4 = {{0.5/a,0.5 /b}, {a}}.

126 C.V. Glodeanu

P1 and P3 do not satisfy the condition of Theorem 5 and are therefore not

{0.5/a,0.5 /b}

{0.5/b}

{}

{0.5/a, b}

{b} {a}

Fig. 6. Binary relation E for (G,M, I)

systems of pseudo-intents. P2 and P4 do satisfy this condition and hence they
are systems of pseudo-intents yielding the stem bases displayed in Figure 7.

T2 T4

(1) 0.5/b ⇒ a (3) 0.5/a,0.5 /b ⇒ a
(2) a ⇒0.5 /b (4) a ⇒0.5 /b

Fig. 7. Stem bases

Now we could start an attribute exploration, for instance in T2. The algorithm
would ask us:

Objects having attribute b to degree 0.5 also have attribute a to degree 1?

Let us answer this question affirmatively. The next question is:

Objects having attribute a to degree 1 also have attribute b to degree 0.5?

We deny this implication and provide a counterexample, namely the object h
with I(h, a) = 1 and I(h, b) = 0. This counterexample obviously respects the
already confirmed implication so the context is extended by the new object h.
For this extended context we can compute the sets V and E. The binary relation

Attribute Exploration in a Fuzzy Setting 127

{0.5/a,0.5 /b}

{}{0.5/b} {b} {0.5/a, b}

Fig. 8. Binary relation E for the extended context

E for the extended context is given in Figure 8. From this graph we obtain four
maximal independent sets, three of which form systems of pseudo-intents. The
stem bases which they induce are displayed in Figure 9. At the beginning we

T p
2 T pp

2 T ppp
2

(5) 0.5/b ⇒ a (6) {} ⇒0.5 /a (8) {b} ⇒ a
(7) 0.5/a, b ⇒ b

Fig. 9. Stem bases of the extended context

have confirmed implication (1) from Figure 7. However, this implication is now
not present any more in the stem bases T pp

2 and T ppp
2 . This is also reflected in

the stem base T4. Even though the counterexample respects implication (3), the
pseudo-intent belonging to this implication also disappears.

Concluding, by extending the context with objects which respect the already
confirmed implications, the latter may disappear from the stem base of the
extended context. Hence, we do not have an analogon of Proposition 2 for general
hedges.

The attribute exploration with general hedges raises a lot of questions and
open problems. First of all it is unclear whether such an exploration is desirable.
We have more than one stem base for a context. These bases are equally pow-
erful with respect to their expressiveness. The major problem however is how
to perform an attribute exploration successfully. It is an open problem how to
enumerate the pseudo-intents obtained by general hedges such that the already
confirmed implication still remain in the stem base of the extended context. One

128 C.V. Glodeanu

could for instance make some constraints on the counterexamples. However, such
an approach is not in the spirit of attribute exploration.

5 Conclusion

We presented a generalisation of attribute exploration to the fuzzy setting. The
problem is two-sided. If one uses the globalisation in the residuated lattice, the
stem base is unique. For such a setting the results regarding the exploration
from the crisp case can be transferred without problems and one can perform
successfully an attribute exploration with attributes having fuzzy values. Us-
ing hedges different from the globalisation one obtains more than one system
of pseudo-intents. This alone would not cause such a big problem. The major
difficulty comes with the fact that the already confirmed pseudo-intents are not
necessarily pseudo-intents of the extended context. This is therefore an open
problem, how to perform an attribute exploration using a general hedge.

In the future we will focus on the problem regarding the general hedge and
on extensions of this method, as for instance on fuzzy attribute exploration with
background knowledge. There, the user can enter in advance some implications
which he/she knows to hold between the attributes. Using such background
knowledge one usually has to provide less examples and answer to fewer ques-
tions.

We are expecting that the method will have many practical applications, as
its crisp variant has. Therefore, we will also focus on applications using attribute
exploration in a fuzzy setting.

References

1. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen.
Springer (1996)

2. Pollandt, S.: Fuzzy Begriffe. Springer Verlag, Berlin Heidelberg New York (1997)
3. Belohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Volume 20

of IFSR Int. Series on Systems Science and Engineering. Kluwer Academic/Plenum
Press (2002)

4. Belohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: ICFCA.
(2006) 45–60

5. Belohlávek, R., Chlupová, M., Vychodil, V.: Implications from data with fuzzy
attributes. In: AISTA 2004 in Cooperation with the IEEE Computer Society
Proceedings. (2004)

6. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives re-
sultant d’un tableau de donnes binaires. Math. Sci. Humaines 24(95) (1986) 5–18

7. Sacarea, C.: Towards a theory of contextual topology. PhD thesis, TH Darmstadt,
Aachen (2001)

8. Kwuida, L., Pech, C., Reppe, H.: Generalizations of boolean algebras. an attribute
exploration. Math. Slovaca 56(2) (2006) 145–165

9. Revenko, A., Kuznetsov, S.: Attribute exploration of properties of functions on
ordered sets. In: Proc. CLA 2010. (2010) 313–324

Attribute Exploration in a Fuzzy Setting 129

10. Eschenfelder, D., Kollewe, W., Skorsky, M., Wille, R.: Ein Erkundungssystem zum
Baurecht: Methoden der Entwicklung eines TOSCANA-Systems. Volume 2036.
Techn. Univ., FB 4, Darmstadt (Januar 1999) Ersch. ebenf. in: Begriffliche Wis-
sensverarbeitung: Methoden und Anwendungen. Hrsg.: G. Stumme, R. Wille. -
Berlin, Heidelberg (u.a.): Springer, 2000. S. 254-272.

11. Bartel, H.G., Nofz, M.: Exploration of nmr data of glasses by means of formal
concept analysis. Chemom. Intell. Lab. Syst. 36 (1997) 53–63

12. Stumme, G.: Acquiring expert knowledge for the design of conceptual information
systems. In Fensel, D., Studer, R., eds.: EKAW. Volume 1621 of Lecture Notes in
Computer Science., Springer (1999) 275–290

13. Ganter, B.: Attribute exploration with background knowledge. Theor. Comput.
Sci. 217(2) (1999) 215–233

14. Stumme, G.: Attribute exploration with background implications and exceptions.
In Bock, H.H., Polasek, W., eds.: Data Analysis and Information Systems. Sta-
tistical and Conceptual approaches. Proc. GfKl’95. Studies in Classification, Data
Analysis, and Knowledge Organization 7, Heidelberg, Springer (1996) 457–469

15. Wille, R.: Bedeutungen von Begriffsverbänden. In Ganter, B., Wille, R., Wolff,
K.E., eds.: Beiträge zur Begriffsanalyse. B.I.–Wissenschaftsverlag, Mannheim
(1987) 161–211

16. Zickwolff, M.: Rule exploration: first order logic in formal concept analysis. Tech-
nische Hochschule Darmstadt. (1991)

17. Hájek, P.: The Metamathematics of Fuzzy Logic. Kluwer (1998)
18. Hájek, P.: On very true. Fuzzy Sets and Systems 124(3) (2001) 329–333
19. Belohlávek, R., Funioková, T., Vychodil, V.: Galois connections with hedges. In

Liu, Y., Chen, G., Ying, M., eds.: Eleventh International Fuzzy Systems Associa-
tion World Congress,. Fuzzy Logic, Soft Computing & Computational Intelligence,
Tsinghua University Press and Springer (2005) 1250–1255

20. Belohlávek, R., Vychodil, V.: Fuzzy concept lattices constrained by hedges. JACIII
11(6) (2007) 536–545

21. Belohlávek, R.: Algorithms for fuzzy concept lattices. In: Proc. Fourth Int. Conf.
on Recent Advances in Soft Computing. (2002) 200–205

22. Belohlávek, R., Vychodil, V.: Fuzzy attribute logic: attribute implications, their
validity, entailment, and non-redundant basis. In Liu, Y., Chen, G., Ying, M., eds.:
Eleventh International Fuzzy Systems Association World Congress,. Volume 1 of
Fuzzy Logic, Soft Computing & Computational Intelligence., Tsinghua University
Press and Springer (2005) 622–627

23. Belohlávek, R., Vychodil, V.: Fuzzy attribute implications: Computing non-
redundant bases using maximal independent sets. In: Australian Conference on
Artificial Intelligence. (2005) 1126–1129

24. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27(3) (1988) 119–123

25. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete
Applied Mathematics 159(6) (2011) 450–466

On Open Problem - Semantics of the Clone
Items

Juraj Macko

Dept. Computer Science
Palacky University, Olomouc

17. listopadu 12, CZ-77146 Olomouc
Czech Republic

email: {juraj.macko}@upol.cz

Abstract. There was presented a list of open problems in the Formal
Concept Analysis area at the conference ICFCA 2006. The problem num-
ber seven deals with the semantics of the clone items. Namely, for whom
can clone items make sense and for whom can make sense the item,
which can cause, that clones disappear in the collection of itemsets. In
this paper we propose the semantics behind clone items with the couple
of examples. Definition of the clone items is very strict and theirs use
could be very limited in the real datasets. We introduce method, how to
deal with items, which properties are very near to the clones. We also
have a look on the items, which causes the disappearing of the clones, or
decrease (increase) the degree of property ”to be clone”. In the experi-
ment part we analyze some known datasets from the clone items point of
view. The results bring a couple of new questions for the future research.

Keywords: formal concept analysis, clone items

1 Introduction

This paper is structured as follows: The first part, which is actually cited from
the source, where the problem were defined [2] describes and defines the whole
problem - the semantics of the clone items. In the second part is proposed the
semantics of the clone items by putting the problem into the other point of
view. There is also a discussion here, about another possible definitions of the
clones as presented in [1]. In this part three comprehensive examples can be
found. The third part tries to set a quite new approach to the clone items.
The attributes, which are not clones, but they have properties very close to
clones are considered. A nearly clones are defined. In this part some results from
the introductory experiments about the clones and nearly clones are presented.
Finally, the conclusion is divided in two parts - conclusion of defined problem
and conclusion of other proposed issues.

On Open Problem - Semantics of the Clone Items 131

2 The Problem Setting

The proposed problem of the semantics of the clone items were proposed and
defined in [2] as follows: Let J be a set of items x1, ..., x|J|, let F be a collection
of subsets of J and let ϕa,b be the mapping ϕa,b : 2J → 2J defined by following
formula:

X → ϕa,b(X) =

(X\{a}) ∪ {b} if b /∈ X and a ∈ X
(X\{b}) ∪ {a} if a /∈ X and b ∈ X
X elsewhere

It means swapping items a and b, which are called clone items in F iff for any
F ∈ F , we have ϕa,b(F) ∈ F . A Clone-free collection is, if it does not contain
any clone items.

Let (X,Y, I) be a formal context such that attributes a ∈ Y and b ∈ Y are
not clones. Consider the formal sub-context (X,Z, I), where Z ⊂ Y , such that a
and b are clone in (X,Z, I). Let c ∈ Y \Z such that a and b are no longer clone
in (X,Z ∪ {c}, I). Attributes a and b has symmetrical behaviour in (X,Z, I),
but this behaviour is lost when we add the attribute c to the formal context.
The following question are asked:

1. Does such symmetrical behaviour of a and b make sense for someone?
2. Does it make the sense, that such symmetrical behaviour disappears, when

the attribute c is added?
3. What is semantics behind the attributes a, b, and c?

3 Semantics behind Clones

3.1 Semantics behind Clones - Auxiliary Formal Definitions

The collection of itemsets will be defined as a formal context (X,Y, I), where X
is a set of objects and Y is a set of attributes. Objects and attributes are related
by I ⊆ X×Y , which means, that the object x ∈ X has the attribute y ∈ Y . For
A ⊆ X, B ⊆ Y and formal context (X,Y, I) we define operators

A↑I = {y ∈ Y | for each x ∈ X : 〈x, y〉 ∈ I}
B↓I = {x ∈ X | for each y ∈ Y : 〈x, y〉 ∈ I}

The two given attributes a, b ∈ Y will be investigated, whether are clones or not.
For this purpose the pivot table will be defined as the relation R ⊆ P × N ,
where P = {a, b} ⊆ Y and N is a set of all Nj , where j ∈ [1; |N |]. Nj ∈ N
represents the set of attributes Nj = {x}↑I ∩ (Y \P) for each x ∈ X such that
{a, b} ∩ {x}↑I 6= ∅ and {a, b} * {x}↑I . The investigated attributes a, b ∈ P ⊆ Y
will be named the pivot attributes and all other considered attributes, hence

n ∈ ⋃|N |
j=1Nj , we denote as the non-pivot attributes. Nj is a set generated

by pivot attributes (or shortly the generated set). The pivot table has two

132 J. Macko

rows. The ”cross” × in pivot table will represent the fact, that in the formal
context there exists at least one row, where the investigated attribute a (or b
respectively) appears together with the attributes in the particular Nj . Formally,

〈a,Nj〉 ∈ R iff in context (X,Y, I) exists x ∈ X such that x↑I = {a} ∪Nj ,

〈b,Nj〉 ∈ R iff in context (X,Y, I) exists x ∈ X such that x↑I = {b} ∪Nj .

Based on pivot attributes, non-pivot attributes and formal context (X,Y, I)
consider pivot table which is as new formal context (P,N , R) with operators
for C ⊆ P and D ⊆ N defined as follows

C↑R = {Ni ∈ N | for each p ∈ P : 〈p,Nj〉 ∈ R},
D↓R = {p ∈ P | for each Ni ∈ N : 〈p,Nj〉 ∈ R}

In the pivot table (P,N , R) we are trying to find whether {a}↑R = {b}↑R . In

a b n1 n2 n3

x1 × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 × × ×
x6 × × ×
x7 × × × ×
x8 × × × ×

N
1

=
{n

1
,n

2
}

N
2

=
{n

2
,n

3
}

N
3

=
{n

1
,n

3
}

N
4

=
{n

1
,n

2
,n

3
}

a × × × ×
b × × × ×

a b n1 n2 n3 c

x1 × × × ×
x2 × × × ×
x3 × × ×
x4 × × ×
x5 × × × ×
x6 × × ×
x7 × × × ×
x8 × × × × ×

N
1

=
{n

1
,n

2
,c
}

N
2

=
{n

2
,n

3
}

N
3

=
{n

1
,n

3
}

N
4

=
{n

1
,n

3
,c
}

N
5

=
{n

1
,n

2
,n

3
}

N
6

=
{n

1
,n

2
,n

3
,c
}

a × × × ×
b × × × ×

(i) Formal context (ii) Pivot table (iii) Formal context (iv) Pivot table
(X,Z, I) (P,N , R) (X,Z ∪ {c}, Ic) (P,Nc, Rc)

Fig. 1. Formal context and pivot tables with and without clones

other words, we want to know, whether the attribute a appears in given formal
context with the same combination of other attributes, as b appears (in the same
formal context). If yes, the pivot attributes a, b in context (X,Y, I) generates the
same generated sets. In other words, a, b are not unique with respect to the non-
pivot attributes. Such attributes we call clones. When {a}↑R 6= {b}↑R , attributes
a, b are unique with respect to the non-pivot attributes, because generates at least
one different generated set. The attribute c ∈ Y , which makes a, b unique with
respect to generated sets is called the originality factor of a, b. In Figure 1 we
show examples of the contexts and pivot tables with clones or with the originality
factor respectively. By introducing the pivot table, the whole problem have been
put to the other point of view. The proposed semantics will be explained based
on the previous definitions.

On Open Problem - Semantics of the Clone Items 133

3.2 Discussion and Remarks

Before the comprehensive examples will be proposed, it is necessary to discuss
previous auxiliary definition of the clones using the pivot table. There are couple
of problems mainly dealing with ambiguity of the pivot table definition with
respect to the various definitions of the clones used by the several authors in
the other works. In the pivot table definition the set Nj ∈ N is defined as
Nj = {x}↑I ∩ (Y \P) for each x ∈ X such that

1. {a, b} ∩ {x}↑I 6= ∅ and
2. {a, b} * {x}↑I .

The first condition tells, that we ignore the itemsets (rows), where neither a
nor b is present. Such items are not interesting when we investigate whethe a and
b are clones, so we will ignore them when the pivot table is defined. The second
condition excludes itemsets, where we have the both pivot attributes a and b
and the question is: Why we exclude such itemsets from pivot table, when we
can see it in original definition of the clone items? Recall the original definition
of the clones:

X → ϕa,b(X) =

(X\{a}) ∪ {b} if b /∈ X and a ∈ X
(X\{b}) ∪ {a} if a /∈ X and b ∈ X
X elsewhere

Items a and b, which are called clone items in F iff for any F ∈ F , we have
ϕa,b(F) ∈ F . So we need to have the original itemset and swapped itemset as
well in the whole collection of itemsets. In definition of ϕ are interesting the
rows 1 and 2. The row 3 is only technical condition. It means, that fulfillment
of swapping condition of itemsets, which does not contain any of a or b or con-
versely, when it contains both, is trivial. So we could add them in the pivot
table by skipping the condition {a, b} * {x}↑I , but we consider such informa-
tion redundant and hence useless. However, the semantics of the clones remains
unchanged. But on the other side, it can influence the value of the degree of
clones dI(a,b) (which will be defined later). In such case we need to investigate,
which definition would be more precise for the user. The basic idea of our se-
mantics of clones (and nearly clones defined later as well) is, of how original are
items a and b in the whole collection of itemsets. The itemsets which does not
include either a or b will not tell us anything about originality of such items, the
itemsets which include both as well.

The other point for the discussion comes from the problem number six (pre-
sented in [2]), which deals with the size of a clone-free Guigues-Duquenne basis.
Namely, whether the clone items are responsible for the combinatorial explo-
sion of some Guigues-Duquennes basis. The Guigues-Duquennes basis is non-
redundant. All other attribute implications, which holds in given context, can
be derived from this base. In the paper [1] there are presented some partial re-
sults, which includes definitions and propositions dealing with the clones. The

134 J. Macko

clones are defined with respect to pseudo-closed sets in the collection of the
closed itemsets. The one of the basic results is, that in order to detect clone
items, one has to consider meet-irreducible itemsets only (for details see [1]).
The definition of the clone items given in [2] is defined in more general manner.
It is based not only on the pseudo-closed itemset collection, but it is defined for
arbitrary collection of itemsets. This fact can cause, that two items may not ap-
pear as clone according the definition in [2], but the are still clones in definition
according to [1]. In the rest of the paper there will be considered the definition
used in [2] only. However, the proposed semantics would be slightly modified,
when we would need to use it in the meaning of [1].

The other important part is to compare proposed solution with other at-
tempts or solutions, but the author has no information either about such at-
tempts or about some real solutions. Hence, according to the author’s best
knowledge, the author’s proposed solution seems to be novel.

3.3 Semantics behind Clones - Examples

In this part we would like to show on couple of examples, how the clone items
and the originality factor can be used. The originality factor can be desired under
some conditions, but undesired under the other conditions. Inall examples the
same formal context and the pivot tables will be used, but always with the dif-
ferent meaning of the objects and attributes. The Table 1 represents the original
formal context (X,Z, I) with the clones a and b and it also represents the formal
context (X,Z ∪ {c}), where the originality factor c is added. The corresponding
pivot tables (P,N , R) and (P,Nc, Rc) can be seen in the Table 2. A labeling of
the objects and the pivot attributes is done according to the particular sets X
and Y defined in each example below.

The sales analysis Let X = {Customer1, . . . , Customer8} be a set of cus-
tomers and the set of attributes is defined as Y = {Man,Woman, n1, n2, n3, c}.
The attributesMan andWoman represents the sex of customer and the other at-
tributes represents the products bought by each customer. The following formal
contexts represents a marketing research of the sales company (the customers and
theirs attributes). In the formal context (X,Z, I) attributes Man and Woman
are clones. In the pivot table (P,N , R) attributes Man and Woman are pivot
attributes and nj is product bought by customer. On the other hand, in the
formal context (X,Z ∪ {c}) and the corresponding pivot table (P,Nc, Rc) the
attributes Man and Woman are no longer clones and the attribute c (Product
c) is the originality factor in this case. Namely, for the itemset {Man, n1, n3, c}
there is no corresponding itemset {Woman, n1, n3, c}.

How can this information be used for the marketing department? Imagine,
that the sales company wants to create packages based on the marketing re-
search. These packages should consist of the particular products nj . In the first

On Open Problem - Semantics of the Clone Items 135

M
a
n

/
E
u
ro
p
e

/
G
en
e1

W
om

a
n

/
A
m
er
ic
a

/
G
en
e2

n1 n2 n3 c

Customer 1 / Animal 1 / Organism 1 × × × ×
Customer 2 / Animal 2 / Organism 2 × × × ×
Customer 3 / Animal 3 / Organism 3 × × ×
Customer 4 / Animal 4 / Organism 4 × × ×
Customer 5 / Animal 5 / Organism 5 × × × ×
Customer 6 / Animal 6 / Organism 6 × × ×
Customer 7 / Animal 7 / Organism 7 × × × ×
Customer 8 / Animal 8 / Organism 8 × × × × ×
Table 1. Formal contexts (X,Z, I) and (X,Z ∪ {c}, Ic)

N Nc

N
1

=
{n

1
,n

2
}

N
2

=
{n

2
,n

3
}

N
3

=
{n

1
,n

3
}

N
4

=
{n

1
,n

2
,n

3
}

N
1

=
{n

1
,n

2
,c
}

N
2

=
{n

2
,n

3
}

N
3

=
{n

1
,n

3
}

N
4

=
{n

1
,n

3
,c
}

N
5

=
{n

1
,n

2
,n

3
}

N
6

=
{n

1
,n

2
,n

3
,c
}

Man / Europe / Gene1 × × × × × × × ×
Woman / America / Gene2 × × × × × × × ×

Table 2. Pivot tables (P,N , R) and (P,Nc, Rc)

136 J. Macko

case of the formal context (X,Z, I) the company can create the same packages
for man and for woman, because male and female customers buy the same com-
binations of products nj . The same packages for two different groups can reduce
the total cost of production, because we need to produce only four types of the
packages, namely the packages N1 = {n1, n2}, N2 = {n2, n3}, N3 = {n1, n3} and
N4 = {n1, n2, n3}. With the attribute c added to the formal context, we need six
different packages, because only the packages N1 = {n1, n2} and N2 = {n2, n3}
can be produced for men and women at the same time. Other packages are dif-
ferent for the male and female customers. From this point of view, the originality
factor is undesired and the clones are desired.

But we can use this information in the other way. Suppose, that the cost
difference of producing four or six package types is not significant, but significant
can be a targeted marketing on the male and female customers. The formal
context (X,Z, I), where we have the clone attributes Man and Woman, does
not provide differentiated information about the male and female customers. On
the other hand, the formal context (X,Z ∪ {c}) does. The attribute c provides
desired information, that the Product c influences the different combination
of the products bought by the male and female customer. It means, that we
can make targeted marketing (namely, the different type of packages for the
different type of customers) based on the originality factor Product c and its
combinations with the other products. Some combinations of the products with
the originality factor can be used as a topic for advertising to highlight the
difference between man and woman preferences. However, the clone analysis can
provide the marketing department with the useful information in both cases.

Analysis of the animals Let X = {Animal1, . . . , Animal8} be a set of ani-
mals and a set of attributes is defined as Y = {Europe,America, n1, n2, n3, c}.
The formal context (X,Z, I) in the Table 1, shows the attributes Europe and
America as clones. This fact can be interpreted as follows: In Europe and in
America they live the same types of animals, when we consider the attributes of
the animals n1, n2 and n3 only. The same information can be seen in the pivot
table Table 2. When we add the attribute c, we can see the different types of
animals (with the different generated sets) in Europe and in America as well
(see Table 2). The information, that exists the originality factor c for attributes
Europe and America can be interpreted as follows: It shows, that Europe and
America are somehow specific. In Europe are some different combinations of
animal’s attributes than in America and vice versa and at the same time we see,
that this difference somehow deals with the attribute c. Biologist can investi-
gate in more details, what is specific in Europe and in America, which specific
attribute of Europe leads to the different attributes of the animals in Europe
(and vice versa). Other use of such information is following: From a background
knowledge we know, that there is no reason for differentiating the animals in Eu-
rope and America just on attribute c. In our dataset we do not have in America
the animal with attributes n1, n3 and c, but with respect to the attribute c we

On Open Problem - Semantics of the Clone Items 137

expect to have the same types of animals in Europe and in America. Thus, we
need to look for such animal in America as well. Our hypothesis is, that in Amer-
ica lives such animal, because it lives in Europe and based on our background
knowledge there is no reason for c to be the originality factor. From the formal
point of view, we do not have the complete dataset (formal context). Some rows
are missing, and we need to find such objects in the reality (in this case we are
looking for the animal).

Analysis of genes and the morphological attributes of organisms The
last example use set X = {Organism1, . . . , Organism8} and set of attributes
Y = {Gene1, Gene2, n1, n2, n3, c} The attributes Gene1 and Gene2 are clones
in formal context (X,Z, I) in Table 1 and the other attributes represents the
morphological property of the organism. The interpretation can be following:
Organisms with Gene1 and Gene2 has the same combination of morphological
properties Nj , when we consider the morphological properties of organisms n1,
n2 and n3. The same information can be seen in the pivot table Table 2. When we
add the morphological attribute c, we get the formal context (X,Z∪{c}), which
means, that based on attribute c there are some different types of the morpho-
logical attributes of organisms with the Gene1 and Gene2 (see the Table 1 and
Table 2). It shows, that the Gene1 and Gene2 probably does not influence the
sets of the morphological attributes containing only n1, n2, n3, but this Gene1
and Gene2 influence the sets of the morphological attributes containing c. Thus,
c as the originality factor makes the difference between these two genes. This
information could be useful for a hypothesis creation in genetics.

4 Nearly Clones

4.1 Degree of Clones and Degree of Originality

The definition of the clone items is very strict. Recall, that condition ϕa,b(F) ∈ F
needs to be true for any F ∈ F . We can see, that adding only one ”cross” into
the huge formal context can cause, that two clones disappear. We expect, that
in real dataset such condition can be true very rarely. When we want to use
the clone items meaningfully, we need to have a weaker definition. For practical
purposes it suffices, that condition ϕa,b(F) ∈ F can be true in some reasonable
amount of F ∈ F . We define degree of clone as

dI(a,b) =
|{a}↑R ∩ {b}↑R |
|{a}↑R ∪ {b}↑R | ,

which can be read as follows: The attributes a and b with respect to the formal
context I are clones in the degree d. For a priori given threshold θ we define a
and b as nearly clones iff d(a,b) ≥ θ. Note, that for d(a,b) = 1 the attributes a
and b are clones and for d(a,b) = 0 we say, that they are original attributes.
Consider now the formal context (X,Z, IZ) and the corresponding pivot table
(P,NZ , RZ) (see Figure 2). We can see, that a and b are clones with the degree

138 J. Macko

dIZ(a,b) = 1. Adding either attribute c1 or attribute c2 to the formal context leads

to decreasing of clone degree for a and b. Namely, d
Ic1
(a,b) = 0 and d

Ic2
(a,b) = 0, 6. In

both cases degree has decreased, but the resulted clone degree is different. In the
first case attributes are original, in the second case attributes are nearly clones
for arbitrary θ ≤ 0, 6. Such situation can be formalized, and define the degree
of originality for given ci and context (X,Z, I) as

gIc(a,b) = dI(a,b) − dIc(a,b)
The degree of originality shows, how the attribute, added to the context,

does influence the degree of clone for given attributes a, b ∈ Y and the formal
context (X,Z, I).

a b n1 n2 n3 c1 c2

x1 × × × × ×
x2 × × ×
x3 × × × ×
x4 × × ×
x5 × × × ×
x6 × × ×
x7 × × × × ×
x8 × × × ×

N
1

=
{n

1
,n

2
}

N
2

=
{n

2
,n

3
}

N
3

=
{n

1
,n

3
}

N
4

=
{n

1
,n

2
,n

3
}

a × × × ×
b × × × ×

N
1

=
{n

1
,n

2
,c

1
}

N
2

=
{n

1
,n

2
}

N
3

=
{n

2
,n

3
,c

1
}

N
4

=
{n

2
,n

3
}

N
5

=
{n

1
,n

3
,c

1
}

N
6

=
{n

1
,n

3
}

N
7

=
{n

1
,n

2
,n

3
}

N
8

=
{n

1
,n

2
,n

3
,c

1
}

a × × × ×
b × × × ×

N
1

=
{n

1
,n

2
,c

2
}

N
2

=
{n

1
,n

2
}

N
3

=
{n

2
,n

3
}

N
4

=
{n

1
,n

3
}

N
5

=
{n

1
,n

2
,n

3
}

a × × × ×
b × × × ×

(i) Formal contexts (ii) Pivot table (iii) Pivot table (iv) Pivot table
(X,Z, IZ), (P,NZ , RZ) (P,Nc1 , Rc1) (P,Nc2 , Rc2)

(X,Z ∪ {c1}, Ic1), from context from context from context
and (X,Z, IZ) (X,Z ∪ {c1}, Ic1) (X,Z ∪ {c2}, Ic2)

(X,Z ∪ {c2}, Ic2) dIZ(a,b) = 1 d
Ic1
(a,b) = 0 d

Ic2
(a,b) = 0, 6

Fig. 2. Formal contexts and pivot tables with different degrees of clone.

4.2 Experiment Nr. 1 - Amounts and Degrees of Nearly Clones in
Datasets

For the purpose of this paper we arranged two introductory experiments with the
nearly clones, in which we use datasets Mushroom [3], Adults [4] and Anonymous
[5] from well known UC Irvine Machine Learning Repository (for the details
see Table 3). In the experiments we used a naive algorithm (the brute-force
search, but with polynomial complexity) for finding the degrees of clones as
defined above. Looking for more efficient algorithm is out of scope of this paper.
The algorithm was implemented in C, and all experiments have been run on
the computer with an Intel Core i5 CPU, 2.54 Ghz, 6 GB RAM, 64bit W7
Professional.

On Open Problem - Semantics of the Clone Items 139

In the first experiment we were focused on finding all nearly clone pairs, with
d(a,b) > 0, especially we investigated, if there are some clones (where d(a,b) = 1)
in the real datasets. The results of the first experiment are shown in Table 3.

Mushroom [3] Adults [4] Anonymous [5]

Number of objects 8 124 48 842 32 713
Number of attributes 119 104 295
Number of nearly clones d(a,b) > 0 113 1 568 382
Maximal d(a,b) > 0 1,00000 0,02252 0,00187
Minimal d(a,b) > 0 0,00123 0,00014 0,00143
Average d(a,b) > 0 0,24423 0,00449 0,00160
Median d(a,b) > 0 0,14537 0,00195 0,00159
Slope 0,99402 0,77895 0,55004

Table 3. Overview of the datasets and results of the first experiment (source of
datasets: http://archive.ics.uci.edu/ml/index.html)

(i) nearly clone pairs for d(a,b) > θ = 0 (ii) nearly clone pairs for d(a,b) ≥ θ = 0.5
x-axis - number of nearly clone pairs x-axis - number of nearly clone pairs

y-axis - degree of clone d(a,b) y-axis - degree of clone d(a,b)
z-axis - number of objects processed z-axis - number of objects processed

Fig. 3. Mushroom - distribution of d(a,b) in dataset scaled by 1000 objects.

In case of the dataset Mushroom, we present also the distribution of the clone
degrees and some other details as well. Figure 3 shows the volume of all pairs
a and b and clone degree d(a,b) > 0, for each scale pattern (from 1000 to 8124
by 1000). In (i) are displayed all pairs with d(a,b) > 0 and part (ii) is more
focused on the amount of pairs where d(a,b) ≥ 0, 5 for each investigated scaled
pattern. Note, that the results from numbers of the processed objects in the
dataset Mushroom (namely from 1000 to 7000 depicted in z-axis in the Figure
3) depends on an order of the processing objects. This fact were not investigated

140 J. Macko

more deeply. However, when we have processed all 8124 objects, the order will
not influence the result. Figure 4 shows some interesting details. In (i) there are
presented the pairs a, b with d(a,b) = 1, in (ii) the same for 1 > d(a,b) ≥ 0, 5 . We
have found 4 clone pairs, and one clone triple. In the clone triple (103, 104, 105)
we can see the transitivity (i.e. when (a, b) are clones and b, c are clones, also a
and c are clones). Such transitivity is not surprising and is direct consequence
of the clone definition.

What does such results show and does it appear reasonable? The Figure 4
part (i) shows the clones a and b. The original dataset Mushroom consists of 22
attributes with non-binary values. For the purposes of clone investigation, this
dataset were nominally scaled to the formal context, which is binary indeed. It
is interesting to see, that all clone items represents the value of the same original
attribute. E.g. clones 019 and 021 represents the original attribute Cap Color,
thus its values Purple or White respectively. Another example is clone triple 103,
104 and 105 which represents the original attribute Spore Print Color with the
corresponding values Orange, Purple and White. It can be interpreted as fol-
lows: Purple and white color generates the same sets of the non-pivot attributes.
In other words, to each mushroom with the purple cap (the pivot attribute),
there exists corresponding mushroom with the white cap (the pivot attribute),
but all other properties remains he same (non-pivot attributes). Similarly to each
mushroom with the purple spore print color, there exists corresponding mush-
room with the white spore print color and the corresponding mushroom with the
orange one. When we look on the nearly clones in the Figure 4 part (ii), the at-
tributes 69 and 70 represents the same original attribute stalk color above ring
with the values cinnamon and gray (the details are not shown in the table).
These attributes are not the clones, but the nearly clones with the clone degree
d(a,b) = 0, 96. It can be interpreted similarly as by the clones. Only the difference
will be in a quantifier. By clones the quantifier was ”for each”, by the nearly
clones we will have fuzzy quantifier, in this case ”for the most”. Hence the inter-
pretation is: For the most mushroom with cinnamon stalk above the ring exists
corresponding mushroom with the corresponding gray stalk above the ring (and
vice versa). The clone degree is very high in this case (d(a,b) = 0, 96) it means
there are only couple of mushrooms with cinnamon stalk above the ring color,
which do not have corresponding mushroom with the gray stalk above the ring
color. However, the for the deeper understanding of such examples, it is required
to ask an expert in mycology.

4.3 Experiment 2 - Structure of Nearly Clones in Datasets

In the second experiment we investigated the structure of nearly clones. Namely,
we have defined a fuzzy relation T : Y × Y → L, where L = [0; 1] is defined as
T (a, b) = d(a,b) ∈ L. In other words, the fuzzy relation express the degree of the
clone for each pair a, b ∈ Y . For the better visualization we display such relation
in so called ”bubble chart”. The bubble chart displays three dimensional data
in two dimensional chart. The position of the bubble is given by two dimensions

On Open Problem - Semantics of the Clone Items 141

(x and y axis) and the size of the bubble shows the third dimension. The results
from the first experiments are displayed in bubble chart, where the pairs of
attributes a and b represents two dimensions and the degree of clone d(a,b) is
represented by the size of the bubble. Note, that the fuzzy relation T is indeed
symmetric (i.e. d(a,b) = d(b,a)), but we show only part of the relation, where
a < b. Figures 5, 6 and 7 show the structure of the nearly clones for the datasets
Mushroom, Anonymous and Adults. We can observe very different structure of
the nearly clones in each dataset. In Mushroom we can see, that the structure
of the nearly clones is approximately linear. All nearly clones are clustered near
to the line defined as (y, y). In the case of Adults dataset we can see more
spread, but still approximately linear structure, except of one cluster near point
(0, |Y |). The nearly clones of the data set Anonymous forms the different, but
kind of regular structure as well. This results leads to the question, what kind of
properties has fuzzy relation of the nearly clones and if properties of such fuzzy
relation correlates with the properties of the formal context, or with properties
of the concept lattice. Until now we know, that such relation is transitive for
clone items d(a,b) = 1 and symmetric for the arbitrary nearly clone items, but
this two properties are trivial. I would be also interesting to find the semantics
of such fuzzy relation defined on the nearly clones. All this will be part of the
future investigation.

original attributes a b d(a,b) = 1

03. cap-color 019 purple=u 021 white=w 1,00
05. odor 025 almond=a 026 anise=l 1,00
05. odor 030 musty=m 031 none=n 1,00
17. veil-color 086 brown=n 087 orange=o 1,00
20. spore-print-color 103 orange=o 104 purple=u 1,00
20. spore-print-color 103 orange=o 105 white=w 1,00
20. spore-print-color 104 purple=u 105 white=w 1,00

a b d(a,b) ≥ 0.5

69 70 0,96
97 98 0,95
78 79 0,84
2 5 0,84
49 50 0,74
12 16 0,66
40 42 0,51

(i) Clones (ii) Nearly clones

Fig. 4. Dataset Mushroom - experiment on nearly clones

5 Conclusion and Future Perspectives

The paper was motivated by open problem proposed at ICFCA 2006 [2]. We
hope, that this small open problem is solved now and the reason is presented
in the first part of the conclusion. This part is structured as a direct answers
on proposed questions. The second part of the conclusion describes ideas, which
overlaps the original open problem and come with some new questions.

142 J. Macko

Nearly clone pairs for d(a,b) > θ = 0 , where x,y-axis - a and b pairs
size of bubble = d(a,b)

Fig. 5. Dataset Mushroom

Nearly clone pairs for d(a,b) > θ = 0 , where x,y-axis - a and b pairs
size of bubble = d(a,b)

Fig. 6. Dataset Adults

On Open Problem - Semantics of the Clone Items 143

Nearly clone pairs for d(a,b) > θ = 0 , where x,y-axis - a and b pairs
size of bubble = d(a,b)

Fig. 7. Dataset Anonymous

5.1 Conclusion for Open Problem Questions

Question 1: Does the symmetrical behaviour of a and bmake sense for someone?
Answer 1: Yes, such symmetrical behaviour can identify the same combination
of the non-pivot attributes with respect to pivot attributes and can make sense:

– for the marketing department to reduce cost of packages - the clone items
enable the same packages for the different types of customers (e.g. man and
woman)

– for biologists to complete the the dataset - the clone items are expected, be-
cause the originality factor c, has no sense based on the background knowl-
edge. Hence, we some miss rows in the dataset (e.g. we need to find the new
animals)

– for genetics - it bring an information that the two genes has no influence on
a combination of the morphological properties of organisms

– generally for everyone, who needs an information about the same combina-
tion of non-pivot attributes with respect to the pivot attributes

Question 2: Does it make sense, that such symmetrical behaviour disappear,
when c is added?
Answer 2: Yes, such attribute is called the originality factor for the items a
and b and can be useful:

144 J. Macko

– for the marketing department to make a targeted marketing for the different
types of customers (e.g. man and woman) using unique combination of the
non-pivot attributes

– for biologist to find the difference between two pivot attributes (e.g. Europe
and America) with respect to other non-pivot properties. The originality
factor c reveals, that the pivot attributes are original and this originality
needs to be investigated deeper.

– for genetics - it brings an information, that two genes has an influence on a
combination of the morphological properties of organisms

– generally for everyone, who needs an information about the reason, why the
non-pivot attributes has the different combinations with respect to the pivot
attributes.

Question 3: What is semantics behind a, b, and c?
Answer 3: The attributes a and b are the pivot attributes, all other attributes
are the non-pivot attributes and c is moreover the originality factor for the
attributes a and b. The pivot attributes generates a combination of the non-
pivot attributes in the given context. The attribute c make the attributes a and
b unique, which can be ”good” or ”bad”. It depends on a goal of the analysis.

5.2 Conclusion and Future Perspectives

The second part of conclusion shows, that the clones are very strictly defined.
Therefore the nearly clones were introduced. The nearly clones operates with
the degree, in which two attributes are clones. Such formalization asks itself for
study of the nearly clones under fuzzy setting (e.g. we have already mentioned,
that structure of nearly clones can be seen as fuzzy relation indeed). The intro-
ductory experiments shows, that the nearly clones in dataset have an interesting
structure, which needs to be investigated more deeply. This paper was introduc-
tory for the nearly clones. As a future work we plan to describe more efficient
algorithm to compute the nearly clones for the given threshold θ, and algorithm
for identifying the originality factors for another given threshold ω. Finally we
hope, that this paper, even it does not come with a great mathematical or ex-
perimental results, brings some interesting ideas to FCA community.

Acknowledgements. The author is very grateful to the reviewers for their
helpful comments and suggestions. Partly supported by IGA (Internal Grant
Agency) of the Palacky University, Olomouc is acknowledged.

References

1. Gély A,, Medina A., Nourine L. and Renaud Y.: Uncovering and Reducing Hidden
Combinatorics in Guigues-Duquenne Bases. Springer, Lecture Notes in Computer
Science, 2005, Volume 3403/2005, 235-248, Heidelberg 2005

2. more authors: Some open problems in Formal Concept Analysis. ICFCA 2006, Dres-
den, http://www.upriss.org.uk/fca/fcaopenproblems.html

On Open Problem - Semantics of the Clone Items 145

3. Schlimmer,J.S. : Concept Acquisition Through Representational, Adjustment (Tech-
nical Report 87-19). (1987). Doctoral disseration, Department of Information and
Computer Science, University of California, Irvine.

4. Kohavi R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree
Hybrid Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, 1996

5. Breese J., Heckerman D., Kadie C.: Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, Madison, WI, July, 1998.

Computing the Skyline of a Relational Table
Based on a Query Lattice

Nicolas Spyratos, Tsuyoshi Sugibuchi, Ekaterina Simonenko, and Carlo
Meghini

Laboratoire de Recherche en Informatique, Université Paris-Sud 11, France
{Nicolas.Spyratos, Tsuyoshi.Sugibuchi, Ekaterina.Simonenko}@lri.fr

Istituto di Scienza e Tecnologie della Informazione del CNR, Pisa, Italy
Carlo.Meghini@isti.cnr.it

Abstract. We propose a novel approach to computing the skyline set
of a relational table R, with respect to preferences expressed over one
or more numerical attributes. Our approach is based on what we call
the query lattice of R, and our basic algorithm constructs the skyline
set as the union of the answers to a subset of queries from that lattice -
hence without directly accessing the table R. Therefore, in contrast to all
existing techniques, our approach is independent of how the table R is
implemented or how its tuples are indexed. We demonstrate the general-
ity of our approach by computing the skyline set of the join of two tables
based on the product of their individual query lattices - therefore without
performing the join. The paper presents basic concepts and algorithms
leaving experimentation and performance evaluation to a forthcoming
paper.

Keywords: skyline, relational table, query lattice

1 Introduction

In many multicriteria decision-making applications, dominance analysis is an im-
portant aspect. As an example, consider a person looking for a vacation package
using two criteria, or “attributes”: hotel rating and price. Intuitively, a package
P = 〈r, p〉 is better than a package P ′ = 〈r′, p′〉 if P is better than P ′ in one
attribute and not worse than P ′ in the other attribute. If this is the case then
we say that P dominates P ′.

For example, consider the following three packages:

– P1 = 〈2, 100〉, P2 = 〈3, 130〉, P3 = 〈2, 120〉

Since a higher rating and a lower price are more preferable, P1 dominates P3.
On the other hand, P1 and P2 don’t dominate each other because P1 has a lower
rating than P2 and P2 has a higher price. Similarly, P2 and P3 don’t dominate
each other because P2 has a higher rating than P3 and P3 has a lower price.

A package, or “tuple” that is not dominated by any other tuple is said to
be a skyline tuple or to be in the skyline. The tuples in the skyline are the best

146 N. Spyratos et al.

possible trade-offs among the attribute values appearing in the tuples. Thus in
our example, packages P1 and P2 are in the skyline, while P3 is not.

In order to conduct a skyline analysis, two items must be specified:

1. A set of attributes over which preferences are expressed (such as Hotel Rating
and Price, in our example).

2. An ordering of the attribute values (either total or partial) according to
which preference is expressed (such as the ordering of the integers for Hotel
Rating to express that rating r is preferred to rating r′ if r > r′; and similarly
for Price to express that price p is preferred to price p′ if p < p′).

In recent years, skyline analysis has gained considerable interest in the area of
information systems in general, and in the area of databases in particular. How-
ever, skyline analysis (i.e. computing non dominated points) existed well before
the concept appeared in database research; it is known as the maximum vector
problem or the Pareto optimum [11][18]. The popularity of skyline analysis in the
area of information systems is mainly due to its applicability for decision making
applications. Indeed, as information systems store larger and larger volumes of
data today, data management and in particular query processing present diffi-
cult challenges. From the user viewpoint, large volumes of data imply answers of
large size. By returning the best tuples (in terms of user preferences), the skyline
query relieves the user from having to deal with answers of large size in order to
find the best tuples.

The skyline operator was first introduced in [3], where the authors also
present two basic algorithms: the Block Nested Loops (BNL) and the Divide
and Conquer (D&C). In order to improve the performance of BNL algorithm,
the SFS (sort-filter-skyline) algorithm was proposed in [5]. SFS runs on data
sorted according to a monotonic function (namely, entropy descending). Such
sorting guarantees the non-dominance of each object by those that follow in the
order. Therefore, once an object is put into the buffer window, it can be reported
as part of the skyline. Not only this makes the SFS algorithm progressive, but
also allows to reduce the number of comparisons needed, since SFS compares
only against the non-dominated tuples, whereas BNL often compares against
dominated tuples [7]. Despite this improvement, all objects have to be scanned
by the algorithm at least once. Succeeding approaches tend to avoid scanning
the complete data set. Namely, SaLSa [1] uses the minimal coordinate of each
object as a sorting function, and during the filter-scan step checks if all remain-
ing objects are dominated by a so-called stop object, which can be determined
in O(1) from the data accessed so far. The shortcoming is that the performance
of SaLSa algorithm is affected by the data distribution and increasing dimen-
sionality, since in higher dimensions instances of the problem the pruning power
of the stop object is limited [29].
More generally, all sort-based techniques share the same drawback, namely the
number of computations during the filter-scan step, as every input object should
be compared with the skyline points in the buffer (which can potentially become
large).

Computing the Skyline of a Relational Table Based on a Query Lattice 147

An alternative to the sort-based techniques is the use of indexes, which allows
to avoid scanning all the input objects. The basic idea is to rely on an index in
order to determine dominance between tuples, and to exclude tuples from fur-
ther processing as early as possible. Two index-based algorithms, Bitmap and
Index were first introduced in [21]. Bitmap uses the bitmap encoding of the data
so that the dominating points are determined by a bit-wise “and” operation.
The Index approach partitions the objects into a set of lists. Each list is sorted
by minimum coordinate and indexed by a B-tree. The objects are accessed in
batches defined by the values of the minimal coordinate, while the algorithm
computes local skylines in each “batch” of the lists and then merges them into a
global skyline. However, besides the computation cost of Bitmap, and the neces-
sity to construct a B-tree for every combination of dimensions having potential
interest for the user, the order in which skyline points are returned by these al-
gorithms is fixed and depends on the data distribution, so it cannot be adapted
to the users preferences.
Two other index-based skyline algorithms, NN (nearest-neighbor) [13] and BBS
(branch-and-bound skyline) [19], are based on the observation that the object
closest to the origin has to be part of the skyline. Nearest neighbor search is
used to retrieve such point by using the R-tree. The pitfall of the NN algorithm
is that in order to iteratively find the next nearest neighbors it divides the data
set into overlapping partitions, and therefore duplicates have to be removed by
traversing the R-tree multiple times. To avoid that, BBS rather accesses par-
tially dominated nodes of the R-tree.
The main drawback of all index-based approaches is that not all data can be
indexed (namely when data is dynamically produced). Also, R-trees and other
multidimensional indexes have their own limitations, namely the curse of dimen-
sionality.
Concerning related work specifically targeting the multi-relational skyline (or
skyline join), two progressive algorithms are proposed in [9]. The idea is to com-
bine the join with nested-loop and sort-merge algorithms. However, each relation
has to accessed multiple times in order to compute the skyline for each join value,
and then the global skyline. In addition, each input object has to be scanned at
least once.
More recent work also considers how to compute the skyline over the join of two
or more relational tables without actually computing the join [23]. Apart from
its applicability to computing skylines in a centralized database, the interest of
such work lies in the fact that it is also applicable to distributed environments.
Earlier work related to this topic can be found in [1][2][8][10][20][25][26].
A lattice-based approach to single-relation skyline computation is introduced
in [15], with the aim of proposing a data-distribution independent algorithm.
A lattice structure is used to answer skyline queries over dimensions with low-
cardinality domains, or those that can be mapped to low-cardinality domains
(such as Price, that can be mapped to price ranges). The principle is to organize
all the values combinations into a lattice based on the dominance relationship,
and then to retrieve those that (a) are present in the input data set, and (b)

148 N. Spyratos et al.

are not reachable by the dominance relationship from another element of the
lattice, also belonging to the data set. However, no early pruning is done, so the
entire data set has to be read twice in order to determine the skyline tuples,
and the skyline join problem is not investigated. Also, the mapping of the values
of a domain to a set of ranges has to be carefully tuned in order to deliver a
meaningful skyline result, which is not discussed in the paper.
Several variants of skyline were introduced in [19], such as constrained, sub-
space and dynamic skyline queries (see also [6][16][22][27][28]). Skyline queries
have also been studied in various other domains, outside traditional databases.
These include probabilistic skyline computations over uncertain data [17](e.g.
data in sensor networks); skyline computations over incomplete data [12](e.g.
data with missing values); over data whose attributes have partially-ordered do-
mains [4](e.g. preferences expressed by users online); over stream data[14]; or
even bandwidth-constrained skyline computations over mobile devices [24].

In this paper, we present a novel approach to computing skylines which rep-
resents a major deviation from existing approaches. Indeed, instead of accessing
individual tuples in a database table, our approach relies on the definition of
skyline as the union of the answers to a set of queries. In doing so, our ba-
sic algorithm avoids accessing the table directly: access to the table is through
queries, hence independent of how the table is implemented or how its tuples
are indexed.

Given a relational table R, our approach is based on what we call the query
lattice of R; and our basic algorithm constructs the skyline set as the union of the
answers to a subset of queries from that lattice - hence without directly accessing
the table R. We demonstrate the generality of our approach by computing the
skyline of the join of two tables based on the product of their individual query
lattices - therefore without performing the join. The paper presents basic con-
cepts and algorithms leaving experimentation and performance evaluation to a
forthcoming paper.

The paper is organized as follows. In section 2 we give some preliminary def-
initions and introduce our notation. In section 3 we present our basic algorithm
for computing skylines through queries. In section 4 we apply our approach to
computing skylines over joins, thus demonstrating the generality of the approach.
Finally, in section 5, we offer some concluding remarks and discuss further re-
search.

2 Basic definitions

Let R be a relational table, with A1, . . . , An as attributes. Let B = {B1, . . . , Bk},
k ≤ n, be the set of preference attributes, that is a set of attributes of the table
whose domains are numeric and over which preferences are declared.

A preference over Bi is an expression of one of two forms: Bi → min or
Bi → max . If the preference Bi → min is expressed by a user of the table, then
this is interpreted as follows: given two values x and y in the domain of Bi, x is
preferred to y or x preceeds y iff x < y; and similarly, if the preference Bi → max

Computing the Skyline of a Relational Table Based on a Query Lattice 149

is expressed by a user, then this is interpreted as follows: given two values x and
y in the domain of Bi, x is preferred to y or x preceeds y iff x < y;

In order to simplify the presentation, and without loss of generality, we shall
consider only one form of preference, namely Bi → min. However, all methods
discussed in this paper can be applied with any combination of the preferences
Bi → min and Bi → max .Therefore, from now on, given two values x and y in
the domain of Bi, we shall say that x is preferred to y or x preceeds y iff x < y.

Definition 1 (Pareto domination) Let B = {B1, . . . , Bk} be a set of preference
attributes of a relational table R and let s and t be tuples of R. We say that s
is equivalent to t, denoted as s ≡ t iff s.Bi = t.Bi for all Bi ∈ B. Moreover, we
say that s Pareto dominates t, denoted as s <Pat, iff s 6≡ t and for all Bi ∈ B,
s.Bi ≤ t.Bi.

In order to simplify the presentation we will simply say “dominates” instead
of “Pareto dominates”, and we shall drop the subscript in the notation, writing
s < t instead of s <Pat.

We shall call Pareto preference query, or simply preference query over R, any
expression of the form (B1 = b1)∧ . . .∧ (Bk = bk), where each bi is a value in the
domain of attribute Bi. For simplicity of notation we shall denote a preference
query simply by 〈b1, . . . , bk〉.

Note that 〈b1, . . . , bk〉 denotes also a tuple in the projection of R over the
preference attributes; however, context will always disambiguate. Also note that
a preference query 〈b1, . . . , bk〉 returns the set of tuples in R whose projection
over the preference attributes is the tuple 〈b1, . . . , bk〉; therefore the answer to
each query of the form 〈b1, . . . , bk〉 is a Pareto equivalence class.

It is easy to verify that Pareto domination is irreflexive (i.e., s < s is false
for each tuple s) and transitive (i.e., s < t and t < u imply s < u for all tuples
s, t and u), hence a strict order over R. A partial order ≤ over R can be defined
from Pareto domination as follows:

s ≤ t iff (s < t or s = t)

for all tuples s and t in R. We shall say that s Pareto preceeds t, or simply that
s preceeds t, whenever s ≤ t.

Clearly, Pareto precedence defines a partial order also over preference queries.
Moreover, given preference queries s and t we define the following operations:

– s⊗ t = 〈min{s.B1, t.B1}, . . . ,min{s.Bk, t.Bk}〉
– s⊕ t = 〈max{s.B1, t.B1}, . . . ,max{s.Bk, t.Bk}〉

It is easy to check that these operations make the set of preference queries over
R into a complete lattice, with ⊗ defining the least upper bound and ⊕ defining
the greatest lower bound of any two preference queries. We notice that this
lattice may be infinite, as some of the domains of the preference attributes may
be infinite. However, if we require that each bi in a preference query be in the
active domain of Bi (i.e.if we require that each bi appear in R), then the lattice

150 N. Spyratos et al.

becomes finite and therefore it has a top and a bottom query, denoted as > and
⊥, respectively. These extreme elements are given by:

> = 〈m1, . . . ,mk〉
⊥ = 〈M1, . . . ,Mk〉

where mi and Mi are the minimum value and the maximum value appearing
in the active domain of Bi, respectively. We shall call this (finite) lattice the
query lattice, of R and we shall denote it as (Q,≤), where Q is the (finite) set
of preference queries over R.

In this paper, we shall use the query lattice for two purposes: (a) as a tool for
computing skylines of relational tables, and (b) as a means for comparing our
approach to existing approaches. First, however, let’s define skylines formally.

Definition 2 The skyline of a table R over preference attributes B, denoted by
SKY (R,B), is the set of tuples from R defined as follows:

SKY (R,B) = {t ∈ R | 6 ∃s ∈ R : s ≤ t}

In other words, the skyline of R is the set of non-dominated tuples of R.
As customary, given a query q and a relation R, we will let ans(q,R) stand

for the answer of q over R, that is the set of tuples obtained by asking query
q against relation R. Moreover, we define a skyline query of R over preference
attributes B, to be a query q(R,B) over R whose answer is a skyline of R over
B, that is:

ans(q(R,B), R) = SKY (R,B)

Skyline queries will play a central role in our approach to skyline computation.

3 Computing the skyline of a relational table

In this Section, we present an algorithm for computing the skyline of a given
table R. Our algorithm obtains the skyline by constructing a skyline query. To
find the skyline query, our algorithm traverses part of the query lattice and
collects a set of non-dominated queries whose disjunction is the skyline query.

In contrast to existing methods that actually construct the skyline, and as
such are sensitive to the ways the table R is implemented or how its tuples are
accessed, our algorithm obtains the skyline while making no assumptions on how
the relation R is accessed by the system while processing the skyline query.

Our algorithm uses the notion of successors of a query, defined as follows.
First, for each preference attribute Bi and value bi in the domain of Bi, let’s
denote as succ(bi) the successor of bi in the linear order of the domain of Bi. For
instance, let Bi be the Hotel Rating attribute of our earlier example, having as
domain the interval [1,5]. As this interval is linearly ordered by the < relation,
we have succ(1) = 2, succ(2) = 3, and so on. This makes succ a partial function
over the domain of Bi, undefined for the maximum Mi. Now, we extend the succ
function to preference queries as follows.

Computing the Skyline of a Relational Table Based on a Query Lattice 151

Let q be a preference query q = 〈b1, . . . , bk〉 such that q 6= ⊥. This means that
bj 6= Mj for at least one j ∈ [1, k], where Mj is the maximum value in the active
domain of Bj . With no loss of generality, we shall assume that the m values of q
that are not maximal, where 1 ≤ m ≤ k, occur in the first m positions of q, (i.e.,
q = 〈b1, . . . , bm,Mm+1, . . . ,Mk〉). Then, the successors of q, succ(q), is defined
to be the set of queries succ(q) = {q1, . . . , qm}, such that, for all 1 ≤ i ≤ m,

qi = 〈b1, . . . , bi−1, succ(bi), bi+1, . . . , bm,Mm+1, . . . ,Mk〉

Clearly, the succ function is undefined on the bottom of the lattice ⊥. The
following Lemma gives two important properties of the successors of q for the
establishment of the correctness of the following algorithm for computing a sky-
line query of the table R.

Lemma 1. Let q be a preference query. Then, for each query q′ ∈ succ(q) :

1. q ≤ q′
2. there is no query q′′ such that q < q′′ < q′.

We are now ready to give the algorithm for computing a skyline query of a
table R.

Algorithm Skyline Query over a Single Table (SQST)

Input A non-empty table R, a non-empty set B = {B1, . . . , Bk} of preference
attributes in R, and the projections of R over B1, . . . , Bk.

Data We use the following variables for accumulating data during the execution
of the algorithm:

– The variable F is a set variable called frontier; it is initialized to empty, and
it is used to accumulate the queries whose disjunction will be the result of
the algorithm (i.e., whose disjunction will be the skyline query).

– The variable C is a set variable containing the set of all current candidate
queries; it is initialized to the top > of the query lattice.

– The variable S is a set variable used to accumulate successors of current
candidate queries.

– The variable C ′ is a (auxiliary) set variable for accumulating candidate
queries for the next while-loop iteration in the algorithm; it is initialized
to empty at the beginning of each iteration.

Output A set of preference queries over R, whose disjunction is a skyline query.

Method

C ← {>};F ← ∅
while C 6= ∅ do

for all c ∈ C such that ans(c,R) 6= ∅ do
C ← C\{c};F ← F ∪ {c}

152 N. Spyratos et al.

end for
C ′ ← ∅
for all c ∈ C do

for all s ∈ succ(c) such that no query in F Pareto dominates s do
C ′ ← C ′ ∪ {s}

end for
end for
C ← C ′

end while
return F

Informally, the algorithm works as follows:

– If the top query > of the lattice is non-empty (i.e.if its answer over R is non-
empty) then the algorithm terminates; > is the output of the algorithm, and
the answer of > over R is the skyline.

– Otherwise, each successor query c of > might be a candidate for contributing
to the skyline, and this is checked as follows:

• if the query c is non-empty then it is added to F (i.e.to the variable that
accumulates the queries contributing to the skyline);

• otherwise, each successor of c that is not dominated by a query in F
becomes a candidate, by being added to the variable C ′ (i.e.to the vari-
able that accumulates all candidate queries for the next iteration). The
so selected successors are finally transferred to the variable C.

This process is repeated until there is no more candidate left (i.e.until C is
empty).

Upon termination of the algorithm, F contains all queries q such that: (a)
the answer to q is non-empty, and (b) q is not dominated by another query. The
disjunction of all queries in F is then the skyline query, and the answer of the
skyline query over R is the skyline of R.

R

HID Price Rating

h1 200 2
h2 150 5
h3 100 3
h4 300 2
h5 350 1
h6 100 8

Fig. 1. Example relation and query lattice.

Let us illustrate the algorithm by using the example table R in Fig 1. We
assume the preference attributes to be Price and Rating and the preference

Computing the Skyline of a Relational Table Based on a Query Lattice 153

to be Price → min and Rating → min. The projections of R over Price and
Rating, sorted in ascending order, are as follows:

– Price : 100, 150, 200, 300, 350
– Rating : 1, 2, 3, 5, 8

The diagram in Fig 1 shows a part of the query lattice derived from R. In
this diagram, queries having non-empty answers are emphasized by bold letters.
Queries contributing to the skyline are enclosed by rounded rectangles. Gray
triangles in the diagram represent areas dominated by queries in the skyline. As
we can see in the diagram, the top of the query lattice is > = 〈100, 1〉. Therefore,
we start the first iteration of the algorithm with C = {〈100, 1〉} and F = ∅. At
the end of each subsequent iteration of the while-loop, the contents of C and F
change as follows:

– end of 1st iteration: C = {〈150, 1〉, 〈100, 2〉}, F = ∅
– end of 2nd iteration: C = {〈200, 1〉, 〈150, 2〉, 〈100, 3〉}, F = ∅

In the third iteration, the query 〈100, 3〉 ∈ C has a non-empty result therefore
〈100, 3〉 leaves C and enters F . We then consider the successors of the queries
left in C. 〈150, 3〉 ∈ succ(〈150, 2〉) is dominated by 〈100, 3〉 ∈ F therefore 〈150, 3〉
is omitted from C ′, which accumulates candidate queries for the next iteration.

– end of 3rd iteration: C = {〈300, 1〉, 〈200, 2〉}, F = {〈100, 3〉}
– end of 4th iteration: C = {〈350, 1〉}, F = {〈100, 3〉, 〈200, 2〉}
– end of 5th iteration: C = ∅, F = {〈100, 3〉, 〈200, 2〉, 〈350, 1〉}

(the algorithm stops here)

The correctness of the algorithm is easily established by observing that the
algorithm explores the lattice completely (this is guaranteed by the second prop-
erty of the succ function in the above Lemma), retaining only maximal queries
(this is guaranteed by the test on dominance performed by the algorithm and
also by the fact that the successors of a query are all dominated by it, as stated
by the first property of the succ function in the above Lemma).

Formally, we will denote as SQST (R,B) the result of the SQST algorithm
having R and B as the input non-empty relation and preference attributes, re-
spectively. On the basis of the above observations, we state the following:

Proposition 1 For every relation R and preference attributes B over R,

ans(
∨

SQST (R,B), R) = SKY (R,B)

We note that, as all queries in F are conjunctive and any two queries in F
differ in at least one conjunct, the answers making up the skyline actually form
a partition of the skyline. This is an interesting observation when combined with
the notion of rank of a query in the query lattice.

154 N. Spyratos et al.

Definition 3 (Rank of a query) The rank of a query q in the query lattice is
defined as follows: if q is the root query then rank(q) = 0 else rank(q) is the
maximum length of path from the root query to q

Clearly, the higher the rank of a query the less the tuples in its answer are
preferred.

Now, as the skyline of R is partitioned by the answers to the queries in F ,
one can ask new kinds of queries. For example, one can ask the query: “give me
the best tuples from the skyline”. The answer to this query will be the answer
to the query of lowest rank in F . Similarly, one can ask the query: “give me the
ranks of all tuples in the skyline”. This query will return a set of ranks, thereby
giving a useful information as to how far are the tuples of the skyline from the
most preferred tuples. A detailed discussion of the relationship between “most
preferred” and “non-dominated” tuples is given in a forthcoming paper.

4 Skylines of joins

We now consider the computation of the skyline over the join of two tables R1

and R2. To this end, we introduce the necessary concepts.
Let R1 and R2 be relations with A1

1, . . . , A
n1
1 and A1

2, . . . , A
n2
2 as attributes,

respectively, and let Bi = {B1
i , . . . , B

ki
i }, ki ≤ ni, be a set of attributes of Ri,

called the preference attributes of Ri, for i = 1, 2.
We shall denote as (Q1,≤1) and (Q2,≤2) the query lattices over R1 and R2,

respectively. Moreover, ⊗i and ⊕i will stand for the least upper bound and the
greatest lower bound of any two preference queries over Ri, respectively.

Let Ji = {J1
i , . . . , J

l
i}, be a set of attributes of Ri disjoint form the preference

attributes Bi, for i = 1, 2.A join over J1 and J2 is a relational equijoinR1 ./e R2,
whose join expression e is given by J1

1 = J1
2 , . . . , J

l
1 = J l

2. In order to simplify
the model and with no loss of generality, we will consider the join attributes to
be the same for the two relations, that is J1 = J2, and moreover to consist of a
single attribute J, that is e is given by J = J.

Intuitively, a preference query over a join R1 ./e R2 is a (k1+k2)-tuple whose
first k1 elements make up a query in Q1 and whose last k2 elements make up a
query in Q2. In order to simplify notation, we will commit a slight abuse and
write 〈q1, q2〉 to represent a preference query over R1 ./e R2, where q1 ∈ Q1 and
q2 ∈ Q2. As a consequence, the set of preference queries over R1 ./e R2, that we
shall denote as Q./, is given by the Cartesian product of the set of preference
queries over R1 and R2, that is:

Q./ = Q1 ×Q2

Now, let ≤./ be the Pareto preference relation over Q./. As we have already
seen in the previous Section, (Q./,≤./) is a complete lattice. Moreover, it is not
difficult to see that:

Computing the Skyline of a Relational Table Based on a Query Lattice 155

Proposition 2 (Q./,≤./) is the product of (Q1,≤1) and (Q2,≤2). That is, let-
ting q and q′ be preference queries in Q./ such that q = 〈q1, q2〉 and q′ = 〈q′1, q′2〉,
where q1, q

′
1 ∈ Q1 and q2, q

′
2 ∈ Q2, we have:

1. q≤./q
′ iff q1 ≤1 q

′
1 and q2 ≤2 q

′
2

2. q ⊗./ q
′ = 〈q1 ⊗1 q

′
1, q2 ⊗2 q

′
2〉

3. q ⊕./ q
′ = 〈q1 ⊕1 q

′
1, q2 ⊕2 q

′
2〉

From now on we shall simplify notation by omitting subscripts, unless this
creates ambiguity.

We shall call join values the set of tuples V = X1 ∩X2, where:

Xi = πJ(Ri) for i = 1, 2

By definition of join, a tuple t in Ri contributes to the join if and only if its
projection over the join attribute J is in V, that is t.J ∈ V, for i = 1, 2. Likewise,
a query q in Qi may contribute to the skyline of the join only if it occurs in the
join. For each join value v ∈ V, we define the v−partition of Ri, denoted Si(v),
as follows :

Si(v) = πBi
(σJ=v(Ri)) for i = 1, 2

In practice, each v−partition includes the queries that contribute to the join
R1 ./ R2. In particular:

πB1∪B2
(R1 ./ R2) =

⋃

v∈V
S1(v)× S2(v)

v−partitions play an important role in determining the skyline of the join R1 ./
R2 without computing the join.

Proposition 3 A query 〈q1, q2〉 ∈ πB1∪B2
(SKY (R1 ./ R2,B1∪B2)) iff for some

join value v ∈ V, qi ∈ πBi
(SKY (Si(v),Bi)) for i = 1, 2 and for no other v′ ∈ V

there exists skylines q′i ∈ πBi
(SKY (Si(v

′),Bi)) such that q′i ≤ qi for i = 1, 2.
Proof: (→) If for some join value v ∈ V, qi ∈ πBi(SKY (Si(v),Bi)) for i = 1, 2
then 〈q1, q2〉 ∈ πB1∪B2(R1 ./ R2), and moreover for 1 in Proposition 2 there
exists no other query 〈q′1, q′2〉 ∈ πB1∪B2

(R1 ./ R2) where q′i ∈ Si(v) for i =
1, 2 such that 〈q′1, q′2〉 ≤ 〈q1, q2〉. If for no other v′ ∈ V there exists skylines
q′i ∈ πBi

(SKY (Si(v
′),Bi)) such that q′i ≤ qi for i = 1, 2 then again from 1

in Proposition 2 there exists no 〈q′1, q′2〉 such that 〈q′1, q′2〉 ≤ 〈q1, q2〉. Hence
〈q1, q2〉 ∈ πB1∪B2(SKY (R1 ./ R2,B1 ∪ B2)).
(←) Suppose not. Then, either (a) for no join value v ∈ V, qi ∈ πBi(SKY (Si(v),Bi))
for i = 1, 2 or (b) there exists a join value v′ ∈ V and skylines q′i ∈ πBi

(SKY (Si(v
′),Bi))

such that q′i ≤ qi for i = 1, 2. In case (a), there are two sub-cases: (a1) for no join
value v ∈ V, qi ∈ Si(v) for i = 1, 2. In this case, 〈q1, q2〉 6∈ πB1∪B2

(R1 ./ R2),
against the hypothesis. (a2) for some join value v ∈ V, qi ∈ Si(v), but either
q1 6∈ πB1(SKY (S1(v),B1)) or q2 6∈ πB2(SKY (S2(v),B2)). Then let q′i be such
that q′i ∈ πBi

(SKY (Si(v),Bi)). Such q′i are guaranteed to exist because Si(v) is
finite and partially ordered by Pareto preference. By hypothesis, either q′1 6= q1 or

156 N. Spyratos et al.

q′2 6= q2. Then 〈q′1, q′2〉 ∈ πB1∪B2(R1 ./ R2) and by 1 in Proposition 2 〈q′1, q′2〉 ≤
〈q1, q2〉, therefore 〈q1, q2〉 6∈ πB1∪B2

(SKY (R1 ./ R2,B1∪B2)), against the hypoth-
esis. (b) If there exists a join value v′ ∈ V and skylines q′i ∈ πBi

(SKY (Si(v
′),Bi))

such that q′i ≤ qi for i = 1, 2 then 〈q′1, q′2〉 ∈ πB1∪B2
(R1 ./ R2) and by 1 in Propo-

sition 2 〈q′1, q′2〉 ≤ 〈q1, q2〉, therefore 〈q1, q2〉 6∈ πB1∪B2
(SKY (R1 ./ R2,B1 ∪ B2)),

against the hypothesis.

We now provide an algorithm for computing the skyline queries over the join
of two tables R1 and R2 (without computing the join.). The algorithm exploits
Proposition 3, and uses the SQST algorithm for computing skylines over v-
partitions of the given tables. As a result, the algorithm returns two sets of
queries, one over R1, the other over R2, for selecting from each table the tuples
that will generate the skyline of the join R1 ./ R2, and only those.

Algorithm The Skyline Queries over a Join (SQJ)

Input Non-empty relations R1 and R2, non-empty sets B1 and B2 of preference
attributes in R1 and R2, respectively, and the join values V.

Data G is a set variable initialized to empty and used to accumulate all candidate
skyline queries, resulting from the Cartesian products of the skyline queries over
the same join value. R is a set variable where the skyline of G is computed. Pi

and Fi (for i = 1, 2) are auxiliary set variables, used to store v-partitions and
final results, respectively.

Output Two sets of queries, one over R1 and the other over R2.

Method

G← ∅
for all v ∈ V do
P1 ← SQST (S1(v),B1)
P2 ← SQST (S2(v),B2)
G← G ∪ (P1 × P2 × {v})

end for
R← SQST (G,B1 ∪ B2)
F1 ← πB1∪{J}(R)
F2 ← πB2∪{J}(R)
return F1, F2

We note that the algorithm operates in three passes:

1. In the first pass, it gathers (in G) all candidate results by looping over all
join values. This is in fact required by the first condition of Proposition 3,
which states that 〈q1, q2〉 is in a skyline query of the join if both q1 and q2
are skyline queries over the v-partitions for the same join value v.

2. In the second pass, it removes from G the compound queries that are dom-
inated by some other compound query, as required by the second condition
of Proposition 3.

Computing the Skyline of a Relational Table Based on a Query Lattice 157

3. Finally, it slices the compound queries vertically, in order to obtain queries
over R1 (these are stored in F1) and queries over R2 (in F2). Notice that
the join attribute J must be transferred all along in order to generate the
correct queries.

Clearly, there is no other way of proceeding since it is necessary to obtain all
candidate queries in order to apply the second condition of Proposition 3.

Formally, we will denote as SQJ (R1, R2,B1,B2)i the i−th result of the SQJ
algorithm having R1 and R2 as the input non-empty relations and B1 and
B2 as preference attributes, respectively. For readability, we will abbreviate
SQJ (R1, R2,B1,B2)i as SQJ i.

On the basis of the above observations and of Proposition 3, we therefore
state the following:

Proposition 4 For every pair of relations R1 and R2 and preference attributes
B1 and B2 over them,

SQST (ans(
∨

SQJ 1, R1) ./ ans(
∨

SQJ 2, R2),B1∪B2) = SKY (R1 ./ R2,B1∪B2)

Let us demonstrate the SQJ algorithm by using table R1 (hotels) and R2

(restaurants) in Fig. 2. Suppose we want to find best combinations of hotels
and restaurants in the same “Location”, by minimizing “Price”, “Rating”, “Dis-
tance” and “Location” (we took this example from [23]). In this case, the pref-
erence attributes are B1 = {Price,Rating}, B2 = {Distance,Ranking} and the
join attribute is J = {Location}. From the intersection of values appearing in
the Location attribute in R1 and R2, we can obtain join values V = {A,B,C}.

In the algorithm, firstly we gather candidate skyline queries for each join
value. In the example, for a join value A ∈ V , we obtain v-partition S1(A) and
S2(A). Then we compute skylines P1, P2 (emphasized in tables S1, S2 by bold
letters) from S1(A), S2(A) by the applying the SQST algorithm. Finally we
make a Cartesian product P1 × P2 × {A} and append it to G that accumulates
candidate skyline queries.

After iterating this candidate gathering process for every join value, we apply
SQST to G to obtain the skyline (emphasized in tables G by bold letters) over
the join R1 ./ R2. It is important to note the difference of size between R1 ./ R2

and G. In this example, R1 ./ R2 produces 12 tuples but G contains 8 tuples.
Therefore, we can compute the skyline from G with less cost than by computing
directly from R1 ./ R2.

In the example, 〈h5, r5〉 is not a skyline in the join because for the join value
B, we have h2 dominating h5 and r1 dominating r5. On the other hand, neither
h6 nor r4 are skyline in their table, but they form a skyline in the join because
they are skylines in their join group and there is no other group in which both
are dominated (h6 is dominated by a query h3 in the A group, whereas r4 is
dominated by r2 in the C group, and there is no single group in which both are
dominated.)

158 N. Spyratos et al.

R1(Hotels)
HID Price Rating Location
h1 100 8 A
h2 150 5 B
h3 200 1 A
h4 400 2 A
h5 300 7 C
h6 350 3 B

S1

Price Rating

S1(A)
100 8

PA
1 = {〈100, 8〉, 〈200, 1〉}200 1

400 2

S1(B)
150 5

PB
1 = {〈150, 5〉, 〈350, 3〉}

350 3
S1(C) 300 7 PC

1 = {〈300, 7〉}

R2(Restaurants)
RID Distance Ranking Location

r1 150 4 B
r2 250 2 C
r3 500 1 A
r4 400 3 B
r5 200 5 C
r6 500 6 A

S2

Distance Ranking

S2(A)
500 1

PA
2 = {〈500, 1〉}

500 6

S2(B)
150 4

PB
2 = {〈150, 4〉, 〈400, 3〉}

400 3

S2(C)
250 2

PC
2 = {〈250, 2〉, 〈200, 5〉}

200 5

G
Price Rating Distance Ranking Location
100 8 500 1 A

PA
1 × PA

2 × {A}200 1 500 1 A
150 5 150 4 B

PB
1 × PB

2 × {B}
150 5 400 3 B
350 3 150 4 B
350 3 400 3 B
300 7 250 2 C

PC
1 × PC

2 × {C}300 7 200 5 C

F1

Price Rating Location
100 8 A
200 1 A
150 5 B
350 3 B
300 7 C

F2

Distance Ranking Location
500 1 A
150 4 B
400 3 B
250 2 C

Fig. 2. An example of skyline over the join of two tables

5 Concluding Remarks

We have seen a novel approach to computing the skyline of a relational table
with respect to preferences expressed over one or more attributes with ordered
domains. Our approach is based on what we called the query lattice of the table,
and our basic algorithm constructs the skyline as the union of the answers to a
subset of queries from that lattice — hence without directly accessing the table
R. Therefore, in contrast to all existing techniques, our approach is independent
of how the table R is implemented or how its tuples are indexed. We have
demonstrated the generality of our approach by computing the skyline over the
join of two tables based on the product of their individual query lattices —
therefore without performing the join.

We note that our method is applicable to a computational geometry setting as
well. Indeed, a discrete (finite) n-dimensional Euclidean space S can be thought
of as a relational table T (S) in which: (a) the attributes are the n dimensions

Computing the Skyline of a Relational Table Based on a Query Lattice 159

of S and (b) each tuple of T (S) represents a point in S. Moreover, the answer
to a query q = 〈b1, . . . , bk〉 from the query lattice of T (S) is the set of all
points of S such that (B1 = b1) ∧ . . . ∧ (Bk = bk), where B1, . . . , Bk are the
corresponding dimensions; in other words, the answer to q is the set of points
having the same coordinate values over the dimensions B1, . . . , Bk. Additionally,
our method can be applied to the Cartesian product of two or more spaces
through the product lattice of the individual spaces. We are currently pursuing
work in two different directions, namely refining skyline analysis and applying
our approach to a distributed setting:

1. Refining skyline analysis
As we mentioned in section 3, the skyline query returned by our basic al-
gorithm is the disjunction of a set of queries from the query lattice, say
q1 ∧ . . .∧ qm; and the answers to these queries actually partition the skyline
into disjoint subsets. Moreover, these queries have different ranks, in general.
Therefore it now becomes possible to ask finer queries regarding the skyline
such as “give me the best tuples of the skyline” (meaning the answer to the
query qi of highest rank), or “return the skyline by presenting the answers
to qi’s in increasing order of rank”, and so on. In this respect, we would also
like to investigate in more detail the relationship between “most preferred
tuple” and “non-dominated tuple”.

2. Applying our method to a distributed setting
As information systems store bigger and bigger volumes of data today, data
management and in particular query processing presents difficult challenges.
From the user viewpoint, big volumes of data imply answers of large size.
By returning the best tuples (in terms of user preferences), the skyline query
relieves the user from having to deal with answers of large size; and having
the possibility to further refine the skyline (as mentioned above) further
contributes in that direction. However, in recent years, data management and
data storage have become increasingly distributed, and distribution presents
additional challenges for query processing. Adapting the skyline operator to a
distributed setting is one of the research lines that we are currently pursuing.
We believe that our approach to skyline computation through query lattices
is particularly well suited in a distributed environment, where computation
can be distributed and recomposed in the form of the product lattice.

References

1. I. Bartolini, P. Ciaccia, and M. Patella. SaLSa: computing the skyline without
scanning the whole sky. In Proceedings of CIKM, 2006.

2. I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation.
ACM Trans. Database Syst., 33(4), 2008.

3. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceed-
ings of ICDE, pages 421-430, 2001.

4. C.-Y. Chan, P.-K. Eng, K.-L. Tan. Stratified computation of skylines with
partially-ordered domains. In Proc. of SIGMOD 2005, pp. 03–214, 2008.

160 N. Spyratos et al.

5. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In
Proceedings of ICDE, pages 717-816, 2003.

6. B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, Y. Zhou. Parallel Distributed Processing
of Constrained Skyline Queries by Filtering. In Proc. of ICDE 2008, pp. 546-
555, 2008.

7. P. Godfrey, R. Shipley, and Jarek Gryz. Algorithms and analyses for maximal
vector computation. The VLDB Journal, vol 16(1), pp. 5–28, 2007.

8. W. Jin, M. Ester, Z. Hu, and J. Han. The multi-relational skyline operator. In
Proceedings of ICDE, 2007.

9. W. Jin, M. Morse, J. Patel, M. Ester, and Z. Hu. Evaluating skylines in the
presence of equi-joins. In Proc. of ICDE, 2010.

10. N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join and selection
queries. In Proceedings of VLDB, 2006.

11. H.T. Kung, F. Luccio, F.P. Preparata. On finding the maxima of a set of
vectors. Journal of the ACM, vol. 22(4), pp. 469–476, 1975.

12. M.E. Khalefa, M.F. Mokbel, J.J. Levandoski. Skyline Query Processing for
Incomplete Data. In Proc. of ICDE 2008, pp. 556-565, 2008.

13. D. Kossmann , F. Ramsak , S. Rost. Shooting Stars in the Sky: An Online
Algorithm for Skyline Queries. In Proc. of VLDB 2002, pp. 275–286, 2002.

14. X. Lin , Y. Yuan , W. Wangnicta , S. Wales. Stabbing the sky: Efficient skyline
computation over sliding windows. In Proc. of ICDE 2005, pp. 502–513, 2005.

15. M. Morse , J. Patel , H. V. Jagadish. Efficient Skyline Computation over Low-
Cardinality Domains. In Proc. of VLDB 2007, pp. 267–278, 2007.

16. J. Pei , W. Jin , M. Ester , Y. Tao. Catching the best views of skyline: A
semantic approach based on decisive subspaces. In Proc. of VLDB 2005, pp.
253–264, 2005.

17. J. Pei , B. Jiang , X. Lin , Y. Yuan. Probabilistic skylines on uncertain data.
In Proc. of VLDB 2007, pp. 15–26, 2007.

18. F.P. Preparata, M.I. Shamos. Computational Geometry Computational Geom-
etry, Springer-Verlag, 1985.

19. D. Papadias, Yufei Tao, Greg Fu, Bernhard Seeger. An Optimal and Progressive
Algorithm for Skyline Queries. In Proc. of SIGMOD 2003, pp. 467–478, 2003.

20. V. Raghavan, E. Rundensteiner. Progressive result generation for multi-criteria
decision support queries. In Proceedings of ICDE, 2010.

21. K.-L. Tan, P.-K. Eng, B.C. Ooi. Efficient Progressive Skyline Computation. In
Proc. of VLDB 2001, pp. 301-310, 2001.

22. Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in sub-
spaces. In Proceedings of ICDE, 2006.

23. A. Vlachou, C. Doulkeridis, N. Polyzotis. Skyline query processing over joins.
In Proceedings of SIGMOD 2011, pp. 73–84, 2011.

24. A. Vlachou, K. Nørv̊ag. Bandwidth-constrained distributed skyline computa-
tion. In Proc. of MobiDE 2009, pp. 17–24, 2009.

25. D. Sun, S. Wu, J. Li, and A. K. H. Tung. Skyline-join in distributed databases.
In ICDE Workshops, 2008.

26. Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng. Creating
competitive products. PVLDB, vol. 2(1), 898-909, 2009.

27. P. Wu , C. Zhang , Y. Feng , B.Y. Zhao , D. Agrawal , A.E. Abbadi. Parallelizing
skyline queries for scalable distribution. In Proc. of EDBT 2006, pp. 112-130,
2006.

28. Y. Yuan , X. Lin , Q. Liu , W. Wang , J.X. Yu , Q. Zhang. Efficient Computation
of the Skyline Cube. In Proc. of VLDB 2005, pp. 241–252, 2005.

Computing the Skyline of a Relational Table Based on a Query Lattice 161

29. S. Zhang , N. Mamoulis , S.W. Cheung. Scalable skyline computation using
object-based space partitioning. In Proc. of SIGMOD 2009, pp. 483-494, 2009.

Using FCA for Modelling Conceptual Difficulties in
Learning Processes

Uta Priss, Peter Riegler, Nils Jensen

Zentrum für erfolgreiches Lehren und Lernen
Ostfalia University of Applied Sciences

Wolfenbüttel, Germany
www.upriss.org.uk, {p.riegler,n.jensen}@ostfalia.de

Abstract. In the natural sciences, mathematics and technical subjects, universi-
ties often observe generally low pass rates and high drop out rates in the first
years. Many students seem to have conceptual difficulties with technical and
mathematical materials. Furthermore, physics education research appears to indi-
cate that even students who are able to pass exams may still not have a good un-
derstanding of basic physics concepts. Some researchers use the notion of “mis-
conception” to describe conceptual differences between intuitive notions and ac-
cepted scientific notions. A significant body of educational research exists dedi-
cated to overcoming such didactic challenges, but so far not much Formal Con-
cept Analysis (FCA) research has been dedicated to these topics. The aim of this
paper is to develop a better understanding of the structure of conceptual difficul-
ties in learning processes using FCA. It is not intended in this paper to develop
new educational methods or to collect new data, but instead to analyse existing
data and models from an FCA viewpoint.

1 Introduction

Education is an interesting application area for Formal Concept Analysis1 (FCA) be-
cause the analysis, representation and development of conceptual structures - in the
mind of the learner, and maybe also of the teacher - is an inherent feature of learning
and teaching. Because modern e-learning materials and environments tend to accumu-
late and provide large amounts of data, any technology, such as FCA, developed for
structuring and retrieval of information or semantic, conceptual and ontological analy-
sis is implicitly applicable to learning materials as well.

Rudolf Wille the founder of FCA also pioneered the use of FCA for teaching math-
ematics (Wille, 1995). He published a number of subsequent papers on mathematics
restructuring and education - most of them are more general, of philosophical nature
and not specifically about FCA. Otherwise, there do not appear to be significant num-
bers of FCA publications in the educational domain. Examples of FCA applications in
this area focus on ontological representations, such as the structuring, retrieval and vi-
sualisation of learning materials (Lee, 2005) or the development of an ontology-based

1 Because this conference is dedicated to FCA, this paper does not provide an introduction to
FCA. Information about FCA can be found, for example, on-line (http://www.fcahome.org.uk)
and in the main FCA textbook by Ganter & Wille (1999).

162 U. Priss et al.

courseware management system (Tane et al., 2004) which facilitates browsing, query-
ing and clustering of materials and ontology evolution. Other FCA applications relate
to the use of FCA with computer algebra systems (Priss, 2010) and to the meta-analysis
of learning materials. For example Pecheanu et al. (2011) use FCA to evaluate and
compare open source learning platforms.

Apart from the general data analysis and knowledge representation applications, it
is of interest to use FCA to directly analyse the cognitive structures involved in learn-
ing processes because presumably learning consists of concept formation, ordering and
structuring. Applying FCA in this area is not fundamentally different from other appli-
cations where different concept lattices might represent the views of different experts
except that in teaching there is an expectation that some conceptual structures are cor-
rect and some are not and that the conceptual structures of the students are intended to
change.

One obvious difficulty is that it is not easy to obtain representations of such cogni-
tive structures. Psychologists have developed methods for eliciting and externally rep-
resenting mental models. A number of applications of FCA in the psychological do-
main have been described, for example, by Spangenberg and Wolff (1991). Al-Diban
and Ifenthaler (2011) discuss the comparison of two methods for eliciting and analysing
mental models of students, one of which uses FCA. These methods build on a qualitative
analysis of data, including transcribed and coded textual protocols, and data collected
from specific tests where subjects order concepts in if-then relations. A disadvantage
of these methods is that it is not clear whether they could be applied to data observed
in real teaching situations (instead of collected from tests) because real data might not
have sufficient structure and detail. Furthermore at least in the Al-Diban and Ifenthaler
study, the focus was on declarative knowledge, that is whether students know certain
facts, not so much on degrees of understanding. An advantage of these methods is that,
for example, conceptual gaps and differences among different students and between
students and teachers can be detected and analysed.

In addition to the analysis of conceptual structures in learning processes, one might
also want to model the conceptual space of a domain for teaching purposes. This has
been achieved by Falmagne et al. (2006) who describe a “knowledge state” as the set of
particular problems a student can answer in a mathematical topic area. Feasible knowl-
edge states are represented with respect to a precedence graph. This graph is a partially
ordered set and not a lattice, but it could be embedded into a lattice and thus modelled
with FCA. The idea is that knowledge is ordered: if someone masters a certain mathe-
matical problem then that person can also solve problems that are simpler but may still
have to learn to solve problems that are more difficult. Because the precedence graph is
not a linear order, different students can take different learning paths. The position of
the knowledge state of a student in the graph shows exactly which problems the student
can attempt to learn to solve next. Furthermore the student’s progress can be exactly
measured. Establishing a precedence graph for a mathematical topic area which might
consist of hundreds of states is labour-intensive but feasible in a commercial environ-
ment such as Falmagne et al.’s ALEKS software tool. There are different means for
building such a precedence graph: by questioning experts about the difficulties and pre-

Using FCA for Modelling Conceptual Difficulties in Learning Processes 163

requisites of problems, by analysing student data collected from an e-learning tool or
by analysing problem solving processes in the domain.

Currently, ALEKS focuses on mathematics and science topics. It is not clear how
far such approaches would be suitable for other non-science domains where it would be
difficult to establish a precise ordering of problems. Furthermore, it it may be difficult to
evaluate how accurate and useful a particular precedence graph is because user testing
of complex e-learning tools is notoriously difficult. If student learning improves while
they are using ALEKS, it would be difficult to determine whether that is because of the
precedence graph or because of any other of ALEKS’s many features.

In summary, general knowledge representation and retrieval aspects of e-learning
tools are not any different to such aspects of other textual databases and are covered
sufficiently in other domains than educational research. But the analysis of concep-
tual structures involved in learning processes and the conceptual structuring of domain
knowledge for learning purposes is specific to educational research. Currently, FCA
appears to be underrepresented in these tasks but it should be very applicable to both
of these tasks. It is of particular interest to study differences between the conceptual
structures of a learner and of an expert, such as knowledge gaps, discrepancies and mis-
conceptions. A goal for this paper is to involve FCA in the analysis, description and
detection of conceptual difficulties, including misconceptions. Section 2 of this paper
provides an overview of challenges encountered in teaching conceptually difficult top-
ics. The following three sections show examples of conceptual difficulties for selected
mathematical topics: equality in Section 3, translating text into algebraic expressions
in Section 4 and the notion of “function” in Section 5. The lattices in these examples
are developed from the viewpoint of a teacher who is exploring the difficulties in these
areas by modelling formal contexts based on the description of misconceptions in the
literature and based on student data.

2 Successful and unsuccessful teaching

Physics Education Research studies the problems students have in acquiring physics
concepts. Hake (1998) explains that students have initial common-sense beliefs about
’motion’ which are in contradiction to current physics theory and which are not im-
proved on by traditional educational methods. Hestenes et al. (1992) published a Force
Concept Inventory (FCI) designed to test the students’ conceptual understanding of
Newtonian mechanics which can be used before and after a physics course to evaluate
the educational success of the course. The test is written in a language that is accessi-
ble to people who have never taken physics courses but the test is quite different from
standard exams which students may be able to pass by memorising and applying for-
mulas. The FCI test purely examines conceptual knowledge. It shows that there is no
correlation between standard exam results and test results of individual students. Many
students do not change their incorrect beliefs about physics concepts when they are
taking physics classes. The revelation that traditional teaching methods are largely in-
effective (Hake, 1998) led physics professors to search for alternative teaching methods
and led to the establishment of Physics Education Research as a field of study. It seems
that misconceptions are particularly visible in physics education because, on the one

164 U. Priss et al.

hand, people have naive physics theories about natural laws based on observation and
experience and, on the other hand, scientific physics theory describes concepts and laws
with mathematical precision which are experimentally verifiable but which sometimes
contradict naive observation and experience. Outside the natural sciences, concepts are
not usually definable and verifiable with such rigour and precision. But the insights of
Physics Education Research should also be relevant for the other natural sciences and
mathematics (the latter as discussed by Riegler (2010)).

A conclusion of Physics Education Research is that teaching methods involving
interactive engagement (Hake, 1998) tend to be more successful in improving the con-
ceptual understanding of students than traditional teaching methods. Interactive engage-
ment is achieved by questioning and challenging students to think instead of just mem-
orising facts. Several factors appear to be contributing to the success of interactive en-
gagement teaching, including cognitive, social constructive and psychological factors.

From a cognitive viewpoint, it has been known for many years (Auble and Franks,
1978) that effort toward comprehension improves recall, i.e., if someone makes an ef-
fort at finding a solution before the solution is presented, recall is higher than if a solu-
tion is presented right away. Furthermore, active recall is more beneficial for long-term
retention than passive exposure (Ellis, 1995). Conway et al. (1992) report that course-
work marks are a better predictor for long-term retention than exam marks, possibly
because creating a piece of coursework requires the students to be involved with the
subject matter at a deeper level than when they reiterate facts during an exam. Conway
et al.’s (1992) paper also confirms other observations of Physics Education Research
with respect to other domains: procedural knowledge (where students learn something
by doing it) is retained much better than declarative knowledge. Students who take only
one course in a subject domain tend to forget it completely after a few years. In par-
ticular although they might remember some isolated facts, their understanding of the
subject is first to disappear - presumably because they never really understood it in the
first place. Students who take several courses on a topic and achieve a certain level of
proficiency and understanding will retain a large portion of their knowledge for a long
time. Thus if interactive engagement teaching leads to a better understanding of a sub-
ject, it will help students to remember what they have learnt more permanently than just
until the end of the term.

An example of interactive engagement teaching is Mazur’s (1996) peer instruction
which is even feasible in large classes. Using peer instruction, a lecturer pauses a lecture
with challenging questions which the students discuss among each other. Apparently
students do not change their conceptual knowledge just because a teacher provides them
with facts or a good explanation or even with a demonstration. But if they discuss
questions among each other, the students who do have correct conceptual understanding
tend to be able to convince their peers. In addition to the cognitive aspects of interactive
engagement learning, there seems to be a social component involved: peer pressure
seems to be a stronger motivation for people to question and change their beliefs than
explanation or observation.

Last but not least, psychological aspects are involved in learning processes. Devlin
(2000) argues that mathematicians are psychologically different to non-mathematicians
because mathematicians think about mathematical objects in an emotional, associa-

Using FCA for Modelling Conceptual Difficulties in Learning Processes 165

tive manner in the same way as other people think about physical or even animate ob-
jects. For example, mathematicians might attribute emotional features to numbers and
other abstract objects. Other psychological aspects are involved when people experi-
ence clashes between observation and scientific explanations, as for example in optical
illusions which are clashes of visual perception and logical, geometrical explanations.
Some people perceive clashes as emotionally upsetting. A famous example is the Monty
Hall problem2 about the winning chances in a game show. When Marilyn Vos Savant
discussed it and similar problems in her column in the TV magazine Parade, readers
responded with angry, emotional letters: “I will never read your column again3” or “As
a professional mathematician, I’m very concerned with the general public’s lack of
mathematical skills. Please help by confessing your error and in the future being more
careful4.” - written by someone with a Ph.D who was wrong! One can speculate that
animals have evolved probabilistic intuitions in order to make survival decisions which
evoke strong emotional responses when challenged. Another example of intuitions con-
tradicting mathematical probability is the belief which many people have that the longer
they have played in the lottery without winning, the more likely it is that they are going
to win the next time they play. Again this belief tends to have an emotional component
as anybody can observe who has ever discussed it with lottery players.

In summary, teaching a topic which contradicts the existing conceptual structures
which the students have is challenging. Methods such as peer instruction can help to
overcome cognitive, social constructivist and emotional obstacles. Clearly, not all top-
ics evoke such difficulties and some can be taught with more standard teaching meth-
ods. Thus it would be useful for a teacher to know in advance which areas of the sub-
ject domain are going to produce conceptual difficulties and which not. McDermott
(2001) argues that there is only a limited number of re-occurring conceptual difficul-
ties which tend to be experienced by all students similarly. The idea for this paper is
that FCA might provide useful methods for detecting and analysing conceptual diffi-
culties. Although McDermott (2001) emphasises that just detecting misconceptions is
not sufficient for improving teaching, providing a better understanding of the concep-
tual structures of misconceptions is going to be beneficial for teachers. In the following,
three examples of conceptual difficulties in mathematics education are analysed using
FCA.

3 Conceptual difficulties of the equality sign

Prediger (2010) discusses problems pupils are having with developing an appropriate
conceptual model of equality. In primary school, pupils tend to experience the equal
sign as a request to calculate something. For example, “2 + 3 =” might be printed in a
textbook. Prediger calls this the operational use because pupils are requested to perform
an operation. Apparently, this can lead to difficulties later when the equal sign is used in
its more general algebraic meaning (or its “relational” meaning). For example, Prediger
quotes the case of a pupil who says that the equation 24 × 7 = 20 × 7 + 4 × 7 is

2 http://en.wikipedia.org/wiki/Monty Hall problem
3 Parade Magazine, July 27, 1997
4 http://www.marilynvossavant.com/articles/gameshow.html

166 U. Priss et al.

wrong because “24×7 does not equal 20” and the case of a pupil who writes “1×10 =
10 + 110 = 120”. Prediger then discusses the difficulties which prospective teachers
might encounter in understanding the problems these pupils are having. In her analysis
she distinguishes operational, relational and specification uses (such as defining x :=
4) of the equal sign. She divides the relational use further into symmetric identities
(4 + 5 = 5 + 4), general equivalences ((a − b)(a + b) = a2 − b2), searching for
unknowns (x2 = 6 − x) and contextual uses (a2 + b2 = c2) where the variables are
meaningful in a context, such as characterising a right-angled triangle.

To demonstrate the use of FCA in this area we have modelled the problem as a
formal context. The formal objects are examples of uses of the equal sign, inequality
(>) and equivalence (⇔). Furthermore we added basic operations from programming
languages: not-equal (!=), test for equality (==) and Boolean operators (&&). Four
of the formal attributes are from Prediger’s classification: “operation”, “contextual”,
“definition” (i.e. specification) and “law” (i.e equivalence). Here, “operation” refers to
rule-based drills where the students solve a problem in a precisely taught manner and
the equality sign is always read from left to right. A “definition” for other symbols
than “=” defines a set of possible values for a variable (e.g., i > 1). Furthermore, two
attributes have been added which distinguish whether the statements are true for all
values of the variables or just for some. Prediger’s “unknowns” has been replaced with
“test” as a request to evaluate an expression with respect to variables with given values.

contextual

<=>

x − y = (x−y)(x+y)22
a + b = c2 2 2

x := 4
2+3 =

2+y = 6
x != 4

i > 1

test

x=4 y=5&&
x == 4

x>4 −x<−4

for some values

law

3 != 4
y+1 > y

x+y = y+x

for all values definition operation

y:=4 x==3:<=>

Fig. 1. Equation, assignment and comparison operators

Using FCA for Modelling Conceptual Difficulties in Learning Processes 167

The resulting concept lattice (Fig. 1) shows a classification which is slightly differ-
ent from Prediger’s list5. The operational use of the equal sign is not connected to any of
the other uses. Although this results directly from the definition of the formal attribute
“operation”, it represents implicit structure which the authors were not aware of be-
fore the lattice was constructed. The separation of “operation” from the other concepts
provides a graphical explanation as to why students may find it particularly difficult to
progress from an operational use to the more general algebraic use.

The extensions of the concepts under “for all values” contain tautologies. But there
is a distinction made between those which students have to specifically learn (under
“law”) in order to understand how the operators work and those which just happen
to be true. There are three different reasons why a statement might only be true for
some values of the variables: the variables are defined in the statement; it is to be tested
whether the statement is true (or for which variables it is true); and in the contextual
use, the statement is only true in some contexts and thus describes such contexts. Some
interesting cases are under both “test” and “definition”: an equation 2 + y = 6 is both
an implicit definition of y and a request to evaluate which values of y yield the equation
to be true. For the use of != and <, it depends on the context whether the statements are
meant to be evaluated for their truth value or whether they are meant to define a range
for their variables.

4 Conceptual difficulties of translating text into algebraic
expressions

A well-known conceptual difficulty that mathematics students experience pertains to the
translation of text into algebraic expressions. Clement (1982) conducts an experiment
where he asks students to write an equation using the variables S and P to represent
“there are six times as many students as professors”. His findings are that only 40-
60% of the students produce a correct answer (S = 6P). The most common incorrect
answer is 6S = P . He provides two reasons for the incorrect answer: first, some stu-
dents simply translate the sentence into mathematical symbols in the same word order.
Second, some students use a static comparison pattern or, in other words, an incorrect
schema where S and P do not represent numbers, but instead units of students and
professors. This is in the same manner as how m and km are used in 1000m = 1km.
In this case, m and km are not variables but represent a fixed “1 to 1000” relation-
ship. It is not possible to substitute arbitrary values for m or km, but m can be sub-
stituted with 1

1000km and km can be substituted with 1000m, yielding, for example,
2000m = 2000 × 1

1000km = 2km. One difference between units and variables for
numbers is that it is not usually acceptable to insert a multiplication sign between a
number and its unit.

Table 1 summarises the differences between the two conceptual systems: in the first
one the letters represent units, in the second, algebraic one the letters represent vari-
ables for numbers. The first conceptual system has a meronymic (part-whole) quality.
A certain, fixed aggregate of the smaller units constitutes the larger unit. The extension

5 In Fig. 1, in the statements with more than one operator the relevant one is printed in bold face.

168 U. Priss et al.

of 6s = 1p is really a fixed “6 to 1” relation which is expressed in s and p. In contrast,
the algebraic conceptual system represents normal algebraic use of variables. The ex-
tension of s = 6 ∗ p consists of the pairs of values that can be substituted for s and p.
The table also shows examples of intensionally equivalent and implied expressions. In
the meronymic conceptual system, s is indeed smaller than p because it represents the
unit “student” which somehow has less value than the unit “professor”. It is possible to
interpret the units s and p as algebraic variables but not as “numbers of”. For example,
s could represent the money paid by a student and p the money earned by a professor.

Table 1. Two conceptual systems for the use of letters in equations

the letter means: unit variable for number
conceptual system: meronymic algebraic operation
representation: 6s = p s = 6 ∗ p
extension: relation: 6 to 1 substitution: {(6, 1), (12, 2), (18, 3), ...}
intensionally equivalent: s = 1

6
p s/p = 6/1

intensionally implied: s < p s > p

It should be emphasised that both conceptual systems in Table 1 are consistent. In
everyday experience, meronymic, unit-based conceptual systems may be much more
common than algebraic ones. Thus it should be expected that students who have not
yet made much progress towards learning algebra or people who have not recently used
algebra would prefer the meronymic, unit-based representation. Ben-Ari (1998) argues
that from a constructivist educational viewpoint, students always already have existing
mental models which may contradict scientific models. Teachers need to understand
the students’ mental models and to build on them instead of discarding them as simply
being incorrect. In this case the algebraic use of variables must be taught to people who
already employ a different, meronymic conceptual system. They need to learn to use
the different systems in different circumstances.

As a further analysis, we have coded the data from two student interviews (Clement,
1982) in a content analytic manner and converted them into a formal context. The for-
mal objects are mathematical notations as used or implied by the students. The formal
attributes are verbal descriptions made by the students converted into a slightly more
formal language. A cross in the formal context means that the student used a verbal
expression with respect to a mathematical notation. Mathematical notations and verbal
expressions that were used algebraically incorrectly by a student have been highlighted
in bold face.

The following observations can be made from the resulting concept lattice in Fig.
2. Even though it was argued that the two conceptual systems in Table 1 are both con-
sistent conceptual systems, in Fig. 2 it appears that the correct statement s = 6p is
conceptually better refined than the incorrect one 6s = p which is more isolated in the
lattice. This is because the lattice combines the data from two student interviews: one
student with a correct answer of the problem who provided detailed explanations and
reasons for why his answer was correct and another student who produced an incorrect

Using FCA for Modelling Conceptual Difficulties in Learning Processes 169

6 * as many P1 to 1
6s = p

6 P for S S to P is 6 to 1

S for students

more S than P number of S = number of P * 6

s = 6*ps > ps/p = 6/1P for Profs
6 to 1

s = 6p

S divided by 6

S = # Students
P = # Profs

s/6 = p

six * as many S as P

Fig. 2. Data from student interviews

solution which does not appear to be very coherent according to the lattice. The student
with the correct answer understood that the variables represent “numbers of”. The other
student said that “S stands for student”. It is interesting to observe that the student with
the incorrect solution focussed more on the relationship (“6 to 1” and “1 to 1”) which
is indeed the extension of the incorrect representation according to Table 1. When he
talked about “1 to 1” he really meant to express a “fixed correspondence”. The student
with the correct answer on the other hand demonstrated detailed understanding of al-
gebraic transformations which is why his arguments contained intensionally equivalent
and implied statements.

Clement (1982) observes that different, unsuccessful strategies have been tried to
help students in finding correct solutions. It is our opinion that all of the strategies
mentioned by Clement are methods from within the algebraic conceptual system (for
example telling the student to substitute numbers for variables or to determine whether
there are more students or professors). Presumably all instructors involved in the ex-
periments were of the opinion that a student’s attempt was plain wrong, not that it was
part of an internally coherent, but different conceptual system. One can speculate what
would happen if the students were somehow taught that there are different conceptual
systems for use of letters in equations and how to determine which conceptual system
is appropriate for which problem. We suspect that in general in most basic mathemat-
ics teaching the modelling aspect (how to determine which type of solution belongs to
which type of problem) is not significantly highlighted. Thus most students will not be
aware that there are different conceptual structures involved in using mathematics and
will not have been taught to analyse their strategies from that aspect on a meta-level.
They might be aware that they are not “very good at mathematics” without knowing
any reasons for the difficulties encountered.

170 U. Priss et al.

5 Conceptual difficulties of the notion of “function”

The third example discussed in this paper refers to the conceptual difficulties encoun-
tered by students in learning the notion of “function”. The problem is well-known and
has been discussed numerous times (e.g., Leinhardt et al. (1990) and Breidenbach et
al. (1992)). Quite often students can recall a correct formal definition of a function, but
misconceptions become obvious when they are asked to determine whether something
can be represented as a function or not. Leinhardt et al. provide the following list of
misconceptions:

• Too narrow understanding of “function”. Only functions with certain characteristics
(regularity, symmetry, linearity, one-to-one, causal relationship, etc) or which are
represented in a certain manner (formula, graph, table) are recognised as functions.

• Correspondence: students often believe that functions must be one-to-one and they
might be confused about the difference between many-to-one and one-to-many.

• Linearity: students have a tendency towards linearity. They tend to prefer straight
lines in graphs.

• Continuous versus discrete: historically, functions were not allowed to be discon-
tinuous. Students have problems understanding the notion of continuity. They dis-
cretise continuous data.

• Representations: problems translating graphs into formulas and vice versa.
• Interpretation of graphs: students have problems with confusing intervals and points,

slope and height. They might interpret graphs in a literal, iconic manner.
• Variables: students have problems with the notion of “variable”. Some do not accept

constant functions as functions.
• Notation: students have problems understanding axes and scales in a graph.

Breidenbach et al. (1992) emphasise the “process conception of function”. They
argue that an understanding of “function” proceeds from a pre-function over an action
to a process stage. In our opinion the notion of “process” is misleading in this case
because it implies a temporal progression which is not involved in functions. This is in
contrast to functions implemented in a computer where an input is converted into an
output in real time so that the output is generated temporally after the input has been
processed and the input may be purged from memory after it has been used. Although
both Clement (1982) and Breidenbach et al. observe that students often develop a better
understanding of mathematical operations if they execute them as computer programs,
many features of mathematical objects cannot be adequately represented on a computer
(for example infinity) and thus there are limits to the use of computer programs for
representing mathematical ideas.

In our opinion, it is not the “process conception of function” that is relevant but
instead simply the “concept of function”. Breidenbach et al.’s tests for whether stu-
dents understand the notion of function include: asking students to provide a defini-
tion (i.e., an intensional description); asking students to decide whether something is a
function or not (i.e., evaluating whether something is in the extension of “function”);
and asking students to perform operations with functions (composition and reversion)
which demonstrates an understanding of the implied intensional features. Thus all of

Using FCA for Modelling Conceptual Difficulties in Learning Processes 171

the tests are aimed at demonstrating whether or not students have an acceptable concept
of function, including extension, intension, subsumption, implication and equivalence.
Initially, students appear to have incomplete or disconnected concepts of “function”.
For example, Breidenbach et al. report that the examples of functions provided by stu-
dents are more sophisticated than their definitions whereas Leinhardt et al. (1990) state
that students can recall an accurate definition of “function” but cannot apply it. In either
case there is a mismatch between the extension and intension of “function”.

Breidenbach et al. also test whether students develop an abstract understanding of
particular functions. For example, they define a complicated function F(a)(b)(c) the
meaning of which is “the cth character in the string which is the name of the integer
given by the ath power of the integer b”. We would argue that although translating
a function from one representation (formula) to another (textual representation) is an
important aspect of using functions, this particular example is really more a test for
intelligence than for an understanding of the notion of “function”. Similarly, they use
strings as examples of functions. Depending on how much experience students have
with programming languages, they may or may not be familiar with the representation
of strings as arrays of characters. Thus, interpreting a string as a function depends on
the students’ programming knowledge, not on an understanding of function. On the
other hand, if students do have a programming background, then functions from pro-
gramming languages can be used to emphasise to students that not all functions are of
the form “f(x) =”.

From an FCA viewpoint, data collected from student interviews and exams can be
represented as concept lattices to visualise such conceptual differences. The following
attributes are examples of how to characterise an understanding of “function”.

• representation: set, equation, graph, verbal description, table, computer program, ...
• constant, linear, quadratic, ...
• causal, non-causal
• discrete, continuous
• 1-to-1, 1-to-many (i.e., the reverse is a function), many-to-1, many-to-many
• finite domain, infinite domain

In Fig. 3 some of these attributes are selected as formal attributes and applied
to examples of functions as formal objects. The lattice shows a conceptual structure
of “function”. In this case, continuous functions with infinite domains tend to have
more attributes. For computer programs, it is a matter of choice whether one considers
“min(x)” as an abstract function with an infinite domain of possible values x (where
x is a set or other container object) or as an actually implemented function with a fi-
nite domain. The use of such an expert-designed concept lattice is in comparison with
lattices obtained from student data (which we have not included in this paper).

6 Conclusion

This paper argues that FCA provides useful methods for analysing conceptual diffi-
culties in learning processes. Teachers can use the construction of formal contexts and
concept lattices in order to explore the implicit structures in mathematical notions. The

172 U. Priss et al.

infinite domain

f(x) = x{(1,d),(2,s)}

equation quadraticstringset

finite domain
no pattern
discrete

min(x)

1−to−1

program linear f(x)

x:= x+1

continuous

f(x) = 1

2"one" x = 2a f(x) = x

Fig. 3. Attributes of functions

data for the lattices can be obtained from the literature on misconceptions, from student
interviews or from assessment data. In this manner FCA becomes a tool for exploration
and for making underlying assumptions explicit.

Traditional teaching methods are often not successful in teaching conceptually chal-
lenging topics. While teaching methods have been developed that are more promising,
teachers still need to know when to apply such methods. Thus they need to determine
what the specific conceptual challenges are with respect to a certain domain. FCA can
be employed as a tool by teachers to familiarise themselves with the materials and to
structure difficult topics. Based on the improved understanding of the topics, teachers
can then design interactive engagement teaching exercises that focus on the conceptu-
ally challenging aspects which the students need to learn.

References

1. Al-Diban, Sabine; Ifenthaler, Dirk (2011). Comparison of Two Analysis Approaches for Mea-
suring Externalized Mental Models. Educational Technology & Society, 14, 2, p. 16-30.

Using FCA for Modelling Conceptual Difficulties in Learning Processes 173

2. Auble, Pamela M.; Franks, Jeffery J. (1978). The effects of effort toward comprehension on
recall. Memory & Cognition, 6, 1, p. 20-25.

3. Ben-Ari, Mordechai (1998). Constructivism in computer science education. SIGCSE Bull, 30,
1, p. 257-261

4. Breidenbach, Daniel; Dubinsky, Ed; Hawks, Julie; Nichols, Devilyna (1992). Development of
the Process Conception of Function. Educational Studies in Mathematics, 23, p. 247-285.

5. Clement, John (1982). Algebra Word Problem Solutions: Thought Processes Underlying a
Common Misconceptions. Journal for Research in Mathematics Education, 13, 1, p. 16-30.

6. Conway, M. A., Cohen, G.; Stanhope, N. (1992). Very long-term memory for knowledge ac-
quired at school and university. Applied Cognitive Psychology, 6, p. 467-482.

7. Devlin, Keith. 2000. The Maths Gene. Why everyone has it, but most people don’t use it.
Weidenfeld & Nicolson, UK.

8. Ellis, N. C. (1995). The Psychology of Foreign Language Vocabulary Acquisition: Implica-
tions for CALL. International Journal of Computer Assisted Language Learning (CALL), 8,
p. 103-128.

9. Falmagne, Jean-Claude; Cosyn, Eric; Doignon, Jean-Paul; Thiery, Nicolas (2006). The As-
sessment of Knowledge, in Theory and in Practice. LNCS 3874, 949, Springer, p. 61-79.

10. Ganter, Bernhard, & Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Foun-
dations. Berlin-Heidelberg-New York: Springer.

11. Hake, Richard R. (1998) Interactive-engagement versus traditional methods: A six-
thousand-student survey of mechanics test data for introductory physics courses. American
Journal of Physics, 66, 1, p. 64-74.

12. Hestenes, D.; Wells, M.; Swackhamer, G. (1992) Force Concept Inventory. Phys. Teach., 30,
p. 141-158.

13. Lee, Chien-Sing (2005). A Formal Context-aware Visualization tool for Adaptive Hyperme-
dia Learning. WSEAS International Conference on Engineering Education, Athens, Greece.

14. Leinhardt, Gaea; Zaslavsky, Orit; Stein, Mary Kay (1990). Functions, Graphs, and Graph-
ing: Tasks, Learning, and Teaching. Review of Educational Research, 60, 1, p. 1-64.

15. Mazur, Eric (1996). Peer Instruction: A User’s Manual. New Jersey, Prentice Hall.
16. McDermott, Lillian Christie (2001). Oersted Medal Lecture 2001: “Physics Education

Research-The Key to Student Learning”. Am. J. Phys., 69, 11, p. 1127-1137.
17. Pecheanu, E.; Stefanescu, D.; Dumitriu, L.; Segal, C. (2011). Methods to evaluate open

source learning platforms Global Engineering Education Conference (EDUCON), IEEE.
18. Prediger, Susanne (2010). How to develop mathematics-for-teaching and for understanding:

the case of meanings of the equal sign. J. Math. Teacher Educ., 13, p. 73-93.
19. Priss, Uta (2010). Combining FCA Software and Sage. In: Kryszkiewicz; Obiedkov (eds.),

Proceedings of the 7th International Conference on Concept Lattices and Their Applications,
p. 302-312.

20. Riegler, Peter (2010). Towards Mathematics Education Research - Does Physics Education
Research serve as a model? Proceedings of the 15th MWG Seminar and 8th GFC Workshop,
Wismar.

21. Spangenberg, N.; Wolff, K.E. (1991). Interpretation von Mustern in Kontexten und Be-
griffsverbänden. Actes 26e Séminaire Lotharingien de Combinatoire, p. 93-113.

22. Tane, Julian; Schmitz, Christoph; Stumme, Gerd (2004). Semantic Resource Management
for the Web: An E-Learning Application Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, ACM.

23. Wille, Rudolf (1995). “Allgemeine Mathematik” als Bildungskonzept für die Schule. In:
Mathematik allgemeinbildend unterrichten. Biehler et al. (eds). Aulis, p. 41-55.

Author Index

A J

Alcalde, Cristina 1 Jensen, Nils 161

B M

Balcazar, Jose L. 14, 98 Macko, Juraj 130
Bazin, Alexandre 29 Meghini, Carlo 145
Beaudou, Laurent 41 Mihálydeák, Tamás 53
Burusco, Ana 1

C P

Colomb, Pierre 41 Poelmans, Jonas 82
Csajbók, Zoltán 53 Priss, Uta 161

D R

De La Dehesa, Javier 14 Raynaud, Olivier 41
Dedene, Guido 82 Riegler, Peter 161
Domenach, Florent 69 S

S

E Spyratos, Nicolas 145
Elzinga, Paul 82 Sugibuchi, Tsuyoshi 145

F T

Fuentes-Gonzalez, Ramon 1 Tayari, Ali 69

G V

Ganascia, Jean-Gabriel 29 Viaene, Stijn 82
García-Saiz, Diego 14, 98
Glodeanu, Cynthia Vera 114 W

Wol�, Karl Erich 82

Z

Zorrilla, Marta E. 98

