
ParlBench: a SPARQL-benchmark for electronic
publishing applications

Tatiana Tarasova and Maarten Marx

ISLA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam
T.Tarasova@uva.nl, maartenmarx@uva.nl ?

Abstract. ParlBench is a scalable RDF benchmark modelling a large scale
electronic publishing scenario. The benchmark offers large collections of the
Dutch parliamentary proceedings together with information about members of
the parliament and political parties. The data is real, but free of intellectual
property rights issues. On top of the benchmark data sets, several realistic ap-
plication benchmarks as well as targeted micro benchmarks can be developed.
This paper describes the benchmark data sets and 28 analytical queries covering
a wide range of SPARQL constructs. The potential use of ParlBench is demon-
strated by executing the query set for 8 different scalings of the benchmark data
sets on Virtuoso RDF store. Measured on a standard laptop, data loading times
varied from 43 seconds (for 1% of the data set) to 48 minutes (for the complete
data set), and execution of the complete set of queries (1520 queries in total)
varied from 9 minutes to 13 hours.

Keywords: SPARQL, RDF benchmark, parliamentary proceedings

1 Introduction

RDF stores are the backbones of RDF data driven applications. There is a wide range
of RDF stores systems available1 together with various benchmark systems2 to assess
performances of the systems.

As discussed in the Benchmark Handbook [1], different applications impose differ-
ent requirements to a system, and the performance of the system may vary from one
application domain to another. This creates the need for domain specific benchmarks.
The existing application benchmarks for RDF store systems often employ techniques
developed by the Transaction Processing Performance Council [4] (TPC) for relational
databases and use synthetically generated data sets for their workloads. However, per-
formance characteristics for loading and querying such data may differ from those that
were measured on real life data sets, as it was shown by the DBpedia benchmark [2] on
DBpedia [8]. To the best of our knowledge, among the existing benchmarks for RDF
store systems, only the DBpedia benchmark provides a real data set.

With this work we propose the ParlBench application benchmark that closely mim-
ics a real-life scenario: large scale electronic publishing with OLAP-type queries. Parl-
Bench consists of (1) real life data and (2) a set of analytical queries developed on top
of these data.
? This work was supported by the EU- FP7 (FP7/2007-2013) project ENVRI (grant number

283465).
1 http://www.w3.org/wiki/LargeTripleStores
2 http://www.w3.org/wiki/RdfStoreBenchmarking

http://www.w3.org/wiki/LargeTripleStores
http://www.w3.org/wiki/RdfStoreBenchmarking

The benchmark data sets include the Dutch parliamentary proceedings, political
parties and politicians. The ParlBench data fit very well the desiderata of Gerhard
Weikum’s recent Sigmod blog3: it is open, big, real, useful, linked to other data sources,
mixing data-values and free text, and comes with a number of real-life workloads.

The queries in the benchmark can be viewed as coming from one of two use cases:
create a report or perform a scientific research. As an example of the latter, consider the
question whether the performance of males and females differs in parliament, and how
that has changed over the years. To enable more comprehensive analysis of the RDF
stores’ performances, we grouped the benchmark queries into four micro benchmarks
[5] with respect to the their analytical aims Average, Count, Factual and Top 10.

The paper is organized as follows. Section 2 gives an overview of the related work.
Section 3 describes the benchmark data sets. In Section 4 we define the benchmark
queries and present the micro benchmarks. The evaluation of the ParlBench benchmark
on the Virtuoso RDF store is discussed in Section 5.

2 Related Work

There is a number of RDF store benchmarks available. The most relevant benchmarks
to our work are discussed further. The Berlin SPARQL Benchmark (BSBM) [6] imple-
ments an e-commerce application scenario. Similarly to ParlBench, BSBM employed
the TPC [4] techniques, such as query permutations (for the Business Intelligence use
case) and system ramp-up.

The SPARQL Performance Benchmark (SP2Bench) [7] is settled in the DBLP sce-
nario. SP2Bench queries are carefully designed to test the behavior of RDF stores in
relation to common SPARQL constructs, different operator constellations and RDF
access patterns. SP2Bench measures query response time in cold runs settings, i.e.,
when query execution time is measured immediately after the server was started.

Both the Berlin and SP2Bench use synthetically generated data sets, whereas, the
DBpedia SPARQL Benchmark (DBPSB) [2] uses a real data set, DBpedia [8]. In ad-
dition to using a real data set, the DBPSB benchmark uses real queries that were
issued by humans and applications against DBpedia. These queries cover most of the
SPARQL features and enable comprehensive analysis of RDF stores’ performance on
a single feature as well as combinations of features. The main difference between the
ParlBench and DBPSB benchmarks is that the latter is not developed with a particular
application in mind. Thus, it is more useful for a general assessment of the performance
of different RDF stores’ implementations, while ParlBench is particularly targeted on
developers of e-publishing applications and can support them in choosing systems that
are more suitable for analytical query processing.

3 Benchmark Data Sets

The benchmark consists of five conceptually separate data sets summarized in Table 1:

Members : describes political players of the Dutch parliament.
Parties : describes Dutch political parties.

3 http://wp.sigmod.org/?p=786

http://wp.sigmod.org/?p=786

Proceedings : describes the structure of the Dutch parliamentary proceedings.
Paragraphs : contains triples linking paragraphs to their content.
Tagged entities : contains triples linking paragraphs to DBpedia entities indicating

that these entities were discussed in the paragraphs.

Fig. 1. Statistics of the benchmark datasets

dataset # of triples size # of files
members 33,885 14M 3,583
parties 510 612K 151
proceedings 36,503,688 4.15G 51,233
paragraphs 11,250,295 5.77G 51,233
tagged entities 34,449,033 2.57G 34,755
TOTAL: 82,237,411 ∼13G 140,955

The data model of the benchmark data sets is described in Appendix A.

3.1 Scaling of the Benchmark Data Sets

The size of the ParlBench data sets can be changed in different ways. The data set
can be scaled by the number of included proceedings. All proceeding files are ordered
chronologically. The scaled data set of size 1/n consists of every n-th file in this list, plus
the complete Parties and Members sets. Optionally, one can include Tagged entities
and/or Paragraphs data sets to the test collection. In this case Paragraphs and Tagged
Entities are scaled accordingly to the included proceedings, i.e., only paragraphs and/or
tags pointing to id’s in the chosen proceedings are included.

4 Benchmark Queries

ParlBench provides 19 SPARQL queries. The queries were grouped into four micro
benchmarks:

Average: 3 queries, numbered from A0 to A2, retrieve aggregated information.
Count: 5 queries, numbered from C0 to C4, count entities that satisfy certain condi-

tions.
Factual: 6 queries, numbered from F0 to F5, retrieve instances of a particular class

that satisfy certain conditions.
Top 10: 5 queries, numbered from T0 to T4, retrieve the top 10 instances of a particular

class that satisfy certain filtering conditions.

All the queries are listed in Appendix B. Their SPARQL representations can be seen
in Appendix C. The benchmark queries cover a wide range of the SPARQL language
constructs. Table 1 shows the usage of SPARQL features by individual query and
distribution of the features across micro benchmarks.

5 Experimental Run of the Benchmark

In this section we demonstrate the application of our benchmark on the OpenLink
Virtuoso RDF native store (OSE)4. Tested on the Berlin benchmark, Virtuoso showed
one of the best performance results among other systems [6].

4 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

Table 1. SPARQL characteristics of the benchmark queries.

micro benchmark
Average Count Factual Top 10

A0 A1 A2 C0 C1 C2 C3 C4 F0 F1 F2 F3 F4 F5 T0 T1 T2 T3 T4
FILTER + + + + + + + +
UNION + + + + + + + + +
LIMIT + + + + + + +

ORDER BY + + + + + + +
GROUP BY + + + + + + + + + + + +

COUNT + + + + + + + + + + + + + + + + +
DISTINCT + + + +

AVG + + +
negation +

OPTIONAL + +
subquery + + + + + + +

blank node scoping + + + + + + + + +
of triple patterns 10 9 12 5 5 5 6 13 8 16 6 6 2 4 2 4 9 3 11

5.1 Experimental Setup

Test Environment For the benchmark experiment we used a personal laptop Apple
MacBook Pro with Intel i7 CPU (2x2 cores) running at 2.8 GHz and 8GB memory.
See Appendix D for a more detailed specification of the test environment.

Evaluation Metrics

Loading Time The loading time is the time for loading RDF data into an RDF store.
The benchmark data sets are in RDF/XML format. The time is measured in seconds.
Loading of data into Virtuoso was done one data set at a time. For the loading of
Parties and Members we used the Virtuoso RDF bulk load procedure. For Proceedings
we used the Virtuoso function DB.DBA.RDF LOAD RDFXML MT to load large RDF/XML
text.

Query Response Time The query response time is the time it takes to execute a
SPARQL query. To run the queries programmatically, we used isql, the Virtuoso
interactive SQL utility. The execution time of a single query was taken as the real time
returned by the bash /usr/bin/time command. 10 permutations of the benchmark
queries were created, each containing 19 SPARQL queries.

Before starting measuring the query response time, we warmed-up Virtuoso by
running 5 times 10 different permutations of all 19 queries of the benchmark. In total,
950 queries were executed in the warm-up phase, and each query was run 50 times.
After that, we run the same permutations 3 more times and measured the execution
time of each query. The query response time was computed as the mean response time
of executing each query 30 times.

Test Collections Experiments are run on 8 test collections. Each collection includes
the Parties and Members data sets and a scaled Proceedings data set ranging from 1
to 100% . Table 2 gives an overview of the sizes of each test collection.

Table 2. Sizes of the test collections for different scalings of Proceedings

Scaling Factor 1% 2% 4% 8% 16% 32% 64% 100%

of triples 494,875 1,027,395 1.906,880 3,851,642 7,554,304 15,129,621 23,341,602 36,542,431

5.2 Results

We report on three experiments, relating database size to execution time: (1) time
needed to load the test collections (fig. 2), (2) total time needed to execute all the
queries in micro benchmarks5 (fig. 3), and (3) query execution time of all the queries
on the largest collection (fig. 4).

The y-axes on fig. 2 and fig. 3 are presented in a log scale, and the numbers represent
the loading and query response time in seconds. Appendix E contains larger versions
of these plots.

To make the results reproducible, we publish the benchmark data sets, queries and
scripts at http://data.politicalmashup.nl/RDF/data/.

1 2 4 8 16 32 64 100
1
2
4
8
16
32
64
128
256
512
1024
2048
4096

Size of proceedings, %

Ti
m

e,
 s

ec

Fig. 2. Loading Time in sec of the bench-
mark collections

1 2 4 8 16 32 64 100
0.25
0.5
1
2
4
8
16
32
64
128
256

Size of proceedings, %

S
um

 o
f e

xe
cu

tio
n

tim
e,

 s
ec top

average
count
factual

Fig. 3. Query Execution Time in sec of mi-
cro benchmarks on the test collections

A0 A1 A2 C0 C1 C2 C3 C4 F0 F1 F2 F3 F4 F5 T0 T1 T2 T3 T40
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

Queries

Ti
m

e,
 s

ec

45.9422
39.5885

47.1268

2.4212

10.6883

1.4383 0.8649

30.0118

7.9996

78.1858

22.377822.4192

0.1053

48.8887

0.8357

10.2813

41.6915

0.9241

168.1313

average
count
factual
top10

Fig. 4. Query Execution Time in sec of the benchmark queries on the largest test collection

5 For each group we summed the execution time of each query in the group.

http://data.politicalmashup.nl/RDF/data/

6 Conclusion

ParlBench has the proper characteristics of an RDF benchmark: it can be scaled easily
and it has a set of intuitive queries which measure different aspects of the SPARQL
engine.

We believe that ParlBench is a good proxy for a realistic large scale digital pub-
lishing application. ParlBench provides real data that encompass major characteristics
shared by most of the e-publishing use cases including rich metadata and hierarichal
organization of the content into text chunks.

The data set is large enough to perform non-trivial experiments. In addition to the
analytical scenario presented, one can think of several other application scenarios that
can be developed on the same data sets. Due to the many and strong connections of
the benchmark to the Linked Open Data Cloud through the DBpedia links, natural
Linked Data integration scenarios can be developed from ParlBench. The ParlBench
data is also freely available in XML format [9], enabling cross-platform comparisons of
the same workload.

As a future work we will consider the execution of the benchmark on multiple RDF
stores and comparison of the results with the ones achieved on Virtuoso.

Another interesting direction for future work could be to extend the set of queries.
Currently, there are only two queries with the OPTIONAL operator, which was proved to
be the reason of the high complexity of the SPARQL language [10]. Queries that use
features of SPARQL 1.1 could be a good addition to the benchmark. ParlBench has
many queries that extensively use the UNION operator to explore the transitive hasPart
relation. We could re-write these queries through the SPARQL 1.1. path expressions.
Such queries would be a good ground to test the reasoning capabilities of RDF store
systems.

References

1. Gray, J.: The Benchmark Handbook for Database and Transaction Systems, (2nd Edition),
Morgan Kaufmann, ISBN 1-55860-292-5.

2. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.-C. N.: DBpedia SPARQL benchmark: per-
formance assessment with real queries on real data. In ISWC, (2011). LNCS, vol. 7031, pp.
454-469. Springer, Heidelberg (2011).

3. Transaction Processing Performance Council (2008): TPC Benchmark H, Standard Specifi-
cation Revision 2.7.0. Retrieved March 2, (2009), http://www.tpc.org/tpch/spec/tpch2.
7.0.pdf

4. Transaction Processing Performance Council. http://www.tpc.org/
5. Afanasiev L., Manolescu I., Michiels P.: MemBeR: a micro-benchmark repository for

XQuery. In XSym (2005). LNCS, vol. 3671, pp. 144–161. Springer, Heidelberg (2005).
6. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. On Semantic Web and

Information Systems. 5(2), 1-24 (2009).
7. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance

Benchmark. In ICDE, 222-233 (2009).
8. Bizer C., Lehmann J., Kobilarov G., Auer S., Becker C., Cyganiak R., Hellmann S.: DB-

pedia - a crystallization point for the web of data. J. of Web Semantics 7(3), 154–165
(2009).

9. Maarten M.: Advanced Information Access to Parliamentary Debates. J. of Dig. Inf.. 10(6),
(2009).

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL ACM Trans.
Database Syst.. 34(3), (2009).

http://www.tpc.org/tpch/spec/tpch2.7.0.pdf
http://www.tpc.org/tpch/spec/tpch2.7.0.pdf
http://www.tpc.org/

A Data Model

Figure 5 gives an overview of the data model.

Fig. 5. Data model of the benchmark datasets.

Topic

Stage
Direction

Speech

Paragraph

Scene

Parliament
Member

Political
Party

Content of the
paragraph

has part

legislative
period

Legislative
period

Parliamentary
Proceedings

has part

has parthas part

references
member

references
party

has part

has part

has text

DBpedia
resource

same as

DBpedia
resource

same as

Biography

biography

Tag

DBpedia
resource

has auto meaning

Person Organization Spatial
Thing

is a

is a

is a

The data model consists of the following classes:

– PoliticalParty represents political parties. Parties are linked to their equivalent
resources in DBpedia.

– ParliamentMember represents politicians, i.e., members of the parliament. Mem-
bers are linked to the DBpedia resources that correspond to the same politicians.
Additionally, members have biographical information such as gender, birthday and
the place of birth, and the death date and place if applicable.

– ParliamentaryProceedings are written records of parliamentary meetings.
– Topic represents a different point on the agenda in the proceedings.
– Scene and StageDirection are important structural elements of the Dutch parlia-

mentary proceedings. They contain information about current speakers and their
interrupters. We didn’t include this information into the benchmark data sets, but
we kept the elements to have a complete structure of the proceedings.

– Speech is a constituent of a Topic, a Scene or Stage Direction. Speech represents a
beginning of a speech of a new speaker.

– Paragraph is a container for all spoken text; can be part of any structural element
of the proceedings described above.

The structural elements of the proceedings are connected to Proceedings through
the dcterms:hasPart property. The speaker of the speech and the affiliated party

of the speaker are attached to Speech via the refMember and refParty properties
correspondingly.

Vocabularies Relevant existing vocabularies and ontologies to model documents of
the parliamentary proceedings fall into two categories. In the first category there are
vocabularies that are too generic, such as the SALT Document Ontology6 or the DoCo,
the Document Components Ontology7. They do not provide means to represent such
specific concepts as stage direction or scene. Vocabularies in the second category are
too specific, like the Semantic Web Conference Ontology8 or the Semantic Web Portal
Ontology9 which model proceedings of conferences.

We defined our own RDF vocabulary to model parliamentary proceedings, the Par-
liamentary Proceedings vocabulary10, and integrated it with other existing vocabular-
ies. To represent biographical information of politicians, we used: BIO: A vocabulary
for biographical information11 together with the Friend of a Friend Vocabulary (FOAF)
12 and the DBpedia Ontology13. The Modular Unified Tagging Ontology14 (MUTO)
was used to represent information about tagged entities of paragraphs. The Dublin
Core Metadata Terms15 was used to encode metadata information.

6 http://salt.semanticauthoring.org/ontologies/sdo#
7 http://purl.org/spar/doco/Paragraph
8 http://data.semanticweb.org/ns/swc/swc_2009-05-09.html#
9 http://sw-portal.deri.org/ontologies/swportal#

10 http://purl.org/vocab/parlipro#
11 http://vocab.org/bio
12 http://xmlns.com/foaf/0.1/
13 http://dbpedia.org/ontology/
14 http://muto.socialtagging.org/
15 http://purl.org/dc/terms/ and http://purl.org/dc/elements/1.1/

http://purl.org/spar/doco/Paragraph
http://data.semanticweb.org/ns/swc/swc_2009-05-09.html#
http://sw-portal.deri.org/ontologies/swportal#
http://purl.org/vocab/parlipro#
http://vocab.org/bio
http://dbpedia.org/ontology/
http://muto.socialtagging.org/
http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/

B ParlBench Queries

Table 3. List of the benchmark queries

average

11. A0 Retrieve average number of people spoke per topic.
12. A1 Retrieve average number of speeches per topic.
13. A2 Retrieve average number of speeches per day.

count

1. C0 Count speeches of females.
2. C1 Count speeches of males.
3. C2 Count speeches of speakers who were born after 1960.
4. C3 Count speeches of male speakers who were born after 1960.
5. C4 Count speeches of a female speaker from the topic where only one female spoke.

factual

14. F0 What members were born after 1950, their parties and dates of death of exist?
15. F1 What gender of politicians who spoke most within a certain timeframe?
16. F2 What is the percentage of male speakers?
17. F3 What is the percentage of female speakers?
18. F4 What politician has most number of Wikipedia pages in different languages?
19. F5 What speeches are made by politicians without Wikipedia pages?

top 10

6. T0 Retrieve top 10 members with the most speeches.
7. T1 Retrieve top 10 topics when most of the people spoke.
8. T2 Retrieve top 10 topics with the most speeches.
9. T3 Retrieve top 10 days with the most topics.
10. T4 Retrieve top 10 longest topics (i.e., number of paragraphs).

C ParlBench SPARQL Queries

Table 4. Prefixes used in the SPARQL queries.

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

parlipro: <http://purl.org/vocab/parlipro#>
dcterms: <http://purl.org/dc/terms/>
dc: <http://purl.org/dc/elements/1.1/>

bio: <http://purl.org/vocab/bio/0.1/>

foaf: <http://xmlns.com/foaf/0.1/>

dbpedia: <http://dbpedia.org/resource/>
owl: <http://www.w3.org/2002/07/owl#>

Table 5: SPARQL representation of the benchmark queries.

A0: Retrieve average number of people spoke per topic.

SELECT AVG(?numOfMembers) as ?avgNumOfMembersPerTopic

WHERE {{

SELECT COUNT(?member) AS ?numOfMembers

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic}}

A1: Retrieve average number of speeches per topic.

SELECT AVG(?numOfSpeeches) as ?avgNumOfSpeechesPerTopic

WHERE {{

SELECT COUNT(?speech) AS ?numOfSpeeches

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic}}

A2: Retrieve average number of speeches per day.

SELECT AVG(?numOfSpeeches) as ?avgNumOfSpeechesPerDay

WHERE {{

SELECT ?date COUNT(?speech) AS ?numOfSpeeches

WHERE {

?proc dcterms:hasPart ?topic .

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dc:date ?date .

?speech rdf:type parlipro:Speech .

?topic rdf:type parlipro:Topic .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?date}}

C0: Count speeches of females.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .}

C1: Count speeches of males.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .}

C2: Count speeches of speakers who were born after 1960.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

C3: Count speeches of male speakers who were born after 1960.

SELECT COUNT(?speech)

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

C4: Count speeches of a female speaker from the topic where only one female spoke.

SELECT ?topic ?member COUNT(?speech) as ?numOfSpeeches

WHERE {{

SELECT ?topic ?member COUNT(?member) AS ?numOfFemales ?speech

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic ?member ?speech}

FILTER (?numOfFemales = 1)}

GROUP BY ?topic ?member

F0: What members were born after 1950, their parties and dates of death of exist?

SELECT DISTINCT ?member ?party ?birthday

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member.

?speech parlipro:refParty ?party .

?member rdf:type parlipro:ParliamentMember .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:birthday ?birthday .

FILTER (year(?birthday) > 1960)}

FILTER (year(?birthday) > 1950)

OPTIONAL{_:bio dbpedia-ont:deathDate ?deathDate .}}

F1: What gender of politicians who spoke most within a certain timeframe?

SELECT ?gender COUNT(?member) AS ?numOfMembers

WHERE {

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dc:date ?date .

?proc dcterms:hasPart ?topic .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .

?member bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender ?gender .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}

FILTER (year(?date) > 1995 AND year(?date) < 2005)}

GROUP BY ?gender

ORDER BY DESC(?numOfMembers)

LIMIT 1

F2: What is the percentage of male speakers?

SELECT (?numOfMaleMembers*100)/?numOfMembers

WHERE{{

SELECT COUNT(DISTINCT ?memberMale) as ?numOfMaleMembers

COUNT(DISTINCT ?member) as ?numOfMembers

WHERE {{

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .}

UNION{

?memberMale bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Male .

FILTER (sameTerm(?member,?memberMale))}}}}

F3: What is the percentage of female speakers?

SELECT (?numOfFemaleMembers*100)/?numOfMembers

WHERE{{

SELECT COUNT(DISTINCT ?memberFemale) as ?numOfFemaleMembers

COUNT(DISTINCT ?member) as ?numOfMembers

WHERE {{

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .}

UNION{

?memberFemale bio:biography _:bio .

_:bio rdf:type bio:Biography .

_:bio foaf:gender dbpedia:Female .

FILTER (sameTerm(?member,?memberFemale))}}}}

F4: What politician has most number of Wikipedia pages in different languages?

SELECT ?member ?numOfPages

WHERE {{

SELECT DISTINCT ?member COUNT(?dbpediaMember) AS ?numOfPages

WHERE {

?member rdf:type parlipro:ParliamentMember .

?member owl:sameAs ?dbpediaMember .}

GROUP BY ?member}}

ORDER BY DESC(?numOfPages)

LIMIT 1

F5: What speeches are made by politicians without Wikipedia pages?

SELECT DISTINCT ?speech ?member

WHERE {

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .

?member rdf:type parlipro:ParliamentMember .

OPTIONAL {?member owl:sameAs ?dbpediaMember .}

FILTER (!bound(?dbpediaMember))}

T0: Retrieve top 10 members with the most speeches.

SELECT ?member COUNT(?speech) as ?numOfSpeeches

WHERE {

?member rdf:type parlipro:ParliamentMember .

?speech parlipro:refMember ?member .}

GROUP BY ?member

ORDER BY DESC(?numOfSpeeches)

LIMIT 10

T1: Retrieve top 10 topics when most of the people spoke.

SELECT ?topic COUNT(?member) as ?numOfMembersSpokeInTopic

WHERE {

?topic rdf:type parlipro:Topic .

?topic dcterms:hasPart ?speech .

?speech rdf:type parlipro:Speech .

?speech parlipro:refMember ?member .}

GROUP BY ?topic

ORDER BY DESC(?numOfMembersSpokeInTopic)

LIMIT 10

T2: Retrieve top 10 topics with the most speeches.

SELECT ?topic

COUNT(?speech) as ?numOfSpeeches

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic

ORDER BY DESC(?numOfSpeeches)

LIMIT 10

T3: Retrieve top 10 days with the most topics.

SELECT ?date COUNT(?topic) as ?numOfTopics

WHERE {

?proc rdf:type parlipro:ParliamentaryProceedings .

?proc dcterms:hasPart ?topic .

?proc dc:date ?date .}

GROUP BY ?date

ORDER BY DESC(?numOfTopics)

LIMIT 10

T4: Retrieve top 10 longest topics (i.e., number of paragraphs).

SELECT ?topic COUNT(?par) as ?numOfPars

WHERE {

?topic rdf:type parlipro:Topic .

?speech rdf:type parlipro:Speech .

?speech dcterms:hasPart ?par .

?par rdf:type parlipro:Paragraph .

{?topic dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?sd .

?sd rdf:type parlipro:StageDirection .

?sd dcterms:hasPart ?speech .}

UNION{

?topic dcterms:hasPart ?scene .

?scene rdf:type parlipro:Scene .

?scene dcterms:hasPart ?speech .}}

GROUP BY ?topic

ORDER BY DESC(?numOfPars)

LIMIT 10

D Test Machine Specification

For the benchmark evaluation we used a personal laptop Apple MacBook Pro. The
operating system running is Mac OS X Lion 10.7.5 x64. The specification of the machine
is the following:

Hardware

– CPUs: 2.8 GHz Intel Core i7 (2x2 cores)
– Memory: 8 GB 1333 MHz DDR3
– Hard Disk: 750GB

Software

– OpenLink Virtuoso: Open Source Edition v.06.01.3127 compiled from source for
OS X

– MySQL Community Server (GPL) v. 5.5.15
– Scripts (bash 3.2, Python 2.7.3) to scale and upload RDF datasets, to create per-

mutations of queries and run them on Virtuoso. The scripts are available for down-
loading at http://data.politicalmashup.nl/RDF/scripts/.

Virtuoso Configuration We configured the Virtuoso Server to handle load of large data
sets16.

NumberOfBuffers = 680000
MaxDirtyBuffers = 500000

16 http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtRDFPerformanceTuning

http://data.politicalmashup.nl/RDF/scripts/
http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning
http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning

The RDF Index Scheme remained as it was supplied with the default Virtuoso
installation. Namely, the scheme consists of the following indices:

– PSOG - primary key.
– POGS - bitmap index for lookups on object value.
– SP - partial index for cases where only S is specified.
– OP - partial index for cases where only O is specified.
– GS - partial index for cases where only G is specified.

E Large Plots

Fig. 6. Log2 of Loading Time in sec of the benchmark collections.

1 2 4 8 16 32 64 100
1
2
4
8
16
32
64
128
256
512
1024
2048
4096

Size of proceedings, %

Ti
m

e,
 s

ec

Fig. 7. Log2 of Query Execution Time in sec of micro benchmarks on the test collections.

1 2 4 8 16 32 64 100
0.25
0.5
1
2
4
8
16
32
64
128
256

Size of proceedings, %

S
um

 o
f e

xe
cu

tio
n

tim
e,

 s
ec top

average
count
factual

	ParlBench: a SPARQL-benchmark for electronic publishing applications

