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ABSTRACT
The Linked Open Data community continuously releases
massive amounts of RDF data that shall be used to eas-
ily create applications that incorporate data from different
sources. Inter-operability across different sources requires
links at instance- and at schema-level, thus connecting en-
tities on the one hand and relating concepts on the other
hand. State-of-the-art entity- and ontology-alignment meth-
ods produce high quality alignments for two “nicely struc-
tured” individual sources, where an identification of relevant
and meaningful pairs of ontologies is a precondition. Thus,
these methods cannot deal with heterogeneous data from
many sources simultaneously, e.g., data from a linked open
data web crawl.

To this end we propose Holistic Concept Matching
(HCM). HCM aligns thousands of concepts from hundreds
of ontologies (from many sources) simultaneously, while
maintaining scalability and leveraging the global view on
the entire data cloud. We evaluated our approach against
the OAEI ontology alignment benchmark as well as on the
2011 Billion Triple Challenge data and present high preci-
sion results created in a scalable manner.

1. INTRODUCTION
In 2006 Berners-Lee proposed the Linked Open Data

(LOD) design principles1. These principles outline the vi-
sion of a global data cloud that can be used to build novel
applications incorporating information about real-world en-
tities from many sources. He suggests dereferencable HTTP
URIs for naming things that return useful information when
looked up on the web. Further, he encourages links to other
URIs so that one can discover more information about things
under consideration. The semantic web community adopted
these suggestions and we are now witnessing the growth of a
giant global data cloud comprising information form many
sources using de-facto standards such as RDF, RDFS, OWL,
etc. The pure availability of this data following a set of
principles is a big win since, in general, the use of (non-
linked) open data requires source-specific approaches to ac-
cess, query and filter the data of interest. Instead, when pub-
lished as LOD, one can leverage different sources through
common mechanisms such as HTTP and SPARQL. Exam-

1http://www.w3.org/DesignIssues/LinkedData.html
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ples of such LOD applications are showcased on data.gov

and data.gov.uk.
However, the LOD vision includes the connection of data

from different sources via links to facilitate an easy integra-
tion. As of September 2011, the LOD cloud comprised 295
sources, which all fulfill the basic LOD principles2. In con-
trast, the number and quality of links across these sources
are an ongoing issue since their discovery is a major chal-
lenge [1]. In this paper, we focus on schema-level links,
i.e., ontology alignments across data sources; of the 295
data sources 190 use proprietary vocabulary terms. Out
of these 190 sources, only 15 offer mappings to other widely
deployed vocabularies; but 159 provide dereferencable URIs
for proprietary terms, i.e., descriptive information for these
“new terms” are available. Thus, the evolution of the web
of vocabulary terms requires to run ontology alignment ap-
proaches on (all) pairs of sources without any (or with only
few) mappings to other vocabularies.

State-of-the-art ontology matching has been designed to
cope with nicely structured and well defined ontologies in or-
der to produce high-quality mappings for one pair of sources
from one specific domain at a time. Instead, in the case of
data that stems from the web, we need approaches that can
(simultaneously) deal with heterogeneous and incomplete
vocabulary definitions from many different sources dealing
with various topics. Further, the vocabularies from the LOD
cloud as a whole allow a holistic view on the web of vocabu-
lary terms and thus to create alignments depending on other
alignments and dependencies. Resulting alignment informa-
tion across many sources can be used for web query answer-
ing or the discovery of sources with respect to specific topics.
However, it is a major scalability challenge to deal with very
many vocabulary terms gathered from the linked data web.
Therefore, we tackle one the major challenges in ontology
matching, namely the matching at a very large scale [19].
We further add the requirement to be applicable to real-
world web data from various origins instead of two specific
sources.

In the following section we briefly review state-of-the-art
techniques for aligning ontologies and then derive require-
ments for an approach the deals with heterogeneous vocab-
ulary definitions from the web of data (Sec. 1.1). Next,
we outline our general approach for aligning multiple LOD
vocabularies (Sec. 1.2), followed by a technical description
of respective alignment phases (Sec. 2–4). Along with the
technical details of our approach we present measurements
to convince the reader of the respective phase’s scalability.

2http://www4.wiwiss.fu-berlin.de/lodcloud/state/



1.1 State-of-the-art
The matching of data models is an essential task for var-

ious areas in the information science, e.g., information inte-
gration, peer-to-peer data management, Web service compo-
sition, etc. [8]. Thus, a wide range of approaches were pub-
lished in the area of schema and ontology matching. Current
ontology matching approaches often enter the annual Ontol-
ogy Alignment Evaluation Initiative (OAEI) [7]. The OAEI
aims at comparing the performance of different systems by
assessing respective strengths and weaknesses. Successful
participants are, for instance, [2–4, 12, 15, 17]. Many state-
of-the-art approaches are based on the combination of dif-
ferent basic matching techniques and require a parameter
optimization for each matching task. This configuration is
addressed by different meta matching systems [5, 16, 22].
However, most of the state-of-the-art approaches have not
been run on large and heterogeneous ontologies that stem
from the LOD cloud.

Nevertheless, the number of ontology matching ap-
proaches dedicated to ontologies from the LOD domain has
grown recently. Those LOD approaches commonly use only
one (or few) basic matching techniques. Often, these tech-
niques utilize special RDF and LOD characteristics to im-
prove the matching result. For instance, Nikolov et al. in-
troduce an approach that utilizes owl:sameAs links between
data sets in the LOD cloud to derive concept overlaps [18].

However, there are hundreds of ontologies in the Web of
Data, which have been created for different use cases but
still contain many overlaps worth discovering. Therefore,
the ability to perform cross-domain matching is especially
important. Jain et al. introduced an approach that utilizes
Wikipedia categories for bootstrapping. This way, they can
cover knowledge from various domains [13, 14]. Further-
more, the LOD ontologies are commonly very large and con-
tain many instances. Suchanek et al. use instance knowledge
to match instance and schema level entities [25].

Recently, Rahm surveyed different approaches to large-
scale matching tasks [20]. Besides different basic techniques
to reduce runtime and manual configuration effort, he explic-
itly emphasized holistic schema matching. Approaches of
this type process a set of input schemata in one run (like [23])
and infer knowledge from the entirety of schemata [9, 10, 24].
In this paper we we adopt this notion for ontology alignment
on a large scale.

The input for web-scale ontology alignments is a set C of
concepts that has been gathered from the LOD cloud via
web access methods. The concepts in C stem from many
different ontologies. For each concept in C, there is at least
a URI – its id. Preferably, there are further information,
such as a label, a description, or a comment. Additionally,
there can be further meta data like structural information.
For the processing of these large amounts of heterogeneous
ontological information we suggest the following properties
for an alignment approach:

• The approach must work with ontologies from diverse
domains, i.e, the underlying concept matching strategy
must be applicable to many domains.

• Due to a large input concept set, the approach must per-
form automatic alignment in sub-quadratic run-
time (in the number of concepts).

• The approach should process concept definitions

only. That is, it can neglect instance data due to its
immense size. Further, property definitions can be ig-
nored since we found that property definitions and their
actual usage differs largely.

• Ontology structures should not be used for the ac-
tual alignment creation (if available at all). This is for
scalability reasons and since the structure across diverse
ontology varies largely and is thus not beneficial. How-
ever, the approach can exploit structural information,
such as subclass relationships, to verify derived align-
ments and find semantic contradictions.

• The approach must return equivalence relation-
ships for vocabulary terms. These relationships can
be fuzzy (depending on some parameter) since differ-
ent ontologies have different granularities, e.g., um-
bel:SpacePlatform Manned ∼ dbpedia:SpaceStation.

Please note that others might make other design decisions;
however, due to the immense scale and a questionable qual-
ity of current general web data we follow these properties.

1.2 Alignment approach overview
The aforementioned properties shall hold for an approach

that can be applied to web-scale input data. However, at the
same time we target an holistic view on the data to leverage
the information at hand as a whole. Therefore, we propose
the Holistic Concept Matching approach (HCM). To address
the scalability challenge we group the input data by topic
and thus create small groups of concepts that can be aligned
locally. Since we group by topics, we can still infer relation-
ships holistically, i.e., draw conclusions not only based on
a pairwise similarity but additionally based on alignments
and dependencies among other topically related members of
the same group.

Consider for instance five sources (A,B,C,D,E) and
let {a1, . . . , am, b1, . . . , bn, c1, . . . , co, d1, . . . , dp, e1, . . . , eq}
be the concepts from these sources. Running a traditional
approach on all available pairs of ontologies would result in
up to

(
5
2

)
isolated runs, which is computationally infeasible

given that alignment approaches often base on complex lex-
ical and structural properties [2, 15, 17]. Also, isolated runs
may yield low-quality results, since vocabulary definitions
from the web can be incomplete and highly heterogeneous
in terms of granularity and structure of the ontology.

With the help of additional topic knowledge for the
sources and their entities we are able to group them.
For instance, given that the three sources (A,B,C)
store media related entities and (D,E) provide in-
formation from the life sciences, we examine groups
of concepts, e.g., {a1, . . . , am, b1, . . . , bn, c1, . . . , co} and
{d1, . . . , dp, e1, . . . , eq} – yielding fewer runs of the approach.
Note that these groups must not directly relate to the input
ontologies: For instance, if d1 = human, then it could also
reside in the first group. However, within these groups, we
can then run computationally more complex approaches to
take an holistic view based on multiple ontologies.

Specifically, our general approach is shown in Fig. 1.
Given the data from the LOD cloud, we extract a knowl-
edge representation for all available concepts. This repre-
sentation can be a simple descriptive string, a feature vector,
or a more complex data structure. Next, we apply topical
grouping in order to create smaller sets of concepts. Within
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Figure 1: Scalable and holistic LOD ontology align-
ment

these sets, we then create alignments by identifying similar
knowledge representations and reasoning among them using
additional structural information from the input as well as
further candidates from the same group.

Obviously, many techniques can be plugged into this ap-
proach. Depending on the knowledge representation, one
can choose the specific representation of a concept’s topic,
specific topic similarities as well as specific concept similar-
ities in order to find alignments. In the remainder of this
paper, we report on the adoption of the Wikipedia cate-
gory forest [13] for HCM (Sec. 2). The topical grouping is
done using a set similarity index (Sec. 3). For the align-
ment generation we combine the Wikipedia category forest
similarity [14] and a rule-based verification approach [15]
(Sec. 4).

2. KNOWLEDGE REPRESENTATION
The comparison of different concepts requires an abstract

representation of its semantic content, i.e., a knowledge rep-
resentation. First we present our method to compute this
representation, then we show our performance results.

2.1 Wikipedia Category Forests
Given a set C of concepts from many different ontologies

gathered from the LOD cloud, we now elaborate on the data
structure we use to represent a concept. To this end, we
chose Wikipedia Category Forests (WCF) as proposed for
the BLOOMS algorithm in [13, 14], as BLOOMS is a state-
of-the-art alignment algorithm for matching heterogeneous
ontologies from many domains. A WCF is a set of Wikipedia
category trees created as follows:

1. Given a single concept c ∈ C, create a list of keywords
kw(c) = {k1, . . . , kn} from c.

2. Given kw(c) = {k1, . . . , kn}, a Wikipedia search for
all keywords returns a ranked list of Wikipedia pages
R = {p1, . . . , pm}. These pages are roots of the trees
in the resulting forest.

3. For each page p and a height parameter h, construct
a tree for the h top-ranked pages {p1, . . . , ph} in R, in
the following recursive manner:

(a) In recursion 1 ≤ h determine p’s categories
{α1, . . . , αq}.

(b) In recursion 2 ≤ h determine α’s super-categories
{β1, . . . , βr}.

(c) In recursion 3 ≤ h determine β’s super-categories
{γ1, . . . , γs}.

(d) etc.

We now explain the three steps on more detail.

Step 1. To determine keywords kw(c) for a concept c we
have tested several methods. In the following, we use two or-
thogonal base methods, namely the TFIDFn-extraktor and
ConceptID-extraktor. The TFIDFn-extractor processes de-
scriptions of concepts, i.e., comments and labels. For this,
we merge description texts and tokenize them and neglect
stop words3. Then, we determine the tf-idf-score for each
token with respect to the overall corpus of concept descrip-
tions. Finally, we select the top-n tf-idf-ranked tokens as
keywords kw(c).

The ConceptID-extractor is solely based on the concept’s
URI. The concept id is the unique identifier of a concept
in its ontology definition. HCM uses a straight-forward ap-
proach to determine the concept id: We truncate the prefix
of the URI until the last occurrence of either #, :, or /. The
concept id must not contain any other character than letters
or underscores. To extract tokens, we split the concept id at
camel-case characters and underscores. After again remov-
ing stop words, this results in the set of keywords kw(c). For
instance, the concept id for http://umbel.org/umbel/rc/

SpacePlatform_Manned would be SpacePlatform Manned .
From this we create kw(c) = {space, platform,manned}.

Additionally, HCM supports the ConceptID TFIDFn-
extractor that combines both methods. First, ConceptID
keywords are extracted. If no WCF can be constructed
(see next steps) HCM tries to build a forest using TFIDFn

keywords instead. Thus, the ConceptID TFIDFn-extractor
maximizes the amount of concepts that can be represented
by an WCF.

Step 2. Next, HCM performs a Wikipedia full-text search
using a search query that is built by concatenating all key-
words kw(c) (delimited by spaces). From the resulting
Wikipedia pages we choose the top d pages as tree root for
the creation of a WCF. The parameter d – the forest depth
– influences a WCF’s coverage of conceptual meanings. To
catch all potential meanings of a concept, several Wikipedia
articles and their category hierarchies have to be considered,
i.e., it requires a deep forest. On the other hand, a deeper
forest has a higher risk to contain trees not related to the
actual concept. Therefore, the selection of the forest depth
parameter is a trade-off between semantic coverage and ir-
relevance.

Step 3. The tree construction builds trees recursively from
the root to the maximal tree height h. The height mainly
influences the level of abstractness of a WCF. The higher
the trees, the more category hierarchy layers are considered.
This thus leads to more abstract categories in the WCF.
Instead, the lower the trees, the less probable is a topical
overlap among related concepts. We will discuss different
parameter configuration in the experiments section.

For instance given resource umbel:MannedSpacecraft, the
ConceptID-extractor yields {manned, spacecraft}, which
3using the English stop word lists of Apache Lucene (v2.3.0)
and of the MediaWiki-plugin LuceneSearch (v2.1.3) with 33
respectively 121 words
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Figure 2: Tree for the Wikipedia article“Spacecraft”
with h = 2. The 2nd layer categories span two rows
for readability.

results in the following Wikipedia search result (d = 3):
{Human spaceflight, Spacecraft,Orion (spacecraft)}.
Figure 2 depicts the tree for the root article Spacecraft
(h = 2). As one can see, the higher the layer, the more
nodes (Wikipedia categories) exist and the more abstract
are these categories. Furthermore, we note that different
tree nodes occur multiple times, e.g., “spaceflight” or
“aerospace engineering”. These nodes play an essential role
in the next phase of HCM (Sec. 3).

2.2 Experiments

Setup. All experiments were performed on a Windows
2008 R2 Enterprise Server with two quad-core Intel Xeon
processors (2.66 GHz) and 30GB of memory. To evaluate
the performance of our approach in a web scale scenario, we
used the 2011 Billion Triple Challenge (BTC) data4. The
BTC data is a crawl from the LOD cloud and consists of
approximately 2.2 billion triples. We have implemented all
described methods in Java.

The extraction of concept information can be done in lin-
ear time with Hdrs – a scalable distributed RDF store5

– that allows fast in-order index scans. HCM selects con-
cepts by considering resources occurring in triples with dif-
ferent predicates: rdf:type, rdfs:subClassOf , rdfs:domain,
rdfs:range, owl:equivalentClass, owl:disjointWith, rdfs:label ,
and rdfs:comment . In this manner HCM identified ap-
prox. 1M concepts in the BTC.

In contrast to the original BLOOMS algorithm [13], we
cannot use the Wikipedia search service. This is because we
need to issue very many search requests since we deal thou-
sands of concepts. This vast amount of queries would lead to
a high network overhead when querying the search service.
Therefore, for HCM, we load a Wikipedia dump6 into a
full-text index (articles and category hierarchy). The index
was created with Apache Lucene7 (v2.3.0) and a modified
version of the LuceneSearch8 MediaWiki-plugin implemen-
tation (v2.1.3). Additionally, we used MongoDB9 (v1.6.5)
running on the same machine like the HCM implementation.
HCM uses MongoDB to store intermediate results between
the three phases (Sec. 2, 3, and 4).

4http://km.aifb.kit.edu/projects/btc-2011
5http://code.google.com/p/hdrs
6We used the English Wikipedia dump of August 3rd, 2011
with approx. 11 million pages: http://dumps.wikimedia.
org/enwiki/20110803/
7http://lucene.apache.org/java/docs/index.html
8http://www.mediawiki.org/wiki/Extension:
Lucene-search
9http://www.mongodb.org/

Measurements. Given the BTC data where we could ex-
tract 1M concepts, the overall keyword extraction time is
7 minutes (Step 1). The average number of keywords per
set, i.e., per concept, is 2.77.

As expected, the Wikipedia index query time (Step 2) is
linear to the number of extracted keyword sets. For instance,
given 293k keyword sets from the ConceptID TFIDF3-
extractor, querying took 64 minutes.

The input to the keyword set extractors comprises 1M
concepts. However, the ConceptID-extractor cannot yield a
result for all input concepts, since we do not deal with blank
nodes10 and malformed URIs. Further, not all keyword sets
created yield a query result; in the end 238k keyword sets
could be used to build WCFs. Nevertheless, when addition-
ally applying the TFIDF3-extractor we can further create
another 55k WCFs.

The forest construction runtime mainly depends on forest
depth d and tree height h. Table 1 shows runtimes for the
forest construction algorithm with different parameters. Ap-
parently, the runtime linearly depends on the forest depth d.
An increase of the tree height h leads to an exponential run-
time increase.

h \ d 5 10 15 20
1 0:06h 0:09h 0:11h 0:14h
2 0:15h 0:23h 0:28h 0:38h
3 0:31h 0:52h 1:18h 1:34h
4 1:13h 3:03h 3:55h 5:45h
5 4:14h 8:28h 14:01h 15:40h

Table 1: Forest construction runtime using
different tree h and d parameters and the
ConceptID TFIDF10-extractor (in hours)

Similar to Jain et al., we set tree height h = 4 and forest
depth d = 10 for all following experiments [13]. For this
configuration, the WCFs consists of 9.53 trees on average.

3. CANDIDATE GROUP CREATION
The previous step extracts WCFs, i.e., our knowledge

representation of choice. Given these knowledge represen-
tations, we now need to find topically related concepts in
order to group them. Note that in the following we use the
terms domain and topic interchangeably. A domain or topic
is a field of the real world where different concepts together
play a role. The underlying intuition for the following is
that a search for alignments among concepts within (and
not across) topics should not cause a major loss of recall.
Again, we first present our method, followed by an evalua-
tion.

3.1 Topical groups
In our approach, the grouping (by topic) shall reduce

the runtime complexity of the alignment generation step by
splitting the problem space into smaller independent tasks
(Sec. 4). This procedure is often referred to as blocking or
partitioning.

Next, we discuss the details of finding topically related
WCFs from the previous step. Given a set F of WCFs, we
need to identify disjoint groups G1, . . . , Gn ⊂ F of topically

10Approx. 50% of all input concept IDs are blank nodes



related forests (topic group). In HCM we implemented the
following procedure:

1. For each WCF f ∈ F , extract topic(f) = {t1, . . . , tm}
from f . We describe a topic of a WCF using a set of
tree nodes extracted from the WCF.

2. Given a topic topic(f1), identify all forests f2 ∈ F with
a high topical overlap (topic(f1) ' topic(f2)).

3. Given a set of pairs (f1, f2) with a high topical overlap,
determine groups G of forests by associating topically
overlapping forests transitively.

Step 1. The topic topic(f) of a WCF f is a subset of its
tree nodes ({p, α1, . . . , αq, β1, . . . , βr, . . . }). In the process
of finding characteristic nodes that represent this concept’s
topic, we ignore very specific categories like “Soviet manned
space program”and very generic categories like“Humans”or
“Wikipedia article lists”. In this paper we report on a simple
yet promising approach we have tested (among others) for
the topic extraction: The TFIDFForestn-extractor again uti-
lizes the tf-idf measure. Nodes common in a WCF are scored
with a high term-frequency-value (tf), whereas nodes popu-
lar in many WCFs are scored with a low inverse-document-
frequency-value (idf). We rank a WCF’s tree nodes in de-
scending tf-idf order and select the top-n for representing the
topic. The choice of n is crucial for the quality of the tree
node set representing the concepts’s topics. Experiments
indicated n = 10 to be a reasonable choice. Higher values
lead to very specific topics, whereas smaller n lead to a low
representativity.

Step 2. Next, we compare the topic sets to identify related
forests. We use the Jaccard coefficient J and a correspond-
ing threshold θJ to determine the similarity of topic sets
(J(topic(f1), topic(f2)) ≥ θJ). The näıve pairwise compari-
son of all forest topic sets leads to a quadratic runtime be-
havior with respect to the number of forests |F |. To re-
duce this effort we tested different set-based similarity self
join techniques and selected ppjoin [27], which delivered the
most promising results (see Sec. 3.2). The ppjoin is a set
similarity self join technique that reduces the amount of ob-
ject pairs to be compared by using an inverted index and
two filtering techniques on the candidate sets (prefix and
positional filtering). Our implementation is an adapted ver-
sion of an open source implementation11. The application
of a set-based similarity self join technique enhances perfor-
mance and still keeps the topical cohesion of the group.

Step 3. To determine groups of topically related WCFs,
we build a graph containing forest nodes F and edges be-
tween topically related forests (J(topic(f1), topic(f2)) ≥ θJ).
Next, we use a depth-first search to determine connected
components within the graph [11]. Then, all forests in a
component are either directly or indirectly connected to each
other, but have no connection to forests in other compo-
nents.

3.2 Experiments
Figure 3 depicts the WCF group distribution in the BTC

data over the similarity threshold θJ . For one, we illustrate

11https://code.google.com/p/similarity-join-tools/

=2 

≤5 

≤25 

≤250 

≤5k 

≤50k 

≤100k 

>100k 

0 

10 

20 

30 

40 

50 

60 

0 

50 

100 

150 

200 

250 

300 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

n
u

m
b

e
r 

o
f 

gr
o

u
p

s 
(i

n
 t

h
o

u
sa

n
d

s)
 

n
u

m
b

e
r 

o
f 

fo
re

st
s 

in
 g

ro
u

p
s 

(i
n

 t
h

o
u

sa
n

d
s)

 

topic similarity threshold (θJ) 

Number of forests in groups Number of forest groups 

Figure 3: The forest group distribution for h = 4,
d = 10, the ConceptID TFIDF keyword extractor,
and the TFIDFForest10 topic extractor for varying
θJ . The green graph shows the number of forests
that can be grouped (left axis). The shaded areas
below indicate the number of forest in groups of a
specific size. The dashed red line shows the total
number of groups (right axis).

the number of forests that can be grouped for a given θJ
(green graph, left axis). Shaded areas below the green graph
depict the number of forests in groups of a given size, e.g.,
size = 2, size ≤ 5, size ≤ 25, etc. Also, we show the total
number of groups over θJ (dashed red graph, right axis).

As for the fraction of WCFs that can be grouped, a higher
θJ leads to a decrease since the higher θJ , the fewer WCF
pairs have a sufficient overlap to be grouped. The shaded
areas further show that the higher θJ , the more WCFs fall in
small groups, since a stricter overlap criterion induces more
individual groups. Vice versa, a lower θJ results in larger
groups since smaller groups are merged in this case.

As for the total number of groups for a specific Jaccard
threshold, there is a clear increase for higher θJ . This is due
to the fact that there are more smaller groups for higher θJ .
The figure shows that θJ = 1.0 leads to 138k (out of 293k)
forests have at least one correspondence with an identical
topic set. The majority (92k) appears in groups of size two.

For the following experiments we set θJ = 0.7 as default
for three reasons: (1) This avoids very large WCF groups
which would raise the runtime of the alignment generation
phase. With θJ = 0.7, the maximal group size of 4k leads to
a reasonable (and feasible) runtime. (2) θJ = 0.7 provides
a significant topical overlap among forests and minimizes
haphazard correspondences. (3) This threshold value en-
ables the identification of groups for more than 55% of the
available WCFs (162k). Remaining WCFs do not have a
sufficient topic overlap and can thus not be considered for
the alignment generation.

In general, the runtime of the candidate group generation
depends on the number of input WCFs, the applied self-
join technique, and topic set homogeneity (within the input
set). Figure 4 compares the runtime of three different set
similarity join techniques with groups for TFIDFForest10
topics, θJ = 0.7, and varying number of WCFs. The red
graph (triangle markers) shows the quadratic runtime of the
näıve baseline approach that compares all forests in a pair-
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Figure 4: The forest grouping run-time for different
similarity join algorithms. The experiment was ex-
ecuted for θJ = 0.7 using the TFIDFForest10 topic
extractor and h = 4 and d = 10.

wise manner. The yellow line (rhomb markers) indicates
the performance of the mpjoin introduced by Ribeiro and
Härder [21]. In contrast to the ppjoin, mpjoin tries to min-
imize the effort for the candidate set determination instead
of minimizing the candidate set size. The green line (rectan-
gle markers) illustrates the runtime of the ppjoin algorithm.
The ppjoin algorithm performs best and has a nearly linear
runtime. Here, the similarity join of 295k forest topics takes
only 6 minutes. Remember that these numbers have been
created with a very large and heterogeneous sample from the
current Web of Data – the BTC. Thus, we can demonstrate
a reasonable runtime for current very large web data sets.
What is more, Wang et al. introduce a MapReduce imple-
mentation of ppjoin [26], which leads to the conclusion that
our approach can also be run on even larger future datasets.

4. ALIGNMENT GENERATION
Given the set of candidate groups the next task is to re-

gard each group and find alignments among their respective
members independently. This leads to runtime reduction
decreased due to the reduced input set size (|G| � |F |) and
the possible parallelization of alignment generation task for
different groups In the following, we elaborate on our un-
derlying matching strategy to identify relations among con-
cepts, followed by an experimental evaluation.

4.1 WCF alignments
Given a set G of topically related WCFs, we need to iden-

tify a set of alignments A. We propose a procedure that,
again, consists of three steps:

1. Extend G by adding related WCFs. These relations
originate from the original ontology definitions.

2. Compare all forest pairs f1, f2 ∈ G using a forest over-
lap score function O. Extract all forest pairs with an
overlap value exceeding a given threshold O(f1, f2) ≥
θO; add them to match candidate set M .

3. Create an alignment graph D by iteratively adding
candidate matches M that neither semantically con-
flict with ontology definitions, nor with other candi-

date alignments. Finally, extract alignments A from
the conflict-free alignment graph D.

Step 1. First, we extend each topic group G with further
related WCFs in order to incorporate immutable axioms
from the underlying ontologies. Specifically, related WCFs
f2 have an ontology-level relation in common with a WCF
f1 ∈ G, i.e., owl:equivalentClass and owl:disjointWith rela-
tionships. We did not select other relations since we deem
these two as most relevant to reveal semantic conflicts of
alignments while keeping the group size low (which is a de-
sirable property). In the following, the topic group G refers
to the extended topic group.

Step 2. Next, we compare all pairs of WCFs f1, f2 ∈ G
to determine the overlap of the forests. HCM uses the
tree overlap similarity of BLOOMS+ to compare individ-
ual trees [14]. The tree overlap aggregates common nodes
between two trees as follows: Given two arbitrary trees t1, t2
from different WCFs, the tree overlap is defined as:

Overlap(t1, t2) =
log
∑

n∈(t1∩t2)

(
1 + ed(n,t1)

−1−1
)

log 2|t1|

Thus, the tree overlap depends on the distance d of common
nodes n ∈ (t1∩t2) to the root of t. The higher the node depth
in t (d(n, t)), i.e., the more nodes are between n and the root
page p of t, the smaller the influence of the shared node. The
depth of the root page is set to d(p, t) = 1. For instance,
given the tree t1 with the root p = “spacecraft” (article) of
our previous example (see Fig. 2) and an arbitrary tree t2.
Assuming two overlapping nodes x = “astronautics”and y =
“aerospace engin.” between t1 and t2 such that t1 ∩ t2 =
{x, y}, the resulting depths of the nodes in t are d(x, t) = 1
and d(y, t) = 2. Therefore, the resulting tree overlap of both
trees in t1 is:

Overlap(t1, t2) =
log
((

1 + e0
)

+
(

1 + e−
1
2

))
log(2× 14)

≈ 0.385

The tree overlap is not symmetric (Overlap(t1, t2) 6=
Overlap(t2, t1)). With this asymmetry BLOOMS+ is able
to identify parent-child relationships between concepts. The
equivalence between concepts is derived if Overlap(t1, t2) =
Overlap(t2, t1). However, we are interested in a similarity
value for two WCFs instead of individual trees. Therefore,
we compare all pairs of trees of different WCFs and select
the best matching tree pair. Given two WCFs f1 and f2
(f1, f2 ∈ G; f1 6= f2), we define the forest similarity as the
maximal harmonic mean for the overlaps of all tree pairs
(∀t1 ∈ f1, t2 ∈ f2):

O (f1, f2) = arg max
t1∈f1,
t2∈f2

(
2Overlap(t1, t2)Overlap(t2, t1)

Overlap(t1, t2) +Overlap(t2, t1)

)
Then, we select relevant matches M by using an overlap

threshold O(f1, f2) ≥ θO. The selection of a good threshold
is essential for the alignment quality, because a low θO-value
leads to a high amount of irrelevant candidates and thus a
lower precision. The following semantic deduction might
not be able to eliminate erroneous candidates. In addition,
the run-time complexity in the semantic verification phase
grows. A high θO-value instead leads to fewer candidates



and thus a low recall. In Sec. 4.2 we evaluate the different
thresholds and their influence on the alignment quality.

Step 3. Next, HCM performs a logical reasoning to remove
conflicting matches from candidate sets and thus enhance
the precision. HCM draws conclusions for matches contra-
dicting each other. This is done using the holistic knowledge
of all ontologies. Given a ranked set of forest match candi-
dates M , the semantic verification will produce an alignment
graph D = (G,E) with a set of WCF nodes G and a set of di-
rected edges E ⊂ G×G representing the verified alignments.
The edges are annotated with three different attributes:

• The certainty of an alignment cert : G×G→ R1
0 spec-

ifies the confidence of a matching. The higher the value,
the more reliable the match.

• The alignment type classifies every matching pair in
one of five categories type : G×G→ {equi , disj , parent ,
child , onto}. An equi edge connects two concepts iden-
tified to be equal, whereas a disj edge marks two con-
cepts to be disjoint. A parent or child edge is a directed
subset information representing an rdfs:subClassOf re-
lationship. An onto labeled edge marks two concepts to
originate from the same source ontology.

• The alignment origin provides information about the
edge’s origin, origin : G × G → {def , detect , infer}.
A def edge is an axiom stated in the source ontology.
A detect alignment pair is a verified concept alignment
pair, i.e., O(f1, f2) ≥ θO. An infer edge is a inference
drawn from other matches with the help of transitive
closures.

To populate the graph D, HCM performs the following:

(a) Initialize the alignment graph D with no edges (E = ∅).

(b) Populate D with ontology constraint edges a (cert(a) =
1.0 and origin(a) = def ) derived from rdfs:subClassOf ,
owl:equivalentClass, and owl:disjointWith triples from
the underlying RDF data.

(c) Add relations a between WCFs originating from the
same ontology with type(a) = onto, cert(a) = 1.0, and
origin(a) = def . Here, we use the ontology id from a
concept URI by removing the ConceptID (see Sec. 2,
Step 1).

(d) Finally, match candidates M (Step 2) are selected greed-
ily: We add matches a = (f1, f2) from M with decreas-
ing similarity O(f1, f2) to E. New edges in E comprise
cert(a) = O(f1, f2), type(a) = equi , and origin(a) =
infer as annotations.

When inserting an alignment – ontology constraints or can-
didate alignments (Step 2) – we perform three steps:

First, we check whether an alignment a contradicts the ex-
isting edges in D. To this end, HCM checks for four different
types of contradictions: Conflicting definitions are align-
ments in the graph that are incompatible to an new align-
ment a = (f1, f2). A conflicting definition occurs, if there is
an edge ex = (f1, f2); ex ∈ E such that type(ex) 6= type(a),
origin(ex) 6= infer , or cert(ex) ≥ cert(a). Furthermore,
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Figure 5: Five types of alignment inferences, that
infer a closure a′ from a new alignment a and an ex-
isting edge ex in the matching graph. (a) shows an
equivalence closure for type(ex) = type(a) = equi . (b)
and (c) show disjoint closures for type(ex), type(a) ∈
{equi ,disj }; type(ex) 6= type(a). (d) and (e) show par-
entship and childship closures for type(ex), type(a) ∈
{parent , child}; type(ex) = type(a).

HCM checks alignments for multiple-entity correspon-
dences, crisscross correspondences, and disjointness-
subsumption contradictions. These three types of con-
tradictions were originally introduced for the ASMOV on-
tology alignment approach by Jean-Mary et al. [15].

If and only if no contradiction was found for the can-
didate alignment a, HCM adds the alignment candidate
and its inverse a−1 to the graph’s edge set E. The inverse
alignment a−1 = (f2, f1) of a = (f1, f2) has got an analog
alignment identification (origin(a−1) = origin(a)) and cer-
tainty (cert(a−1) = cert(a)) and the inverse adapted type
(type(a−1) = type−1(a)):

type−1(x) =


equi if type(x) = equi
disj if type(x) = disj
parent if type(x) = child
child if type(x) = parent
onto if type(x) = onto

Second, HCM infers further alignments from a (a−1 re-
spectively) by drawing conclusions with the help of exist-
ing alignments e ∈ E. HCM supports five types of infer-
ence types shown in Figure 5: Given an existing alignments
e = (f1, f2) e ∈ E and the alignment just added a = (f2, f3)
(respectively a−1 = (f2, f3)), a closure a′ = (f1, f3) can be
drawn.

Third, given the verified alignment graphs, HCM outputs
all edges e ∈ E with origin(e) = detect as alignment set A.

For instance, given a WCF group G =
{dbpedia:SpaceStation, umbel:SpacePlatform Manned ,
dbpedia:Spacecraft} the population of graph D works as
follows: The only ontology constraint for G is the alignment
aonto = (dbpedia:Spacecraft , dbpedia:SpaceStation), with
cert(aonto) = 1, origin(aonto) = def, and type(aonto) = onto
in order to indicate that both concepts to originate from
the same ontology. Both alignments aonto and the in-
verse a−1

onto are added to D. Afterwards the candidate
set G = {a1, a2, a3} is processed. Assuming alignment
certainties of:
a1 = (dbpedia:SpaceStation, umbel:SpacePlatform Manned)
cert(a1) = 0.955,
a2 = (dbpedia:Spacecraft , dbpedia:SpaceStation)
cert(a2) = 0.718, and
a3 = (dbpedia:Spacecraft , umbel:SpacePlatform Manned)
cert(a3) = 0.341
HCM proceeds as follows: First a1 is added to D with
origin(a1) = detect and type(a1) = equi (and so a−1

1 ). Af-



terwards, a2 is not added, due to the conflicting definition
aonto, which marks both concepts to originate from the
same ontology. Finally, due to a multiple-entity correspon-
dence a3 is prevented too: umbel:SpacePlatform Manned is
already matched to a concept from the dbpedia-ontology.

4.2 Experiments
In the following section, we discuss the experimental re-

sults of HCM for the BTC data as well as on the Ontology
Alignment Evaluation Initiative benchmark track [6, 7].

BTC. To determine HCM’s alignment precision for the
BTC data, we executed the alignment generation algorithm
using different threshold settings (θO). We chose seven
ranges: simforest = 1, 1 > simforest ≥ 0.95, 0.95 >
simforest ≥ 0.9, . . . , 0.75 > simforest ≥ 0.7. We did not
consider alignments with O(f1, f2) < 0.7 which is along the
lines with the argument by Jain et al. for the BLOOMS+’s
tree overlap measure [14]. The authors mention an optimal
threshold of 0.85. After determining alignments using HCM,
a random sample of 50 alignments for each similarity range
was selected. Then three independent annotators manually
inspected these alignments and identified the actual relation
between aligned concepts in a majority vote process. We
used three different types of relations: Equivalence indi-
cates a correct alignment of two equivalent concepts. Sim-
ilar indicates a fuzzy match. The two concepts are related
and the set of instances of the concepts have a significant in-
tersection. Disjoint indicates an incorrect alignment of two
concepts. The set of instances of the concepts are disjoint.

Table 2 shows our manual evaluation results as well as
their confidence intervals (confidence level of 95%). Addi-
tionally, it depicts absolute numbers of alignments found
in the BTC data for varying thresholds. In the case of
1 > simforest ≥ 0.95, 57.5% of the alignments were la-
beled as equivalences and 15% as similar. The number of
actual equivalences decreases for smaller forest similarities.
When considering only the strict equivalence judgments as
relevant alignment, the inter-annotator agreement for strict
equivalences is very high κ = 0.909 (Cohen’s kappa coef-
ficient). By treating more fuzzy results (similar or equal
alignments) as correct, the inter-annotator agreement de-
creases to κ = 0.817. This is due to a varying perception
of a similarity or relatedness. It is much more subjective
than a strict equivalence definition. For instance, the con-
cepts daml:Ammeters and umbel:Voltmeter are related due
to their common purpose. On the other hand, from a tax-
onomic point of view, the instance sets of both concepts
are probably disjoint. HCM discovered interesting matches
such as:
• yago:PsychoactiveFungi and

umbel:HallucinogenicMushroom
• dbpedia:BirdsOfAustralia and opencyc:Parrot
• umbel:AirConditioner and dbpedia:HeatExchangers

Note that, due to diverse and non-trivial domains in the
BTC corpus, these kind of matches are hard to identify, even
for humans. Our algorithm can deal with these cases because
it exploits broad knowledge for many domains present in
Wikipedia.

Furthermore, it is interesting to see that even in case of
false positives, the algorithm reveals interesting semantic re-
lations between concepts. For instance, HCM aligns the
concepts yago:Outlaws and umbel:MotorcycleClub due to a
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Figure 6: Alignment generation execution time for
different WCF group sizes. The blue dotted line in-
dicates the quadratic regression line unifying the ac-
tual alignment generation time per group (indicated
by a yellow rhomb). The experiment was executed
with h = 4, d = 10, the ConceptID TFIDF3 keyword
extraction method, the TFIDFForest10 topic extrac-
tor (θJ = 0.7), and the forest threshold θO = 0.7.

semantic relation via outlaw motorcycle clubs similar to Ri-
vals Hells Angels and Bandidos.

Runtimes of the alignment generation phase is visual-
ized in Figure 6 for different WCF groups (orange rhomb
marker). Due to the pairwise comparison of trees of all
WCFs in a group G to generate candidate alignments (see
Step 2), the alignment generation phase has a quadratic run-
time in the group size |G|. Furthermore, the effort alignment
verification is polynomial to the amount of alignment can-
didates. The blue dotted line indicates the polynomial re-
gression of the forest match execution times. The amount of
small groups is very high (see Figure 3), which is no prob-
lem, because of small run-times. A remaining issue is the
large effort of the matching step for large groups which is
left for future work.

O(f1, f2) P (eq) P (eq ∪ sim) align.
O = 1.0 0.964 ±0.036 0.964 ±0.036 601

1.0 > O ≥ 0.95 0.575 ±0.143 0.725 ±0.129 133.317
0.95 > O ≥ 0.9 0.481 ±0.145 0.706 ±0.131 72.131
0.9 > O ≥ 0.85 0.071 ±0.066 0.294 ±0.131 6.921

0.85 > O ≥ 0.8 0.053 ±0.053 0.200 ±0.114 4.279
0.8 > O ≥ 0.75 0.053 ±0.053 0.126 ±0.092 3.139

0.75 > O ≥ 0.7 0.071 ±0.066 0.331 ±0.136 1.950

Table 2: The probabilities and confidence intervals
for the 50 random samples of the alignments pro-
posed by HCM (confidence level 95%). The left-
most column shows the different similarity classes
(O(f1, f2)). The 2nd column from the left presents
the probability and confidence interval for an align-
ment representing an equivalence. The 3rd column
from the left shows the probability and confidence
interval for an alignment representing either equiv-
alence or similarity. The rightmost column depicts
the total number of identified alignments within the
BTC data.



OAEI. In order to compare with other ontology alignment
approaches (e.g. [2, 13, 15, 17]), we provide results on the
benchmark track of the Ontology Alignment Evaluation Ini-
tiative Campaign [6]. The goal of the track is to evaluate
strengths and weaknesses of different alignment approaches
by providing a set of alignments between a reference and sys-
tematically defamiliarized ontologies. All considered ontolo-
gies in the benchmark track originate from the bibliographic
domain. Since our algorithm is designed to match concepts
from various ontologies at once, we generate alignments for
concepts from ontologies in the benchmark track. To deter-
mine the matching quality we extract all concept pairs be-
tween ontologies having a reference alignment. HCM treats
concepts with equivalent URI as one entity. Therefore we
implicitly infer alignments between concepts with an equiv-
alent URIs. Furthermore, the reference alignments for prop-
erties are neglected, because HCM does not target property
alignments. Using a WCF overlap threshold of θO = 0.7
leads to a precision of 85% and a recall of 55%. In com-
parison to other approaches that additionally offered align-
ments between properties, these numbers are average. This
is mainly due to the changes of ConceptIDs and descriptions
in the automatically generated ontologies. For instance, the
concept xsqlknk of ontology 266 neithers contain a human
readable ConceptID, nor a description. Nevertheless, the
reference alignments contain a match with 101:MastersThe-
sis. Many state-of-the-art ontology matching algorithms
solve this problem by using an structure based similarity
as sole basis of decision making. However, for the LOD on-
tology matching task, this approach is unpromising, because
different scopes of the authors of LOD data sets lead to large
differences in the ontology structure. For instance, the two
data sets of DBpedia12 and YAGO13 represent knowledge
extracted from Wikipedia. Nevertheless, the ontologies of
both data sets vary significantly in structure, whereas many
common concepts are shared.

In 2011 a new bibliographic benchmark data set was gen-
erated [7]; the results of HCM are the equivalent for the
new data set.

5. CONCLUSION AND FUTURE WORK
In this paper, we tackle the problem of large-scale con-

cept matching – one of the major challenges in ontology
matching [19]. In contrast to other approaches that process
pairs of ontologies, our focus is on aligning many ontologies
from the LOD cloud simultaneously in a holistic manner.
To this end, we propose an abstract workflow (knowledge
extraction, grouping, and alignment generation) to specif-
ically enable scalability while still examining all ontologies
in its entirety. Further, we plug state-of-the-art techniques
and novel ideas into this workflow and report on promising
results for scalability and alignment quality in a web-scale
alignment scenario. For representing knowledge, we chose
Wikipedia Category Forests. For grouping the input, we
leverage topical information. Last, the alignment generation
leverages Wikipedia Category Forest overlaps and performs
a semantic inspection.

We have many ideas for future directions: For instance, we
will look into other knowledge representations and matching
techniques that can be plugged into the workflow. The chal-

12http://dbpedia.org/
13http://www.mpi-inf.mpg.de/yago-naga/yago/

lenge here, is to identify approaches that can capture differ-
ent semantic notions of an input concept and allow a useful
grouping. Also, we plan to derive further relationship types
- maybe with the help of instance data instead of Wikipedia
categories. Last, we plan to experiment with other topical
groupings that, e.g., allow overlaps across groups. Another
grouping method could also support incremental updates
and thus facilitate online ontology alignments for the grow-
ing web of linked data.
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